

Supplement of

Characterization of submicron organic particles in Beijing during summertime: comparison between SP-AMS and HR-AMS

Junfeng Wang et al.

Correspondence to: Xinlei Ge (caxinra@163.com)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

species/parameters		Case I	Case II	entire campaign	
NO ₂ (ppb)		26.7 ± 13.5	14.9 ± 5.9	19.1 ± 13.1	
O ₃ (ppb)		41.7 ± 30.0	84.6 ±30.6	$59.4~{\pm}34.7$	
<i>T</i> (° C)		26.1 ± 4.1	$29.8~{\pm}3.8$	26.7 ±4.9	
BC-PM ₁ Org vs NO ₂ /O ₃ (r^2)		0.42/0.15	0.12/0.02	0.23/0.0003	
NR-PM ₁ Org vs NO ₂ /O ₃ (r^2)		0.15/0.001	0.05/0.05	0.06/0.08	
	Org	0.27	0.66	0.49	
	SO 4 ²⁻	0.74	0.73	0.70	
BC-PM ₁ vs	NO ₃ -	0.90	0.81	0.86	
NR-PM ₁ (r^2)	HOA	0.73	0.84	0.68	
	LO-OOA	0.51	0.31	0.60	
	MO-OOA	0.71	0.81	0.61	
	Org	0.74 ± 0.32	0.46 ± 0.13	0.52 ± 0.24	
	SO 4 ²⁻	0.24 ± 0.11	$0.19\ \pm 0.06$	$0.18\ \pm 0.09$	
BC-PM ₁ to	NO ₃ -	0.37 ± 0.12	0.31 ± 0.07	$0.30\ \pm 0.11$	
NR-PM1 ratio	HOA	1.19 ± 0.52	1.46 ± 0.52	1.23 ±0.57	
	LO-OOA	0.50 ± 0.27	0.40 ± 0.16	0.48 ± 0.39	
	MO-OOA	2.12 ± 0.64	0.51 ± 0.15	1.06 ±0.96	

Table S1. Comparisons of gaseous species, BC-PM₁ and NR-PM₁ species in different periods.

r^2	HOA	A-BBOA	OOA1	OOA2	OOA3
BC	0.70	0.07	0.43	0.10	0.10
$C_4H_9^+$	0.92	0.13	0.35	0.02	0.02
$C_9H_7^+$	0.63	0.10	0.39	0.03	0.03
NO ₂ (gas)	0.57	0.00	0.20	0.02	0.00
$C_2H_3O^+$	0.26	0.44	0.72	0.30	0.03
$C_{3}H_{5}O^{+}$	0.23	0.50	0.67	0.34	0.03
$C_6H_{10}O^+$	0.50	0.36	0.60	0.19	0.02
$C_2H_4O_2^+$	0.26	0.71	0.27	0.31	0.04
$C_3H_5O_2^+$	0.23	0.72	0.27	0.35	0.02
CH_4N^+	0.20	0.61	0.25	0.46	0.00
$K_3SO_4^+$	0.06	0.64	0.06	0.38	0.00
O ₃ (gas)	0.27	0.17	0.00	0.33	0.01
O _x	0.08	0.26	0.04	0.45	0.01
SO4 ²⁻	0.01	0.15	0.06	0.92	0.11
NO ₃ -	0.01	0.00	0.04	0.05	0.97

Table S2. Correlations of BC-PM1 OA factors with their traces.

Figure S1. BC-PM₁ SO₄²⁻ (a) and NO₃⁻ (b) as a function of RH.

Figure S2. (a) the box and whiskers plot showing the distributions of scaled residuals for each m/z, (b) the Q/Qexp values for each ion, (c) time series of the measured and reconstructed total organics mass concentrations, (d) time series of the residual concentrations, and (e) the Q/Qexp values for each point in time.

Figure S3. Time series of potassium-related ion fragments measured by SP-AMS.

Figure S4. (a) 72-h back-trajectories from June 4 to 25, 2017 (Colored by A-BBOA mass concentration (μ g m⁻³), (b) fire-point plot (the color scale shows the numbers of fire points which was observed by NASA (https://earthdata.nasa.gov/firms.)).

Figure S5. Diurnal cycles of mass ratios of BC-related species to BC core (five OA factors, tracer ion fragments, SO_4^{2-} and NO_3^{-}), *T*, and concentrations of gaseous species (O_x and NO₂). Mean values were in solid lines, mediate values were in dotted lines.

Figure S6. Temporal variations of NR-PM₁ and BC-PM₁ (a-c) HOA, LOOOA, and MOOOA (left panels) and (d-e) their fractions. NR-PM₁ OA factors are in red, and the BC-PM₁ OA factors are in black. Here BC-PM₁ MOOOA is only the sum of OOA2 (sulfate-related OOA), and OOA3 (nitrate-related OOA).