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Abstract. An estimated 0.5–1 billion people globally have
inadequate intakes of selenium (Se), due to a lack of bioavail-
able Se in agricultural soils. Deposition from the atmosphere,
especially through precipitation, is an important source of
Se to soils. However, very little is known about the atmo-
spheric cycling of Se. It has therefore been difficult to predict
how far Se travels in the atmosphere and where it deposits.
To answer these questions, we have built the first global at-
mospheric Se model by implementing Se chemistry in an
aerosol–chemistry–climate model, SOCOL-AER (modeling
tools for studies of SOlar Climate Ozone Links – aerosol). In
the model, we include information from the literature about
the emissions, speciation, and chemical transformation of at-
mospheric Se. Natural processes and anthropogenic activi-
ties emit volatile Se compounds, which oxidize quickly and
partition to the particulate phase. Our model tracks the trans-
port and deposition of Se in seven gas-phase species and 41
aerosol tracers. However, there are large uncertainties asso-
ciated with many of the model’s input parameters. In order
to identify which model uncertainties are the most impor-
tant for understanding the atmospheric Se cycle, we con-
ducted a global sensitivity analysis with 34 input parameters
related to Se chemistry, Se emissions, and the interaction of
Se with aerosols. In the first bottom-up estimate of its kind,
we have calculated a median global atmospheric lifetime of
4.4 d (days), ranging from 2.9 to 6.4 d (2nd–98th percentile
range) given the uncertainties of the input parameters. The
uncertainty in the Se lifetime is mainly driven by the un-

certainty in the carbonyl selenide (OCSe) oxidation rate and
the lack of tropospheric aerosol species other than sulfate
aerosols in SOCOL-AER. In contrast to uncertainties in Se
lifetime, the uncertainty in deposition flux maps are governed
by Se emission factors, with all four Se sources (volcanic,
marine biosphere, terrestrial biosphere, and anthropogenic
emissions) contributing equally to the uncertainty in depo-
sition over agricultural areas. We evaluated the simulated Se
wet deposition fluxes from SOCOL-AER with a compiled
database of rainwater Se measurements, since wet deposi-
tion contributes around 80 % of total Se deposition. Despite
difficulties in comparing a global, coarse-resolution model
with local measurements from a range of time periods, past
Se wet deposition measurements are within the range of the
model’s 2nd–98th percentiles at 79 % of background sites.
This agreement validates the application of the SOCOL-AER
model to identifying regions which are at risk of low atmo-
spheric Se inputs. In order to constrain the uncertainty in Se
deposition fluxes over agricultural soils, we should prioritize
field campaigns measuring Se emissions, rather than labora-
tory measurements of Se rate constants.

1 Introduction

Selenium (Se) is an essential dietary trace element for hu-
mans and animals, with the recommended intake ranging
between 30 and 900 µgd−1 (Fairweather-Tait et al., 2011).
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The amount of Se in crops depends on the amount of bio-
available Se in the soils where the crops are grown (Winkel
et al., 2015). Levels of Se in soils, as well as Se dietary in-
takes, vary strongly around the world (Jones et al., 2017).
Selenium deficiency is considered a more widespread issue
than Se toxicity, as around 0.5 to 1 billion people are esti-
mated to have insufficient Se intake (Combs, 2001; Fordyce,
2013).

Atmospheric deposition is an important source of Se to
soils. In several regions, Se concentrations in soils were
found to correlate with precipitation (Låg and Steinnes,
1978; Blazina et al., 2014). Further, several studies have at-
tributed an increase in soil Se concentrations to regional an-
thropogenic Se emissions to the atmosphere (Haygarth et al.,
1993; Dinh et al., 2018), suggesting a link between atmo-
spheric Se inputs and soil concentrations. However, apart
from some budget studies in the 1980s (Ross, 1985; Mosher
and Duce, 1987), there has been a lack of research into
global-scale atmospheric cycling of Se and the spatial pat-
terns of Se deposition.

1.1 Atmospheric Se cycle

Since Se and sulfur (S) are in the same group on the periodic
table, they share chemical properties and their biogeochemi-
cal cycles are similar. Like S, Se is emitted to the atmosphere
by both natural and anthropogenic sources, with the total
annual emissions estimated between 13 and 19 GgSeyr−1.
Natural sources of atmospheric Se include volatilization by
the marine and terrestrial biospheres, volcanic degassing and
eruptions, and minor contributions from sea salt and mineral
dust. Anthropogenic Se is emitted during coal and oil com-
bustion, metal smelting, and biomass burning. However, very
few in situ measurements of Se emissions fluxes and speci-
ation exist. Once in the atmosphere, volatile Se species are
oxidized, eventually forming species like elemental Se and
SeO2 (Wen and Carignan, 2007). These oxidized species are
expected to partition to the particulate phase; previous mea-
surements have found that 75 %–95 % of Se is in particulates
(Mosher and Duce, 1983, 1987). The fate of atmospheric Se
is dry and wet deposition, with wet deposition accounting
for an estimated 80 % of total deposition globally (Wen and
Carignan, 2007).

Atmospheric chemistry modeling studies have been ap-
plied to other trace elements to predict atmospheric life-
times and spatial patterns of deposition. For example, at-
mospheric mercury models were developed more than 2
decades ago (Petersen and Munthe, 1995), and now there are
around 16 global and regional atmospheric mercury models
(Ariya et al., 2015). A recent mechanistic modeling paper
has advanced the understanding of atmospheric arsenic cy-
cling (Wai et al., 2016). To our knowledge, Se chemistry has
never previously been included in an atmospheric chemistry–
climate model (CCM), and thus many questions surrounding
atmospheric Se transport remain unanswered. For example,

the atmospheric lifetime of Se and thus the scales at which it
can be transported (local, regional, hemispheric, global) are
not well constrained.

1.2 Global sensitivity analysis

Since the atmospheric Se cycle has been investigated only by
a limited number of studies, it is essential that we consider
the relevant parametric uncertainties when building an atmo-
spheric Se model. The reaction rate coefficients of Se com-
pounds have either only been measured by one laboratory
study or no laboratory measurement exists, and these rate
coefficients need to be estimated. Selenium emission fluxes
from certain sources have been measured; however it remains
difficult to extrapolate these measurements to global fluxes
due to the high degree of spatial and temporal variability. At-
mospheric Se modeling can only be considered trustworthy
when combined with full accounting of input parameter un-
certainties and their propagation through the model. Through
“global sensitivity analysis” (Saltelli et al., 2008) we can
identify which input uncertainties are the most important for
the uncertainty in the model output. A sensitivity analysis is
called global when the sensitivity is evaluated over the entire
input parameter space, as opposed to local methods that test
sensitivity only at a certain reference point in the space (i.e.,
based on the gradient of the output at this reference point).
Sensitivity analysis provides a framework to prioritize which
model inputs should be further constrained in order to reduce
the uncertainty in the model output.

Until recently, most sensitivity analyses of atmospheric
chemistry models consisted of local methods, principally the
one-at-a-time (OAT) approach. In the OAT approach, the
model is initially run with a set of default parameters to yield
a “reference” simulation. Multiple sensitivity simulations are
then conducted, so that for each simulation one parameter
is perturbed from the reference set at a time. The influence
of these perturbations on the model output of interest would
then be analyzed. However, this approach may be flawed be-
cause it only considers the first-order response of the model
to each parameter, ignoring interactions that might exist be-
tween parameters (Saltelli et al., 2008; Lee et al., 2011). Fur-
thermore, the uncertainty ranges of the input parameters are
rarely quantified and reported; much of the possible parame-
ter space often remains unexplored. Global methods such as
variance-based sensitivity analysis allow the uncertainty in
model output to be apportioned to each input variable. Sobol’
indices, which represent the fraction of model variance that
one input variable explains, provide a ranking system for the
importance of input variables (Sobol, 1993). The benefits of
global sensitivity analysis include (1) identifying the most
influential input variables, i.e., the ones that should be fur-
ther constrained to yield the biggest reduction in model un-
certainty; (2) identifying input variables that do not play any
role in the model output variance; this could represent a route
to simplify the model, since the process involving these input
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variables can be neglected; (3) understanding the behavior of
the model, for example how the output depends on interac-
tions between input variables; and (4) identifying possible
model bugs or discontinuities, since the model will be tested
with a wide range of input parameter values (Saltelli et al.,
2000; Ryan et al., 2018).

There are several recent examples of atmospheric chem-
istry studies that included a global sensitivity analysis. The
sensitivity of cloud condensation nuclei number density to
input parameters in an aerosol model was investigated at the
local (geographic) scale (Lee et al., 2011) and at the global
scale (Lee et al., 2012, 2013), revealing regional differences
in parameter rankings. Revell et al. (2018) investigated the
sensitivity of the tropospheric ozone columns to emission
and chemical parameters, to identify which processes are re-
sponsible for the bias in modeled tropospheric ozone. Mar-
shall et al. (2019) employed global sensitivity analysis meth-
ods to identify how radiative forcing responds to volcanic
emission parameters. In these examples, surrogate modeling
techniques (also known as emulation) were employed to re-
place a process-oriented, computationally expensive model
with an approximative statistical model. The statistical model
has the advantage that it is quicker to evaluate; therefore, it
can be used to calculate the model output throughout the
parametric space (Lee et al., 2011). The examples given
above all used Gaussian process emulation; however other
surrogate modeling techniques exist, including polynomial
chaos expansions (PCEs) (Ghanem and Spanos, 2003). The
PCE approach is well suited to sensitivity analysis, since the
Sobol’ sensitivity indices can be extracted analytically from
the constructed PCE, with no need to evaluate the surrogate
model through Monte Carlo sampling (Sudret, 2008). This
can greatly reduce the computational time required to con-
duct the sensitivity analysis, especially when one is inter-
ested in conducting a separate sensitivity analysis for many
model grid boxes.

1.3 Outline

This study focuses on the construction of the first global at-
mospheric Se model and the insights that this model reveals
into which Se cycle uncertainties would be the most im-
portant to constrain. Section 2 describes the SOCOL-AER
(modeling tools for studies of SOlar Climate Ozone Links –
aerosol) model and the implementation of Se chemistry in the
SOCOL-AER model. The SOCOL-AER model is a suitable
tool to model the Se cycle, since it successfully describes the
major properties of the atmospheric S cycle (Sheng et al.,
2015; Feinberg et al., 2019b). The statistical methods that
we use to conduct the sensitivity analysis are discussed in
Sect. 3. Section 4 details the methods used to compile a
database of measured wet Se deposition fluxes, which we use
to evaluate the model. The results of the sensitivity analy-
ses are presented in Sect. 5.1 for the atmospheric Se lifetime
and Sect. 5.2 for the Se deposition patterns. Section 5.3 illus-

trates the comparison between the compiled Se deposition
measurements and simulated results. A discussion of both
sensitivity analyses follows in Sect. 6, and the paper is con-
cluded in Sect. 7.

2 Model description

2.1 SOCOL-AER

SOCOL-AERv2 is a global CCM that includes a sulfate
aerosol microphysical scheme (Sheng et al., 2015; Feinberg
et al., 2019b). The base CCM, SOCOLv3 (Stenke et al.,
2013), is a combination of the general circulation model
ECHAM5 (Roeckner et al., 2003) and the chemical model
MEZON (Egorova et al., 2003). The MEZON submodel
comprises a comprehensive atmospheric chemistry scheme,
with 89 gas-phase chemical species, 60 photolysis reac-
tions, 239 gas-phase reactions, and 16 heterogeneous reac-
tions. Chemical tracers are advected in the model using the
Lin and Rood (1996) semi-Lagrangian method. Photolysis
rates are calculated using a look-up table approach based
on the simulated overhead ozone and oxygen columns. The
MEZON model solves the system of differential equations
representing chemical reactions with a Newton–Raphson it-
erative method for short-lived chemical species and an Euler
method for long-lived species.

The sulfate aerosol model AER (Weisenstein et al., 1997)
was first coupled to SOCOL by Sheng et al. (2015). SOCOL-
AER includes gas-phase S chemistry and 40 sulfate aerosol
tracers, ranging in dry radius size from 0.39 nm to 3.2 µm.
SOCOL-AER simulates microphysical processes that affect
the aerosol size distribution, including binary homogeneous
nucleation, condensation of H2SO4 and H2O, coagulation,
evaporation, and sedimentation. SOCOL-AER was extended
in Feinberg et al. (2019b) to include interactive wet and dry
deposition schemes. The wet deposition scheme, based on
Tost et al. (2006), calculates scavenging of gas-phase species
depending on their Henry’s law coefficients and aerosol
species depending on the particle diameter. The wet removal
of tracers is coupled to the grid cell simulated properties of
clouds and precipitation. The dry deposition scheme is based
on Kerkweg et al. (2006, 2009), who use the surface resis-
tance approach of Wesely (1989). In addition to surface type
and meteorology, the calculated dry deposition velocities de-
pend on reactivity and solubility for gas-phase compounds
and size for aerosol species. SOCOL-AER uses an opera-
tor splitting approach, wherein the model time step is 2 h for
chemistry and radiation and 15 min for dynamics and depo-
sition. Aerosol microphysical routines use a sub-time step of
6 min.

For the simulations in this study we use boundary con-
ditions for the year 2000. Sea ice coverage and sea surface
temperatures are prescribed from the Hadley Centre dataset
(Rayner et al., 2003). The year 2000 concentrations of the
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most relevant greenhouse gases (CO2, CH4, and N2O) de-
rive from NOAA observations (Eyring et al., 2008). Anthro-
pogenic CO and NOx emissions are based on the RETRO
dataset (Schultz and Rast, 2007), while natural emissions
are taken from Horowitz et al. (2003). Sulfur dioxide (SO2)
emissions from anthropogenic sources follow the year 2000
inventory from Lamarque et al. (2010) and Smith et al.
(2011). Volcanic degassing SO2 emissions are assigned to
surface grid boxes where volcanoes are located (Andres and
Kasgnoc, 1998; Dentener et al., 2006). Atmospheric emis-
sions of dimethyl sulfide (DMS) are calculated using a wind-
based parametrization (Nightingale et al., 2000) and a marine
DMS climatology (Lana et al., 2011). To represent mean con-
ditions for photolysis, the look-up table for photolysis rates
is averaged over two solar cycles (1977–1998).

2.2 Implementing Se emissions and chemistry in
SOCOL-AER

2.2.1 Selenium species overview

We included the Se cycle in SOCOL-AER (Fig. 1) based on
the existing literature on atmospheric Se (Ross, 1985; Wen
and Carignan, 2007). Seven Se gas-phase tracers have been
added to SOCOL-AER (Table 1): carbonyl selenide (OCSe),
thiocarbonyl selenide (CSSe), carbon diselenide (CSe2),
dimethyl selenide (DMSe), hydrogen selenide (H2Se), ox-
idized inorganic Se (OX_Se_IN), and oxidized organic Se
(OX_Se_OR). The oxidized inorganic Se tracer represents
species such as elemental Se, selenium dioxide (SeO2), se-
lenous acid (H2SeO3), and selenic acid (H2SeO4). Very lit-
tle is known about the kinetics of interconversion between
the oxidized inorganic Se species (Wen and Carignan, 2007),
and therefore in our model they are treated as one tracer.
However, these species all have very low vapor pressures un-
der atmospheric conditions (Rumble, 2017) and likely par-
tition to the particulate phase. Oxidized organic Se species
include dimethyl selenoxide (DMSeO) and methylseleninic
acid (CH3SeO2H), which form after oxidation of DMSe
(Atkinson et al., 1990; Rael et al., 1996). Similar to the oxi-
dized inorganic Se compounds, oxidized organic Se species
also partition to the particulate phase due to their low volatil-
ities (Rael et al., 1996).

2.2.2 Selenium emissions

To determine which Se compounds are emitted by the differ-
ent sources, we have reviewed studies that investigated the
speciation of Se emissions. Thermodynamic modeling and
in situ measurements of combustion exhaust gases have de-
tected the following Se species in anthropogenic emissions:
oxidized inorganic Se, H2Se, OCSe, CSe2, and CSSe (Yan
et al., 2000, 2004; Pavageau et al., 2002, 2004). Oxidized in-
organic Se species and minor amounts of H2Se are expected
to be emitted from volcanic degassing (Symonds and Reed,

1993; Wen and Carignan, 2007). A variety of methylated Se
species have been observed from biogenic emissions, includ-
ing DMSe, dimethyl diselenide (DMDSe), dimethyl selenyl-
sulfide (DMSeS), and methane selenol (MeSeH) (Amouroux
and Donard, 1996, 1997; Amouroux et al., 2001; Wen and
Carignan, 2007). Since DMSe is usually the dominant emit-
ted compound, and little is known about the oxidation ki-
netics of the other methylated species, DMSe is the only
species emitted by marine and terrestrial biogenic emissions
in SOCOL-AER.

Atmospheric S emissions have been measured more exten-
sively than Se emissions, so we scale inventories of S emis-
sions to yield the spatial distribution of emitted Se. For the
sensitivity analysis we assume that the Se emissions have the
same distribution as S emissions, and we focus on the un-
certainties in the global scaling factors for each source. The
range in scaling factors will be discussed in Sect. 3.1.4. The
spatial distribution of anthropogenic and biomass burning Se
emissions comes from the SO2 inventory for the year 2000
(Lamarque et al., 2010; Smith et al., 2011). For sea surface
DMSe concentrations, we scale the DMS climatology cal-
culated by Lana et al. (2011). We determine DMSe emis-
sions using a wind-driven parametrization (Nightingale et al.,
2000). The locations and strength of background degassing
volcanic emissions are taken from the Global Emissions Ini-
tiAtive (GEIA) inventory (Andres and Kasgnoc, 1998; Den-
tener et al., 2006). Since little is known about both terres-
trial biogenic Se emissions and terrestrial S emissions (Pham
et al., 1995), we assume that terrestrial Se is emitted in all
land surface grid boxes, excluding glaciated locations.

2.2.3 Chemistry of Se species

We conducted a literature review to develop the model’s
chemical scheme of the Se cycle. Reactions of Se species
that have been measured by laboratory studies are compiled
in Table 2. We neglect any temperature dependency in the
Se reaction rates, since the Se reactions have only been
studied at around 298 K. For all compiled reactions, atmo-
spheric Se compounds react much quicker than the analo-
gous S compounds, due to the stronger bonds that S forms
with carbon and hydrogen than Se (Rumble, 2017). In ad-
dition, there are reactions that are known to occur for the
analogous S compound, but have never been studied for the
Se compound (OCSe+OH, CSSe+OH, CSe2+OH, and
H2Se+OH). These reaction rate constants were estimated
in Fig. 2, which shows the ratio of the Se compounds’ rates
to analogous S rates (i.e., an enhancement factor for replac-
ing an S atom with Se) plotted versus the S reaction rate. For
S reactions which have a fast reaction rate (e.g., DMS+Cl,
k = 1.8×10−10 cm3 molec.−1 s−1), replacing S with Se does
not yield a large difference in measured rates (DMSe+Cl,
k = 5.0×10−10 cm3 molec.−1 s−1). This is because these re-
actions are already close to the collision-controlled limit, and
thus lowering the activation energy by substituting a Se atom
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Figure 1. Scheme of the atmospheric Se cycle in SOCOL-AER, based on information in Ross (1985) and Wen and Carignan (2007). For
simplicity the two oxidized Se tracers in SOCOL-AER are represented with a single box. The impact on agriculture and human health is also
shown, since it motivates the study of atmospheric Se.

Table 1. Description of Se tracers included in SOCOL-AER.

Abbreviation Name Sources Sinks

OCSe Carbonyl selenide Anthropogenic emissions, chemical production Chemical loss
CSSe Thiocarbonyl selenide Anthropogenic emissions Chemical loss
CSe2 Carbon diselenide Anthropogenic emissions Chemical loss
DMSe Dimethyl selenide Marine and terrestrial emissions Chemical loss
H2Se Hydrogen selenide Anthropogenic and volcanic emissions Chemical loss
OX_Se_IN Oxidized inorganic Se Anthropogenic and volcanic emissions, chemical production Dry and wet deposition
OX_Se_OR Oxidized organic Se Anthropogenic and volcanic emissions, chemical production Dry and wet deposition
– Se in S aerosol (40 tracers) Uptake of gas-phase oxidized Se Dry and wet deposition
– Se in dummy aerosol Uptake of gas-phase oxidized Se Dry and wet deposition

for S has little impact on the overall rate. On the other hand,
slow reactions like DMS+O3 are sped up by more than 4 or-
ders of magnitude when Se is substituted for S. We used the
log-log relationship in Fig. 2 to predict the reaction rates for
OCSe, CSSe, and H2Se with OH (blue stars). The CSe2 reac-
tion with OH is calculated from the CSSe reaction, assuming
an enhancement for the substitution of a second Se atom sim-
ilar to that between the measured CSe2+O and CSSe+O
reaction rates (Li et al., 2005). The branching ratio for the
CSSe+OH reaction products was assumed to be 30 % OCSe
and 70 % OX_Se_IN, the same as the measured CSSe+O
branching ratio (Li et al., 2005). We recognize that these es-
timates are inherently uncertain, and therefore we address
these uncertainties in our sensitivity analysis (Sect. 3.1.2).

The photolysis of gas-phase Se compounds was included
using absorption cross sections of H2Se (Goodeve and Stein,
1931) and OCSe (Finn and King, 1975). The absorption cross
section of CSe2 (King and Srikameswaran, 1969) has been

measured, however in too low resolution to be incorporated
into the model. Therefore, we assume that CSe2 and CSSe
have the same cross section as CS2 (Burkholder et al., 2015).
Given the lack of available information, quantum yields for
all Se photolysis reactions were assumed to be 1.

2.2.4 Condensation of Se on preexisting aerosol
particles

As nonvolatile species, oxidized inorganic and organic Se
would condense on available atmospheric surfaces. In the
SOCOL-AER model, the uptake of these oxidized Se species
by sulfate aerosols is calculated similarly to the existing
scheme of gas-phase H2SO4 uptake on sulfate particles
(Sheng et al., 2015). We track the size distribution of Se
in the aerosol phase with 40 tracers, one for each sulfate
aerosol size bin. The sulfate aerosol size distribution changes
through processes like growth, evaporation, and coagula-
tion. We track how these microphysical processes change the
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Table 2. Rate constants of Se compound gas-phase reactions at around 298 K and the corresponding rate constant of the analogous S
compound. All S reaction rates are from Burkholder et al. (2015), except the DMS+O3 reaction rate which is taken from Wang et al. (2007).
No corresponding rate constants for CSe2 reactions are listed, since CSe2 is obtained from doubly substituting Se in CS2.

Reaction Se rate constant Corresponding S constant Reference for Se
(cm3 molec.−1 s−1) (cm3 molec.−1 s−1) rate constant

Measured reactions

OCSe+O→ CO+OX_Se_IN 2.4× 10−11 1.3× 10−14 Li et al. (2005)
CSe2+O→ OCSe+OX_Se_IN (32 %)

1.4× 10−10 –
Li et al. (2005)

→ 2OX_Se_IN (68 %)
CSSe+O→ OCSe (30 %) 2.8× 10−11 3.6× 10−12 Li et al. (2005)

→ OX_Se_IN (70 %)
DMSe+OH→ OX_Se_OR 6.8× 10−11 6.7× 10−12 Atkinson et al. (1990)
DMSe+NO3→ OX_Se_OR 1.4× 10−11 1.1× 10−12 Atkinson et al. (1990)
DMSe+O3→ OX_Se_OR 6.8× 10−17 2.2× 10−21 Atkinson et al. (1990)
DMSe+Cl→ OX_Se_OR 5.0× 10−10 1.8× 10−10 Thompson et al. (2002)
H2Se+O→ OX_Se_IN 2.1× 10−12 2.2× 10−14 Agrawalla and Setser (1987)
H2Se+Cl→ OX_Se_IN 5.5× 10−10 7.4× 10−11 Agrawalla and Setser (1986)
H2Se+O3→ OX_Se_IN 3.2× 10−16 < 2.0× 10−20 Belyaev et al. (2012)

Estimated reactions

OCSe+OH→ OX_Se_IN 5.8× 10−13 2.0× 10−15 Estimated; see text.
CSe2+OH→ OCSe+OX_Se_IN 1.5× 10−10 – Estimated; see text.
CSSe+OH→ OX_Se_IN (70 %) 3.0× 10−11 1.2× 10−12

Estimated; see text.
→ OCSe (30 %)

H2Se+OH→ OX_Se_IN 7.2× 10−11 4.7× 10−12 Estimated; see text.

size distribution of condensed Se through mass-conserving
schemes. Evaporation of condensed Se only occurs when
the smallest sulfate aerosol bin evaporates, releasing the Se
stored in that bin as gas-phase inorganic oxidized Se. Sedi-
mentation and deposition of the host sulfate particles are con-
current with sedimentation and deposition of the condensed
Se tracers. Gas-phase oxidized Se tracers are also removed
by dry and wet deposition, with the assumption that they have
the same Henry’s law constant as gas-phase H2SO4.

One limitation of using SOCOL-AER for the Se cycle is
that the model only includes online sulfate aerosols. This
means that the transport of Se on other aerosols, including
dust, sea salt, and organic aerosols, would be neglected. This
may not be a poor assumption, since Se and S are often co-
emitted and have been found to be highly correlated in at-
mospheric aerosol measurements (e.g., Eldred, 1997; Weller
et al., 2008). Nevertheless, we included a “dummy” aerosol
tracer to test the effect of missing aerosol species in SOCOL-
AER. The dummy aerosol tracer represents monodisperse
particles that are emitted in a latitudinal band in the model
and undergo Se uptake, sedimentation, and wet and dry depo-
sition. This dummy aerosol tracer is clearly a simplification
of true atmospheric processes, as in reality other aerosols are
distributed in size and can coagulate with sulfate aerosol par-
ticles. However, by varying the radius, location, and emission

magnitude of these particles (Sect. 3.1.7), we can determine
whether missing aerosols affect atmospheric Se cycling.

3 Statistical methods

To conduct the sensitivity analysis of our Se model, we first
need to select the input parameters that would be included in
the sensitivity analysis. The probability distributions of these
input parameters’ uncertainties were determined by review-
ing literature sources and using our best judgment. Variance-
based sensitivity analysis methods usually require 104 to 106

model runs, which would be prohibitively expensive for the
full SOCOL-AER model. We therefore replace the SOCOL-
AER model with a surrogate PCE model. The SOCOL-AER
model is run at carefully selected points within the parame-
ter space, creating a set of “training” runs. The training runs
are used to produce a surrogate PCE model, which approx-
imates the outputs of the full SOCOL-AER model through-
out the input parameter space. Sensitivity indices can then
be derived from the surrogate model. All statistical methods
presented in this section are available in UQLAB, an open-
source MATLAB-based framework for uncertainty quantifi-
cation (Marelli and Sudret, 2014).
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Figure 2. Estimation of unknown Se reaction rates from the analogous S reaction rate. A power regression is performed, with statistics shown
in the upper right corner of the plot. For the H2S+O3 reaction only an upper limit estimate was available, and therefore it was not included
in the analysis.

3.1 Uncertainty ranges of input parameters

We restricted the scope of our sensitivity analysis to param-
eters that have been implemented in the model as part of
the Se cycle. We neglect other model parameters, including
those related to climate, deposition parametrizations, or the
emissions of sulfate aerosol precursors. The focus of our sen-
sitivity analysis is to prioritize which Se-related parameters
should be further constrained. Since we do not vary all other
model parameters, the uncertainties of output quantities may
be underestimated. However, given the large dimension of
our parameter space with 34 Se-related input parameters, in-
cluding additional non-Se-related parameters would be chal-
lenging. In the following section, we will discuss the uncer-
tainty distributions for each of the 34 input parameters in-
cluded in our study. Due to the lack of detailed information
available in literature about the parameter distributions, we
chose loguniform or uniform distributions for all but one of
the parameters. This follows the conservative approach rec-
ommended by the maximum entropy principle, as the uni-
form and loguniform distributions maximize entropy while
fulfilling the data constraints (Kapur, 1989). The uncertainty
distributions of all input parameters are listed in Table 3.

3.1.1 Measured rate constants (k1–k12)

The Se reactions studied in the literature each have only
been measured by one laboratory group (Table 2). Since only
one measurement technique has been applied, the reported
measurement uncertainties may underestimate the true un-
certainties of these rate constants. To approximate an uncer-
tainty distribution for these rate constants, we reviewed S
compound reactions that have been studied by multiple re-
search groups. The reaction that had the largest spread in re-
ported rate constants at ∼ 298 K was OCS+OH, which has

been measured in six studies (Atkinson et al., 1978; Kurylo,
1978; Cox and Sheppard, 1980; Leu and Smith, 1981; Cheng
and Lee, 1986; Wahner and Ravishankara, 1987; Burkholder
et al., 2015). The measured reaction rate constant varied over
multiple orders of magnitude; therefore, we calculated its
variability on a logarithmic scale. The coefficient of vari-
ation (standard deviation divided by mean) of this reaction
rate in logarithmic space was around 6 %. We assumed that
this maximum S coefficient of variation would apply to the
measured Se reaction rates. The bounds were calculated as
88 % and 112 % (±2 standard deviations) of the available
measured rate constant in logarithmic space, i.e.,

bounds= k1±0.12, (1)

where k is the measured rate constant and “bounds” are its
upper and lower bounds, all expressed in cubic centimeters
per molecule per second. The maximum upper bound was set
to 1.0×10−9 cm3 molec.−1 s−1, since at this order of magni-
tude the Se reaction rates are collision-limited (Seinfeld and
Pandis, 2016).

3.1.2 Estimated rate constants (k13–k17)

Five Se reaction rate constants have not been measured pre-
viously in the laboratory and were estimated based on their
relationship with analogous S rate constants (Fig. 2). We cal-
culated the uncertainty bounds of estimated rate constants
using the 95 % error interval of prediction with a linear re-
gression (Wackerly et al., 2014):

bounds= 10

x+ Ŷ ± t0.025

√√√√ SSE
n− 2

(
1+

1
n
+
(x− x)2

Sxx

), (2)

where x is the logarithm (to the base 10) of the corresponding
S rate constant, Ŷ is the logarithm of the predicted ratio of
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Table 3. Probability distributions of the model input parameters selected for the sensitivity analysis.

Input parameter Description Lower bound Upper bound Distribution

Measured reaction rate coefficients (cm3 molec.−1 s−1)

k1 OCSe+O→ CO+OX_Se_IN 1.3× 10−12 4.5× 10−10 loguniform
k2 CSe2+O→ OCSe+OX_Se_IN 2.6× 10−12 7.8× 10−10 loguniform
k3 CSe2+O→ 2OX_Se_IN 6.0× 10−12 1.0× 10−9 loguniform
k4 CSSe+O→ OCSe 4.0× 10−13 1.8× 10−10 loguniform
k5 CSSe+O→ OX_Se_IN 1.0× 10−12 3.8× 10−10 loguniform
k6 DMSe+OH→ OX_Se_OR 4.1× 10−12 1.0× 10−9 loguniform
k7 DMSe+NO3→ OX_Se_OR 7.0× 10−13 2.8× 10−10 loguniform
k8 DMSe+O3→ OX_Se_OR 7.8× 10−19 5.9× 10−15 loguniform
k9 DMSe+Cl→ OX_Se_OR 3.8× 10−11 1.0× 10−9 loguniform
k10 H2Se+O→ OX_Se_IN 8.3× 10−14 5.3× 10−11 loguniform
k11 H2Se+Cl→ OX_Se_IN 4.6× 10−11 1.0× 10−9 loguniform
k12 H2Se+O3→ OX_Se_IN 4.4× 10−18 2.3× 10−14 loguniform

Estimated reaction rate coefficients (cm3 molec.−1 s−1)

k13 OCSe+OH→ OX_Se_IN 2.6× 10−14 1.3× 10−11 loguniform
k14 CSe2+OH→ OCSe+OX_Se_IN 7.0× 10−12 1.0× 10−9 loguniform
k15 CSSe+OH→ OX_Se_IN 9.8× 10−13 4.5× 10−10 loguniform
k16 CSSe+OH→ OCSe 4.2× 10−13 1.9× 10−10 loguniform
k17 H2Se+OH→ OX_Se_IN 3.3× 10−12 1.0× 10−9 loguniform

Scaling factors for photolysis rates

f k18 OCSe+hν→ OX_Se_IN 0 2 uniform
f k19 CSe2+hν→ 2OX_Se_IN 0 2 uniform
f k20 CSSe+hν→ OX_Se_IN 0 2 uniform
f k21 H2Se+hν→ OX_Se_IN 0 2 uniform

Global emission by source category (GgSeyr−1)

emissmar Marine biogenic Se emissions 0.4 35 loguniform
emissterr Terrestrial biogenic Se emissions 0.15 5.25 uniform
emissant Anthropogenic Se emissions 3 9.6 uniform
emissvol Volcanic Se emissions 0.076 49.1 loguniform

Speciation of emissions (%)

%OCSeant OCSe fraction in anthropogenic emissions 0 6 uniform
%CSe2ant CSe2 fraction in anthropogenic emissions 0 6 uniform
%CSSeant CSSe fraction in anthropogenic emissions 0 6 uniform
%H2Seant H2Se fraction in anthropogenic emissions 0 6 uniform
%H2Sevol H2Se fraction in volcanic emissions 0 13 uniform

Accommodation coefficient

acccoeff Oxidized Se uptake on aerosols 0.02 1 uniform

Dummy aerosol parameters

raer Radius of missing aerosol (µm) 0.01 3 loguniform
emissaer Emission magnitude of missing aerosol (kgyr−1) – – lognormal (see text)
lataer Latitudinal band of aerosol emission 90 to 80◦ S 80 to 90◦ N uniform
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the Se rate to the S rate, n is the number of data points in the
regression, t0.025 is the 2.5th percentile value of the Student
t distribution for n− 2 degrees of freedom, x is the mean of
the logarithm of S rate constants in Fig. 2, SSE is the sum of
squares of the residuals, and Sxx is the variance of the S rate
constants in Fig. 2. All rate constants are in units of cubic
centimeters per molecule per second.

3.1.3 Photolysis rate scaling factors

Uncertainties in our calculated Se photolysis rates arise from
uncertainties in the measured OCSe and H2Se cross sections,
the assumption that CSe2 and CSSe have the same cross sec-
tion as CS2, the quantum yields of photolysis reactions, and
the look-up table approach that SOCOL-AER applies to cal-
culate photolysis rates. Given the lack of specific informa-
tion about these uncertainties, we apply a scaling factor on
the calculated photolysis rates ranging from 0 to 2 (Table 3).

3.1.4 Global emissions from source categories

For the sensitivity analysis, we do not alter the spatial dis-
tribution of Se emissions from anthropogenic, marine bio-
genic, terrestrial biogenic, and volcanic sources (Fig. 3). The
parameters that we varied are the scaling factors for each
map, i.e., the global total emissions from each source. We
reviewed atmospheric Se budget estimates to determine the
range in total emissions for different sources (Table S1).
The estimates for global DMSe emissions ranged from the
lower limit value of 0.4 GgSeyr−1 in Nriagu (1989) to
35 GgSeyr−1 in Amouroux et al. (2001). DMSe emissions
are calculated online in the model from a marine DMSe con-
centration map. Based on the results of a previous simulation,
we normalize the marine DMSe concentration map in Fig. 3a
so that it leads to 1 GgSeyr−1 emissions globally. All other
maps are also normalized to 1 GgSeyr−1 emissions, so that
we can directly apply the total global emissions as a scaling
factor. The widest uncertainty range of terrestrial emissions
was given by Nriagu (1989), from 0.15 to 5.25 GgSeyr−1.
Total global anthropogenic Se emissions in 1983 were esti-
mated between 3.0 and 9.6 GgSeyr−1 (Nriagu and Pacyna,
1988). We applied the same uncertainty range to the total an-
thropogenic emissions in the year 2000, because it is unclear
how global Se emissions have changed during this period. To
estimate global Se emissions from degassing volcanoes, we
reviewed measurements of Se-to-S ratios in volcanic emis-
sions, extending the studies reviewed in Floor and Román-
Ross (2012) (Table S2 in the Supplement). There is a high
degree of variability in the emitted Se-to-S ratios between
different volcanoes, and even temporally and spatially for the
same volcano (Floor and Román-Ross, 2012). The Se-to-S
ratio in volcanic emissions ranges from 6× 10−6 for White
Island, New Zealand (Wardell et al., 2008), to 3.9× 10−3

for Merapi Volcano, Indonesia (Symonds et al., 1987). By
multiplying this range in ratios with the global mean total

degassing SO2 emissions from Andres and Kasgnoc (1998)
and Dentener et al. (2006), 12.6 TgSyr−1, we calculate an
uncertainty range for total volcanic Se emissions: 0.076–
49.1 GgSeyr−1. Loguniform distributions were used for the
source types whose total emission ranges vary by more than 2
orders of magnitude (volcanic and marine biogenic), whereas
uniform distributions were used for the terrestrial and anthro-
pogenic Se emissions.

3.1.5 Speciation of Se emission sources

The available speciation information for Se emissions is
largely qualitative; possible emission species have been iden-
tified but not quantified (Sect. 2.2.2). To estimate the uncer-
tainty range for Se emission speciation, we use estimates of
speciation from an atmospheric S budget (Watts, 2000). The
second most important anthropogenic S species after SO2
is H2S. Watts (2000) estimates the anthropogenic emission
of H2S is 3.1± 0.3 TgSyr−1, compared to an anthropogenic
SO2 emission total of 53.2 TgSyr−1 (Lamarque et al., 2010;
Smith et al., 2011) in the year 2000. H2S therefore con-
tributes at most 6 % of total S emissions. Since OCSe, CSe2,
CSSe, and H2Se are in general less stable than the analo-
gous S species (Table 2), we consider 6 % to be a maximum
value for the mass fraction of anthropogenic Se emissions
that come from each of these species. The anthropogenic spe-
ciation fractions for OCSe, CSe2, CSSe, and H2Se are varied
between 0 % and 6 %. The rest of the anthropogenic emis-
sions, 76 %–100 %, are attributed to OX_Se_IN, representing
species such as Se and SeO2.

Regarding the speciation of volcanic S emissions, Watts
(2000) estimates that 0.99± 0.88 TgSyr−1 is in the form of
H2S. Comparing this to the estimate for volcanic SO2 emis-
sions, 12.6 TgSyr−1 (Andres and Kasgnoc, 1998; Dentener
et al., 2006), H2S contributes at most 13 % of volcanic S
emissions. Therefore, in our sensitivity analysis the percent-
age of volcanic Se emissions in the form of H2Se ranges from
0 % to 13 %. Conversely, the percentage of OX_Se_IN in vol-
canic emissions ranges from 87 % to 100 %.

3.1.6 Accommodation coefficient of oxidized Se

The accommodation coefficient represents the probability
that a gas-phase oxidized Se molecule will stick to an aerosol
particle upon collision. No laboratory studies have inves-
tigated the accommodation coefficient of oxidized Se on
aerosol surfaces. However, review papers suggest that Se
efficiently partitions to the aerosol phase upon oxidation
(Mosher and Duce, 1987; Wen and Carignan, 2007), indi-
cating a high accommodation coefficient. Due to the lack of
further information, we assume an uncertainty range of 0.02–
1 for the accommodation coefficient, as selected by Lee et al.
(2011) for H2SO4. This accommodation coefficient applies
to uptake of Se on sulfate and dummy aerosols.
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Figure 3. Spatial distribution of Se sources. Each source map is normalized so that 1 GgSeyr−1 would be emitted globally. This is scaled
during the sensitivity analysis.

3.1.7 Dummy aerosol tracers

SOCOL-AER only includes sulfate aerosol, lacking other
aerosol types (e.g., dust, sea salt, organic aerosol) that may
also transport Se. To test how these other aerosol types might
affect Se transport and deposition, in the sensitivity analy-
sis we vary the emission location, particle radius, and emis-
sion magnitude of the dummy aerosol tracer (introduced in
Sect. 2.2.4). These input parameters are different from other
uncertainties, in that they are intended to investigate a lack
of model completeness rather than uncertainties in measur-
able quantities. In our experiments the aerosols are emitted in
one of 18 latitude bands, ranging from 90–80◦ S to 80–90◦ N.
The latitude parameter can demonstrate whether Se deposi-
tion is affected by these missing aerosol types only in certain
latitudinal bands. The emission radius affects the transport
of Se on these missing particles, since the atmospheric life-
time of these particles depends on radius (Seinfeld and Pan-
dis, 2016). For example, additional coarse particles (radius
> 1 µm) could inhibit far-range Se transport, since they sed-
iment and are removed quicker than the accumulation mode
sulfate particles. We vary the emission radius between 0.01
and 3 µm, as this covers the range of atmospherically relevant
particle sizes.

To determine a reasonable range for the emission magni-
tude of additional aerosol particles, we analyzed the particle
emission inventories from the AEROCOM I project (Den-

tener et al., 2006). Aerosol types are segregated into size
classes based on their effective radius, and the emission mag-
nitude for 10◦ latitude bands is calculated for each size class.
The mass emission of particles correlates with the particle
size, with generally larger mass emissions for larger parti-
cle sizes (Fig. S1 in the Supplement). Therefore, the value
of emission magnitude in our experiments depends lognor-
mally on the particle radius (r), with mean µ= 2.54r+19.0
and standard deviation σ = 2.88. We acknowledge that in the
real atmosphere particles are emitted globally as size distri-
butions, not monodisperse particles in one latitudinal band.
Nevertheless, by including these input parameters as part of
the sensitivity analysis, we can identify whether the lack of
tropospheric aerosols other than sulfate impacts the simu-
lated Se deposition maps in SOCOL-AER.

3.2 Experimental setup and model outputs

The creation of surrogate models requires a set of training
runs with the full SOCOL-AER model. The values of the in-
put parameters are varied simultaneously between training
runs, so that interactions between parameters can also be de-
tected. A Latin hypercube design is used to draw N samples
from an M-dimensional input parameter space. In Latin hy-
percube sampling, each parameter range is divided into N
equally probable subintervals. N values for each parameter
are drawn randomly from within each subinterval. The se-
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lected values for all input parameters are then matched ran-
domly with each other, to yield N points that cover the pa-
rameter space better than purely random Monte Carlo sam-
pling (McKay et al., 1979). The general rule of thumb is to
select around 10M training simulations, to adequately cover
the sample space (Loeppky et al., 2009). We ran N = 400
training simulations in our sensitivity analysis with 34 in-
put parameters. Producing training simulations from the full
SOCOL-AER model is the most computationally expensive
step in the uncertainty and sensitivity analysis. With 48 cores,
each training run takes around 14 h, corresponding to around
109 core seconds for 400 training simulations.

The initial conditions file for the training runs was cre-
ated from a previous 10-year spinup of the model under
year 2000 conditions. The atmospheric mixing ratios of Se
tracers are initially set to 0 in each simulation. The simula-
tions are 18 months long, with the first 6 months considered
to be an equilibration period for the Se tracers. Therefore, we
analyze only the last 12 months of the 18-month simulation.
The model is run with T42 horizontal resolution (approxi-
mately 2.8◦× 2.8◦ or 300km× 300km in latitude and lon-
gitude) with 39 vertical levels up to 0.01 hPa (∼ 80 km). The
interactions between chemical species (i.e., greenhouse gases
and aerosols) and radiation are decoupled in our simulations.
The decoupling between chemistry and climate prevents me-
teorological differences between training runs with different
input parameters, eliminating the influence of precipitation
variability on deposition. Deposition flux differences in these
relatively short simulations can then be more easily attributed
to changes in the input parameters.

All relevant Se cycle fluxes and reservoir burdens are out-
put by SOCOL-AER as monthly averages. For the sensitiv-
ity analysis, the target outputs are annual mean values of
the global atmospheric Se lifetime and Se surface deposi-
tion fluxes. The global Se lifetime is calculated as the total
atmospheric Se burden divided by total deposition (Seinfeld
and Pandis, 2016). Deposition fluxes of Se were calculated
by summing up the dry and wet deposition fluxes of aerosol
and gas-phase Se species. Since the model is run in T42 hor-
izontal resolution, there are 8192 surface grid boxes repre-
senting geographical coordinates on the globe. We therefore
have 8192 model outputs for Se deposition and we construct
a PCE model and conduct a sensitivity analysis for each one.
It can be argued that the computational cost can further be re-
duced by dimensionality reduction techniques (e.g., Blatman
and Sudret, 2011b, 2013; Ryan et al., 2018), like building the
PCE models on a reduced output set coming from a princi-
pal component analysis (PCA). We did not consider such an
approach in this work because the cost of building the 8192
PCE models is marginal compared to that of evaluating the
full SOCOL-AER model. In summary, the 400 SOCOL-AER
training runs yield 400 values for atmospheric Se lifetimes
and 400× 8192 values for deposition fluxes.

3.3 Surrogate modeling with PCE

Sudret (2008) provided a detailed description of using PCE
to build surrogate models, which was updated by Le Gratiet
et al. (2017). We will summarize the most important features
of the approach here. For this study, a certain output of the
SOCOL-AER model (Y ) can be thought of as a finite vari-
ance random variable which is a function of the M = 34 in-
put parameters (X = [X1,X2, . . .,X34]):

Y =M(X). (3)

The input X ∈ RM is modeled by a joint probability density
function (PDF) fX whose marginals are assumed indepen-
dent, i.e., fX =

∏M
i=1fXi (xi).

In polynomial chaos decomposition, the output variable Y
is decomposed into the following infinite series (Ghanem and
Spanos, 2003):

Y =
∑
α=NM

yα9α(X), (4)

where yα are coefficients to be determined and α is a multi-
index set that defines the degree of the multivariate orthonor-
mal polynomial 9α(X)=

∏M
i=19αi (Xi). The latter belongs

to a family of polynomials that are orthogonal with respect
to the marginal PDF fXi . For example, univariate uniform
probability distributions correspond to the family of Legen-
dre polynomials, and Gaussian probability distributions cor-
respond to the family of Hermite polynomials (Xiu and Kar-
niadakis, 2002). Multivariate orthogonal polynomials can be
constructed through multiplying the relevant univariate poly-
nomials. The order of a polynomial term is defined as the
total number of variables included in the polynomial term.
The degree of a polynomial term represents the sum of the
exponents of all variables appearing in the term. The number
of coefficients to estimate grows exponentially with both the
dimension and the degree. To allow calculation of the coef-
ficients, the terms in Eq. (4) are truncated by restricting the
maximum degree of the polynomials. Advanced truncation
schemes can also be used to reduce the number of terms and
thus the computational budget. Here we consider hyperbolic
truncation which removes high-order interaction terms from
the PCE, while retaining high-degree polynomials of a single
variable (Blatman and Sudret, 2011a). Hyperbolic truncation
is based on selecting only the terms that satisfy

A=

α :
(
M∑
i=1

α
q
i

)1/q

≤ p

 , (5)

where q is a value selected between 0 and 1, and p is a
value selected as the maximum degree of the PCE. Setting
q = 1 corresponds to the standard truncation scheme where
all terms with a degree below p are selected. The lower the
value of q, the more higher-order interaction terms are re-
moved from the PCE. Based on previous experience, we se-
lected a q value of 0.75.
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PCE coefficients are generally calculated by least-square
regression (Berveiller et al., 2006) using an experimental de-
sign which consists of uniformly sampled realizations of the
input variables X = {x(1). . .x(N)} and corresponding model
evaluations {M(x(1)). . .M(x(N))}, i.e.,

yα = arg min
yα∈RcardA

1
N

N∑
i=1

(
M
(
x(i)

)
−

∑
α∈A

yα9α

(
x(i)

))2

. (6)

When the dimension is large, regression techniques that al-
low for sparsity, i.e., by forcing some coefficients to be zero,
are favored. In this work, we consider least-angle regression
as proposed in Blatman and Sudret (2011a) and follow the
implementation in the UQLAB PCE module (Marelli and Su-
dret, 2019).

The accuracy of the PCE in representing the full SOCOL-
AER model is evaluated with a cross-validation metric
named the leave-one-out (LOO) error, εLOO (Blatman and
Sudret, 2010a). The leave-one-out procedure consists of cre-
ating a PCE using all but one of the training simulations,
MPC/i . This PCE is then used to predict the output value
of the model at the removed training simulation point, x(i).
The process is repeated for all N training points so that a
residual sum of squares can be calculated. This residual is
then divided by the output variance in the training dataset,
yielding the LOO error:

εLOO =

∑N
i=1(M(x(i))−MPC/i(x(i)))2∑N

i=1(M(x(i))− µ̂Y )2
, (7)

where µ̂Y is the sample mean of the model output in the train-
ing dataset. In practice, the LOO error is estimated using a
single PCE model considering the entire experimental design
(Marelli and Sudret, 2014; Blatman and Sudret, 2010b), to
avoid the procedure of creating N PCE models. Equation (7)
is evaluated as

εLOO =

N∑
i=1

(
M(x(i))−MPC(x(i))

1−hi

)2/
N∑
i=1

(
M(x(i))− µ̂Y

)2
, (8)

where hi is the ith component of the vector defined by

h= diag
(

A(ATA)−1AT
)
, (9)

and A is the experimental matrix whose components read

Aij =9j

(
x(i)

)
i = 1, . . .,N; j = 0, . . .,P − 1, (10)

where P ≡ cardA is the number of terms in the PCE. In
our study, we use a degree-adaptive scheme to construct the
PCE models sequentially from degree 1 to a maximum of de-
gree 13. If the LOO error does not decrease over two steps

in degree, the algorithm is stopped and the maximum de-
gree is selected as the one with the lowest LOO error. This
method reduces the risk of overfitting the training set. The
maximum degree of 13 was selected because the PCE be-
comes too computationally expensive to calculate above this
degree. In any case, almost all PCEs calculated in this study
are below degree 10.

To improve the accuracy of the approximation, we applied
post-processing steps to the construction of PCE models (Ta-
ble 4). The global atmospheric Se lifetime is a function of
the atmospheric Se burden and the total Se deposition. We
found improved overall accuracy when separate PCE models
were created for the atmospheric burden and total deposi-
tion, rather than first calculating the lifetime for each sim-
ulation and constructing a PCE model of the lifetime. To
calculate a surrogate model of the Se lifetime, we divided
the PCE model of the atmospheric Se burden by the PCE
model of total deposition. When calculating the PCE models
of Se deposition fluxes, we first used the deposition fluxes
directly from the training simulations. However, 873 of the
8192 grid boxes showed LOO errors higher than 0.05, which
was selected as the acceptable threshold for this study. Im-
proved LOO errors were achieved when the simulated de-
position fluxes were log-transformed before constructing the
PCE model. However, after log-transformation the sensitiv-
ity indices for deposition cannot be extracted analytically
from the PCE (Sect. 3.4), increasing computational expense.
Therefore, we only log-transformed the data from these 873
grid boxes before creating their PCE models. Surrogate mod-
els for deposition fluxes in these 873 grid boxes are calcu-
lated by taking the exponential of the PCE model of log-
transformed data.

The cross-validation approach would usually remove the
need for an independent validation dataset, saving compu-
tational expense. However, to evaluate the post-processing
steps applied to the surrogate models, we also produced an
independent validation dataset of 50 SOCOL-AER runs. The
parameters for these runs were chosen by enriching the train-
ing experimental design to create a pseudo-Latin hypercube
of 450 runs, ensuring that the distance between the validation
runs and existing training runs is maximal.

3.4 Sensitivity analysis

A Sobol’ sensitivity index represents the fraction of model
variance caused by the parametric uncertainty of a certain
input variable or the interaction between multiple variables
(Sobol, 1993; Marelli et al., 2019). It is a global measure,
meaning that the sensitivity index considers the entire para-
metric uncertainty space. Let us consider a model M whose
inputs, defined over a domain DX, are assumed independent.
It can be shown that it admits the following so-called Sobol’
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Table 4. Summary of methods to construct surrogate models and calculate Sobol’ sensitivity indices of the SOCOL-AER output parameters.

Output parameter Surrogate modeling method Sensitivity analysis method

Global atmospheric Se lifetime Constructed a PCE model of atmospheric Se burden and
a PCE model of Se deposition flux. Divided the burden
PCE by the deposition PCE.

Monte Carlo estimation of Sobol’
sensitivity indices

Deposition flux of Se (7319
grid boxes)

Constructed PCE models of deposition fluxes in each
grid box (LOO error was less than 0.05).

Sobol’ sensitivity indices are extracted
directly from deposition PCE models

Deposition flux of Se (873 grid
boxes with LOO > 0.05)

Constructed PCE models of log-transformed deposition
fluxes in each grid box. Exponential of the PCE models
yields surrogate models for deposition fluxes.

Monte Carlo estimation of Sobol’
sensitivity indices

decomposition:

M(x)=M0+

M∑
i=0

Mi(xi)+

M∑
1≤i≤j≤M

Mij (xi,xj )

+ . . .+M1,2,...,M(x1, . . .,xM), (11)

where M0 is a constant and the other summands are defined
such that their integrals with respect to any of their arguments
are 0, i.e.,∫
DX

Mi1,...,is(xi1 , . . .,xis)fxik
dxik = 0, 1≤ k ≤ s. (12)

Following this decomposition, it can be shown that the vari-
ance of the random variable Y =M(X) can be cast as
(Saltelli et al., 2008)

D = Var[M(X)] =

M∑
i=1

Di +

M∑
1≤i≤j≤M

Dij + . . .+D12...M , (13)

where a partial variance with respect to several variables
Xi1 , . . .,Xis can be calculated as

Di1,...,is =

∫
DX

M2
i1,...,is

(
xi1 , . . .,xis

)
fXi1

(
xi1
)
. . .fXis

(
xis
)

dxi1 . . .dxis . (14)

The Sobol’ indices (Si1,...,is ) for a subset of input parame-
ters are eventually obtained by normalizing the correspond-
ing variance, i.e.,

Si1,...,is =
Di1,...,is

D
. (15)

The number of variables involved in a Sobol’ index deter-
mines its order. A first-order Sobol’ index (Si = Di

D
) appor-

tions the variance in the model output to the effect of a single
variable, Xi . Second-order indices (Sij =

Dij
D

) represent the
impact of the interaction of two variables (e.g., Xi and Xj ,
i 6= j ) on the model output variance, not already accounted

for by Si and Sj . Higher-order indices can be calculated as
well. The summation of all individual Sobol’ indices yields a
value of 1, i.e., accounting for all of the variance in the out-
put. However, the number of higher-order indices to calculate
can become very large:

number of nth-order indices= n choose M =
n!

M!(n−M)!
. (16)

It therefore becomes computationally demanding in our case
withM = 34 input parameters to calculate sensitivity indices
with an order higher than 2. Furthermore, by the sparsity-of-
effect principle (Goupy and Creighton, 2006), it is expected
that the model is primarily driven by first-order effects and
low-order interactions. We therefore only individually calcu-
late the first- and second-order Sobol’ indices, which is com-
mon practice in global sensitivity analysis.

The total Sobol’ index (STi ) summarizes all sensitivity in-
dices which include the effect of a given input variable:

STi = Si +
∑
j 6=i

Sij +
∑
j 6=i

∑
k 6=i
k 6=j

Sijk + . . . (17)

In practice, it is possible to calculate the total Sobol’ index
without individually calculating all of the higher-order in-
dices (Marelli et al., 2019). The total Sobol’ indices can be
used to rank the influence of input variables on the variabil-
ity in the model output. It should be noted that the sum of all
total Sobol’ indices will be greater than 1 if the model is non-
additive, since interaction terms would be counted multiple
times.

Other studies have emphasized the computational expense
of conducting a sensitivity analysis for all grid boxes in a
chemistry–climate model (Ryan et al., 2018). By using PCE
as the surrogate model, we can reduce the computational ex-
pense since it is possible to compute the Sobol’ sensitivity
indices analytically. As shown by Sudret (2008), Sobol’ sen-
sitivity indices are a function of the calculated coefficients in
the PCE model (Eq. 4), due to the similarity of the PCE de-
composition with variance decomposition. First-order Sobol’
indices can be calculated asDi =

∑
α∈Ai

y2
α , where Ai is the

set of polynomial terms involving only variable i. Similarly,
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higher-order Sobol’ indices can be calculated by summing
the squares of the coefficients of the polynomial terms that
include the variables of interest. The analytical solution of
Sobol’ indices is no longer possible when post-processing
steps are applied to the original PCE models to create surro-
gate models. For example, (1) the surrogate model for the at-
mospheric lifetime is calculated from two PCE models, one
for total Se burden and one for total Se deposition; (2) Se
deposition in 873 grid boxes is calculated using the exponen-
tial of a PCE model (see Table 4). In these cases, it is still
possible to calculate the Sobol’ indices through Monte Carlo
estimation (Marelli et al., 2019). To accomplish this, the sur-
rogate models are sampled around 106 times, which remains
tractable.

To summarize categories of input variables, we aggregate
the Sobol’ indices of several input parameters to yield a to-
tal Sobol’ index for that category. For example, we summa-
rize the total dummy aerosol effect by summing the total
Sobol’ indices of the dummy aerosol radius, emission mag-
nitude, and latitude. It would anyways be difficult to sepa-
rate the effects of the dummy aerosol input parameters since
they are correlated inputs in the experimental design. The
second-order indices involving two dummy aerosol input pa-
rameters may be double-counted with this method. However,
since these indices are small (< 0.05) we do not expect a
large error in the aggregated total Sobol’ index (Sect. 5.1).

3.5 Resampling of surrogate models

In order to estimate distribution statistics (mean, standard de-
viation, quantiles) of the output variable, we resample each
surrogate model 40 000 times. We also use these 40 000 sam-
ples of the parameter space to calculate relationships between
input parameters and output variables. To visualize marginal
relationships between a certain input parameter and the out-
put, we replace the value of the input parameter in the 40 000
samples by a fixed value and calculate the mean and variance
of the surrogate model output. Repeating this step with other
evenly spaced values in the input parameter range, we can
produce the univariate relationship between the model out-
put and the input parameter.

4 Compilation of Se wet deposition flux data

We decided to compare SOCOL-AER results with measure-
ments of Se wet deposition, since wet deposition contributes
an estimated 80 % of total deposition (Wen and Carignan,
2007). We conducted a systematic literature review to assem-
ble a dataset of measured wet Se deposition fluxes, extending
an earlier review from Conde and Sanz Alaejos (1997). We
searched in Web of Science (Clarivate Analytics) for com-
binations of the following criteria: “Selenium”, “Se”, “rain”,
“precipitation”, “wet deposition”, and “trace element”. The
last search was completed in July 2019, yielding a total of

672 search results. We screened these search results for stud-
ies that measured Se concentrations in rainwater for at least
1 month, neglecting studies that measured bulk (wet and
dry) deposition or that extrapolated wet deposition fluxes
from aerosol measurements. The compiled dataset, which is
available in the Supplement, consists of 29 papers and data
from two measurement networks, the European Monitoring
and Evaluation Programme (EMEP) and Canadian National
Atmospheric Chemistry (NAtChem) database, for a total of
73 measurement sites (Table 5). From these studies, we ex-
tracted the annual mean Se deposition fluxes, if available, or
we used rainwater volume-mean weighted Se concentrations
combined with the annual precipitation depths to calculate
the deposition flux. If the paper did not provide the annual
precipitation depth, we calculated the mean annual precip-
itation depth for the time period and location of the study
from the historical Multi-Source Weighted-Ensemble Precip-
itation (MSWEP) dataset (Beck et al., 2019). The calculated
annual deposition fluxes for nine sites are extrapolated from
fewer than 12 months of rainwater Se measurements; the ma-
jority of sites (64) were measured for longer than a year. For
studies that spanned multiple years, a multi-annual mean de-
position flux was calculated to compare with the model. Ad-
ditional metadata were extracted from the papers, including
geographic coordinates, the time period, collection methods,
sampling frequency, and analytical methods. Despite the fact
that the model is based on year 2000 conditions for emis-
sion maps and meteorology, we compare the model with data
from all measurement years, since the dataset is relatively
small. We created surrogate models of the Se wet deposition
flux in the grid boxes where measurements were made (as in
Sect. 3.3 for the total deposition fluxes). We can then com-
pare the resampled distribution of Se wet deposition in these
model grid boxes with the corresponding observation.

5 Results

5.1 Atmospheric Se lifetime

From the 400 training runs of SOCOL-AER, we created PCE
models of the global and annual mean total Se burden and de-
position flux. The LOO error of the global burden is around
0.02 and the LOO error of the deposition flux is on the order
of 10−6. The LOO error is low for total deposition since for
a mass-conserving model total deposition should equal the
sum of the emission input parameters. Indeed, all 400 train-
ing runs showed very good Se mass conservation: total an-
nual Se deposition fluxes were 98 %–102 % of total emission
fluxes. We derive a surrogate model for the atmospheric Se
lifetime by dividing the Se burden PCE model by the Se de-
position PCE model (Sect. 3.3). This surrogate model shows
a higher error (0.35) than the burden and deposition flux PCE
models, which would only be reduced by running more train-
ing runs (Fig. S2). The surrogate model for the atmospheric

Atmos. Chem. Phys., 20, 1363–1390, 2020 www.atmos-chem-phys.net/20/1363/2020/



A. Feinberg et al.: Mapping the drivers of uncertainty in atmospheric selenium deposition 1377

Table 5. Previous studies measuring Se wet deposition fluxes.

Reference Location Reference Location

Suzuki et al. (1981) Tokyo, Japan Arimoto et al. (1985) Marshall Islands
Cutter and Church (1986) Delaware and Bermuda Arimoto et al. (1987) American Samoa
Dasch and Wolff (1989) Massachusetts, USA Heaton et al. (1990) Rhode Island, USA
Cutter (1993) Bermuda Scudlark et al. (1994) Maryland, USA (two sites)
Al-Momani et al. (1997) Antalya, Turkey Cutter and Cutter (1998) Mace Head, Ireland
Lawson and Mason (2001) Maryland, USA De Gregori et al. (2002) Valparaiso, Chile
Scudlark et al. (2005) Maryland, USA Sakata et al. (2006) Japan (10 sites)
Shimamura et al. (2007) Tokyo, Japan Landing et al. (2010) Florida, USA
Zhou et al. (2012) Mt. Heng, China Liu et al. (2012) Shigatse, Tibet
Gratz et al. (2013) Illinois, USA (four sites) Pan and Wang (2015) China (10 sites)
Lynam et al. (2015) Alberta, Canada Xing et al. (2017) Jiaozhou Bay, China
Nie et al. (2017) Mt. Lushan, China Blazina et al. (2017) Plynlimon, UK
Savage et al. (2017) Bangladesh and Sri Lanka Uchiyama et al. (2019) Tokyo, Japan
Suess et al. (2019) Pic du Midi, France Pearson et al. (2019) Alaska, USA (three sites)
Savage et al. (2019) Northern Ireland, UK NAtChem database Ontario, Canada (nine sites)
EMEP network Nine sites in Germany

and Czech Republic

Figure 4. Distribution of the atmospheric Se lifetime, resampled
from the surrogate model. Summary statistics (median, 2nd per-
centile, and 98th percentile values) are listed on the plot.

lifetime is resampled to calculate the probability distribu-
tion of this output, given our assumptions for the uncertainty
ranges of all 34 parameters (Sect. 3.5). The histogram of the
atmospheric lifetime (Fig. 4) shows a narrow range for the
atmospheric Se lifetime, with a median of 4.4 d (days), 2nd
percentile value of 2.9 d, and 98th percentile value of 6.4 d.
Despite the large uncertainty ranges for the reaction rate con-
stants of Se, spanning multiple orders of magnitude (Table 3),
the uncertainty of the simulated atmospheric lifetime is less
than 1 order of magnitude.

In order to identify the input parameters that drive the vari-
ability in the simulated Se lifetime, we apportion the vari-
ance into contributions from the most important parameters
(Fig. 5). The most important variable is k13, which is the rate
constant for the OCSe+OH reaction, followed by the dummy
aerosol input parameters. Nonlinearities are also clearly im-
portant for the global Se lifetime, since all first-order terms

only account for 53 % of the variance in the Se lifetime, with
interaction terms accounting for the other 47 %. However,
the interaction contribution is made up of many small indi-
vidual interaction terms. Only two interaction terms account
for more than 5 % of the total variance in the Se lifetime: the
interaction between k1 and k13 (5.3 % of variance) and the
interaction between the dummy aerosol radius and dummy
aerosol emissions (5.0 % of variance). Through resampling
the surrogate model for the Se lifetime, we investigate the re-
lationships between the Se lifetime and input parameters in
Figs. 6 and 7.

Several of the most influential input parameters for the Se
lifetime are related to OCSe processes (Fig. 6a–c). Given the
median estimates for the reaction rate constants in Table 2,
OCSe has the longest lifetime of any gas-phase Se species.
Therefore, chemical reaction rates and emissions of OCSe
have a strong effect on the overall Se burden and Se life-
time. Slower reaction rates of OCSe with OH (k13) and O
(k1) lead to longer Se lifetimes. Since OH is more prevalent
in the lower atmosphere than O, the dependence of the Se
lifetime on k13 is stronger than the dependence of the life-
time on k1. The influence of k13 on the Se lifetime is mostly
saturated above 10−12 cm3 molec.−1 s−1. Above this thresh-
old in k13, the OCSe burden becomes a minor part of the
total Se burden (accounting for less than 2 % of total Se),
and therefore the Se lifetime is not affected by OCSe pro-
cesses. The second-order interaction between k13 and k1 is
also shown in Fig. 6b. When the reaction of OCSe with OH
is fast (k13 > 10−12.5 cm3 molec.−1 s−1), the value of k1 is
not important for the Se lifetime since almost all OCSe will
react with OH. In cases when the OCSe + OH reaction is
slow (k13 < 10−12.5 cm3 molec.−1 s−1), the value of k1 has a
stronger effect on the Se lifetime since not all OCSe has re-
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Figure 5. Sensitivity indices of the most important parameters (ST
i
> 0.05) for the atmospheric Se lifetime. Total Sobol’ indices are parti-

tioned into first-order and interaction effects. The total Sobol’ indices for the dummy aerosol parameters are aggregated, since it is difficult
to separate the effects of the correlated input parameters (aerosol radius and emission magnitude).

acted with OH. The Se lifetime increases for higher fractions
of anthropogenic Se emitted as OCSe, again showing that
higher OCSe burdens prolong the atmospheric Se lifetime.
OCSe has been associated with anthropogenic emissions by
only one study, which inferred its presence from a similarity
in boiling point with a detected Se species (Pavageau et al.,
2002). OCSe has never been identified in the ambient atmo-
sphere; on the other hand, SOCOL-AER predicts maximum
OCSe concentrations of sub-parts-per-trillion levels, which
would be difficult to measure analytically. Still, processes
related to OCSe, a highly speculative atmospheric Se com-
pound, contribute to the model’s variability in the Se lifetime.

After OCSe, the most important input parameters for the
atmospheric Se lifetime are related to dummy aerosols. It is
difficult to interpret the univariate effects of aerosol emis-
sions and radius (Fig. 7a, b), since by design the two inputs
are correlated. We hypothesize that the influence of dummy
aerosols on the Se lifetime is related to the uptake rate on
these dummy aerosols, which would be proportional to the
surface area density. The mass emissions of the aerosols are
proportional to volume (r3), which when divided by dummy
aerosol radius yields a metric that is proportional to the emit-
ted surface area (r2). The Se lifetime increases monotoni-
cally with the surface area of emitted dummy aerosols, al-
though the response is not linear (Fig. 7c). We compare this
response with the range of available surface area of sulfate
aerosol for 10◦ latitude bands, shaded in yellow. For lower
dummy aerosol surface areas, the available sulfate aerosol
dominates the uptake of gas-phase Se, and additional dummy
aerosols do not play an important role. The dummy aerosols
have a stronger effect on Se lifetime at the upper limit of the
sulfate aerosol surface area range. The absence of aerosols
other than sulfate leads to a lower Se lifetime in SOCOL-
AER. However, the effect of dummy aerosols is not dras-

tic, only increasing the mean Se lifetime from 4.3 to 4.8 d
(Fig. 7c).

The other inputs have minor impacts on the global Se
lifetime. Stronger emissions of volcanic Se lead to shorter
overall global Se lifetimes, while emissions of marine and
terrestrial biogenic Se lead to longer Se lifetimes (Fig. 6d–
f). In SOCOL-AER, biogenic sources emit DMSe, which
is not removed by wet and dry deposition, while volcanic
sources emit mainly oxidized Se species, which can be re-
moved by wet and dry deposition. Biogenic emissions must
first be oxidized before deposition can occur, which can pro-
long the Se lifetime. The influence of the two other terms
with STi > 0.05, the reaction rate constant of CSSe+OH
(k15) and the fraction of volcanic emissions emitted as H2Se,
is mainly through interaction terms, and therefore the Se life-
time responds only weakly to univariate variations in these
variables (Fig. 6g, h).

5.2 Spatial patterns of Se deposition

Surrogate models for Se deposition in all surface grid
boxes were calculated according to Sect. 3.3. After log-
transforming Se deposition in 873 grid boxes, the LOO error
is below 0.1 in all grid boxes, but still above 0.05 in 354 grid
boxes, mainly in polar regions (Fig. S2). However, due to
limitations in computational time to run more training runs,
we proceeded with the sensitivity analyses of all grid boxes.
By resampling the surrogate models, we calculate maps of
mean Se deposition and its coefficient of variation in all in-
put uncertainties (Fig. 8). Selenium deposition is highest in
areas close to anthropogenic and volcanic emissions (Fig. 3c,
d), which are point sources. The deposition pattern is clearly
affected by precipitation: dry areas (e.g., eastern portion of
ocean basins, polar regions, and the Sahara) show the low-
est Se deposition fluxes globally. Other interesting features
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Figure 6. Relationships between the atmospheric Se lifetime and the most important input parameters from Fig. 5. Using resampling tech-
niques (Sect. 3.5), we calculate the mean and standard deviation Se lifetime over the range of input parameters. Interaction effects are
illustrated in the k1 plot (b), by grouping the samples into cases where k13 is high and low.

Figure 7. Relationship between the atmospheric Se lifetime and the dummy aerosol input parameters (a, b). A quantity related to surface area
is shown in (c), which also includes the comparable range for sulfate aerosol as yellow shading. For sulfate, this is calculated by dividing the
deposited mass of sulfate (equal to emitted mass in steady state) in each 10◦ latitudinal band by the effective sulfate radius in that latitudinal
band. Since aerosol mass emissions are a lognormally distributed quantity, the bounds are infinite and thus we include only the 5th to 95th
percentile range in (a, c).
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of the Se deposition patterns, for example identifying the re-
gions influenced by long-range transport, will be investigated
in upcoming studies. In this study, we focus on determining
the most important sources of uncertainty to the simulated
deposition maps. The relative uncertainty in simulated de-
position, illustrated by the coefficient of variation (Fig. 8b),
is highest in areas affected by marine and volcanic emis-
sions because these emission sources have wider uncertainty
ranges compared to anthropogenic and terrestrial emissions
(Table 3). In the following global sensitivity analysis we can
identify the input factors that contribute to the variation in Se
deposition in each grid box.

Figures 9 and 10 illustrate the spatial variation in the im-
portance of input parameters. We chose example grid boxes
(indicated by blue circles) to illustrate the marginal relation-
ships between Se deposition and the input parameters. Over-
all, the most important input parameters are the total emis-
sions from each source. In the example grid boxes shown
in Fig. 9a–h, Se deposition increases linearly with increas-
ing emissions from the different source categories. The lin-
ear relationship is logical since deposition balances emission
in the steady state. In areas that are more remote from emis-
sion regions (the Sahara, Antarctic, and Arctic), other factors
become more important but are still minor compared to the
emission inputs. The aerosol accommodation coefficient af-
fects areas where the precipitation is very low, for example
in the Sahara (Fig. 9i). In these dry regions, total Se deposi-
tion is dominated by dry deposition. When the model is run
with low accommodation coefficients, less oxidized Se par-
titions to the particulate phase and more remains in the gas
phase. Dry deposition of particles in the 0.1–1 µm diameter
size range, within the range of sulfate and dummy aerosols,
is slower than gas compounds due to the slower Brownian
motion of particles (Seinfeld and Pandis, 2016). Chemical re-
action rate constants, specifically the reaction rates of DMSe,
impact Se deposition in polar regions. Slower reaction rates
of DMSe with OH (k6) and O3 (k8) enhance deposition over
the example Antarctic grid box (Fig. 10a–c). Longer DMSe
lifetimes allow more marine Se emissions to reach polar re-
gions, which have few local Se emission sources. The chem-
ical rate coefficients are more important in the Antarctic than
the Arctic since there is more O3 and OH in the Northern
Hemisphere than the Southern Hemisphere, meaning that the
DMSe lifetime is longer in the Southern Hemisphere than
the Northern Hemisphere. Dummy aerosol parameters are
only important for Se deposition in the Arctic (Fig. 10d–
f). We calculate the relationship between Se deposition and
dummy aerosols using the same quantity for emitted surface
area of the dummy aerosols as in Fig. 7c. With increasing
dummy aerosol surface area, the Se deposition in the Arc-
tic increases, but only after surpassing the threshold of the
available sulfate aerosol surface area in that latitude band
(Fig. 10e). The dummy aerosols also have a stronger effect
on Se deposition when they are emitted in a latitude band
closer to the example grid box at 76.7◦ N (Fig. 10f). Attach-

ment of oxidized Se to dummy aerosols increases the overall
lifetime of Se (Sect. 5.1), leading to enhanced transport of Se
to the Arctic region. The transport of Se on dummy aerosols
does not lead to higher deposition in the Antarctic, perhaps
because wet deposition in the Antarctic circumpolar storm
track impedes the transport of aerosol poleward.

It is also important to note which input parameters do not
influence Se deposition in any of the grid boxes. Variations
in the speciation of emissions, photolysis rates, and 15 of
the Se reaction rate constants have a negligible influence on
deposition.

Although other parameters may play a role in certain grid
boxes, the emission parameters are most important on the
global scale, evidenced by their higher mean total Sobol’ in-
dex (Fig. 11). Figure 9 illustrates which regions are affected
by different emission sources. Variations in marine emis-
sions impact the most grid boxes; however, their influence
is mainly confined to the oceans, coastal areas, and South-
ern Hemispheric continents. Since the motivation of study-
ing Se deposition is to understand its impact on agricultural
soils, we also calculated the mean influence of parameters
in pasture and cropland areas (Fig. 11), using maps from
Ramankutty et al. (2008). The importance of anthropogenic
emissions increases when looking only at pasture and crop-
land areas, since agricultural areas coincide with human set-
tlement. All four emission parameters show similar levels
of importance for agricultural regions, i.e., showing similar
mean Sobol’ indices for pasture and cropland areas. There-
fore, further work in understanding any of these emission
processes would be valuable to reducing the uncertainty in
deposition fluxes.

5.3 Comparison with deposition flux measurements

With surrogate models of wet Se deposition, we can estimate
the modeled wet Se deposition throughout the parametric un-
certainty space. By comparing these modeled distributions
of wet deposition with observed values, one could constrain
input parameters to which deposition is sensitive. However,
we do not attempt at this stage to calibrate the parameters
to existing measurements because of several challenges in
comparing the compiled measurement dataset with the sim-
ulations in this study. Firstly, the emissions and meteorology
in this study are representative of the year 2000, whereas the
measurements were made between 1975 and 2017. Secondly,
Se is a difficult element to measure at environmental con-
centrations, which might lead to inaccurate reported depo-
sition fluxes. The most popular analytical method is induc-
tively coupled plasma mass spectrometry (ICP-MS), which
was used for 58 of the 73 sites in the database. However, it is
difficult to measure Se with ICP-MS due to the low ioniza-
tion of Se, the Se signal being split on the five stable isotopes,
and especially mass interferences (Winkel et al., 2012). Sev-
eral studies reported that Se concentrations in rainwater sam-
ples were often below the detection limit of the analytical
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Figure 8. Map of the mean Se deposition (a) and associated coefficient of variation (b), calculated by resampling surrogate models of
deposition in each grid box.

method (e.g., Arimoto et al., 1987; Gratz et al., 2013). Un-
fortunately, other studies often do not explicitly report the
detection limit, the fraction of samples under the detection
limit, and how these samples are treated statistically. Thirdly,
many of the measurement sites were located in urban loca-
tions close to point-source emissions. Due its coarse resolu-
tion (2.8◦×2.8◦), the model would have difficulty reproduc-
ing point values for Se concentrations and deposition fluxes.

Figure 12 compares the measured Se wet deposition fluxes
with the resampled median deposition fluxes from the sur-
rogate models, also showing the likely range predicted by
the models (defined with bounds of the 2nd and 98th per-
centile values). With the results from the deposition sensitiv-
ity analysis (Fig. 9), we categorize each measurement loca-
tion by the input parameter that predominates the uncertainty
in modeled deposition, indicated by the symbol in Fig. 12.
The compiled data and measurements show good agreement
at the lower end of deposition values, where the measure-
ment sites are more remote from point-source emissions. The
agreement worsens at higher values of observed Se deposi-
tion, which correspond to more urban measurement sites. As
discussed before, it is not surprising that the model has diffi-
culty matching the measurements for higher observed values
of deposition, since the model has coarse resolution and the
simulation year may be mismatched from the measurement
year. Indeed, the model underestimates several Se deposition
measurements at urban sites from East Asia after 2005. An-
thropogenic SO2 emissions, an analogue of anthropogenic
Se emissions, have increased in East Asia since 2000 (Smith
et al., 2011). Natural emission factors dominate the variabil-
ity in several of these locations in the year 2000 simulations,
likely because the input anthropogenic emission maps do
not correspond to the measurement time period. Neverthe-
less, we find overall that 53 % of existing measurements are
within the likely range of the model’s prediction. The agree-
ment improves to 79 % when comparing the model range
to measurements in background locations, defined as having
observed deposition values below 150 µgSem−2. These re-

sults provide confidence to SOCOL-AER’s predictions of Se
deposition fluxes in nonurban locations.

6 Discussion

Through our consideration of model uncertainties related to
Se cycling, we derived a median atmospheric Se lifetime of
4.4 d. This is the first bottom-up estimate for Se made with
a mechanistic global atmospheric model. Our estimate for
the Se lifetime matches the global arsenic lifetime calcu-
lated in the global model of Wai et al. (2016), namely 4.5 d.
This agreement is due to both elements attaching to submi-
crometer aerosol particles; therefore, their lifetime is deter-
mined by the lifetime of these particles. Since Se and ar-
senic have similar atmospheric sources as well (e.g., metal
smelting, coal combustion, volcanoes), it may be possible to
draw analogies between their atmospheric cycles. The range
of previously estimated Se lifetimes from global atmospheric
budgets is between 0.8 and 6 d, similar to our result (Ross,
1985; Mosher and Duce, 1987). The recent value from Ma-
son et al. (2018) of a 0.15-year (55 d) Se lifetime seems over-
estimated compared to our results and past budgets, espe-
cially since Mason et al. (2018) only consider gas-phase Se
in their model, which tends to be shorter lived in the atmo-
sphere than aerosol-bound Se. According to our sensitivity
analysis results, the atmospheric Se lifetime could be further
constrained by measuring the OCSe+OH reaction rates, and
in general knowing more about whether OCSe is present in
the atmosphere. Since dummy aerosols also impact the Se
lifetime in our model, implementing a more complex tropo-
spheric aerosol parametrization in SOCOL-AER would also
further constrain the atmospheric lifetime of Se. However,
since the main interest in Se is its atmospheric input to agri-
cultural soils, it may be a higher priority to constrain the in-
put parameters that affect the deposition of Se in agricultural
regions rather than the Se lifetime.
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Figure 9. Maps of the total Sobol’ indices of emission parameters and the accommodation coefficient for total Se deposition (left column).
A blue circle indicates the grid box where the total Sobol’ index is at a maximum. The relationship between total Se deposition and the input
parameters in that grid box, calculated by resampling the surrogate model for deposition, are shown (right column). Note that the magnitude
of deposition (y axis) varies in each plot, depending on the grid box shown.

The results of the sensitivity analyses raise an obvious
question: why do the input parameters that influence the at-
mospheric Se lifetime not appear as important for the Se de-
position fluxes? One would expect that Se deposition fluxes
close to areas of high emissions would be dominated by the
magnitude of these emissions. One would also expect that
variation in the Se lifetime would play a role, if anywhere,
over remote regions, where the amount of locally emitted
Se is low, and thus the amount that can be transported from

emission regions has a larger effect on deposition. However,
the range in the atmospheric Se lifetime in our simulations
is relatively narrow, between 2.9 and 6.4 d if we consider the
2nd percentile and 98th percentile bounds (Fig. 4). On the
other hand, emissions of various Se species can vary by or-
ders of magnitude (Table 3). These larger variations in the
amount of emitted Se have a larger impact on deposition than
smaller variations in the Se lifetime, even in many remote
places. Only in extremely remote areas, for example in the
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Figure 10. Maps of the total Sobol’ indices of reaction rate constants and dummy aerosol parameters for total Se deposition (a, d). A blue
circle indicates the grid box where the aggregated total Sobol’ index is at a maximum. The relationship between total Se deposition and the
multiple relevant input parameters within the aggregated index for that grid box is shown (b, e). The emitted dummy aerosol surface area is
compared to the corresponding sulfate quantity in the latitude band of the grid box, shown as a dashed brown line in (e).

Figure 11. Bar plot summarizing the importance of the input param-
eters to total Se deposition globally and in agricultural areas. For the
cropland and pasture means, Sobol’ indices are averaged over grid
boxes that are covered by more than 25 % cropland or pasture area
in the Ramankutty et al. (2008) database.

Arctic, do some of the parameters that affect the Se lifetime
show up as important, like the dummy aerosols. Parameters
with regional rather than global importance for the Se life-
time, like the DMSe reaction parameters, impact deposition
of Se in the Antarctic by controlling the amount of trans-
ported Se. It is not surprising that the parameter that has the
largest impact on lifetime, the OCSe+OH reaction rate con-
stant, has little impact on deposition fluxes, since emissions

of OCSe are assumed to be a minor flux of Se (maximum
6 % of the anthropogenic emissions flux). Like all sensitivity
analyses, the results are dependent on the choice of uncer-
tainty ranges for the different parameters; if we had selected
narrower uncertainties for the Se emission sources, the uncer-
tainties of parameters that affect Se lifetime (e.g., chemical
reaction rates, dummy aerosols) may have been more impor-
tant in remote regions. However, the choice of wide uncer-
tainty ranges for the Se emissions is justified, given the vari-
ability in natural emission processes and a lack of field cam-
paigns assessing Se emission fluxes (Sect. 3.1.4). The differ-
ent results for the two types of sensitivity analyses (lifetime
and deposition fluxes) highlight that the “important” param-
eters to constrain depend on the choice of research question.

It must be noted that our simulations were performed only
for the year 2000 and focused on uncertainties in the Se-
related input parameters, neglecting variations in the Se cy-
cle due to interannual variability in meteorology and sulfate
aerosol properties. In future studies we intend to investigate
how the Se cycle varies under different climate conditions.

The global sensitivity analyses in this paper provide clear
next steps for atmospheric Se research. The magnitude and
spatial distribution of Se emissions remain the most impor-
tant uncertainty to constrain, in order to improve the pre-
dictions of Se deposition patterns. Further investigations of
chemical reactivity of Se species or the speciation of emis-
sions are a lower priority, although measuring the specia-
tion of emissions can give mechanistic insights into emission
processes. The emission uncertainties could be constrained
by conducting field campaigns that measure either emission
fluxes of Se close to sources (e.g., Amouroux et al., 2001) or
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Figure 12. Comparison of wet deposition flux measurements (Ta-
ble 5) with modeled fluxes. Medians for the modeled values are
shown, along with vertical bars representing the 2nd and 98th per-
centile values. The symbols correspond to the model input param-
eter that is most important for deposition at the measurement loca-
tion. The color of the symbols represents the year when the mea-
surement was taken; multi-year measurements show the middle
year.

separate Se source contributions at an ambient measurement
site through trajectory modeling and/or speciation measure-
ments (e.g., Suess et al., 2019). Our model results can help
identify ambient locations that would be interesting to study
for field campaigns, by mapping the contribution of the Se
emission sources to deposition in different regions (Fig. 9).
In addition to new field measurements, we can also compile
and reanalyze previously collected data from the literature to
evaluate estimates of emission fluxes. Bayesian inverse mod-
eling techniques (e.g., Stohl et al., 2009) could be employed
in conjunction with the SOCOL-AER model to provide pos-
terior estimates for Se emission fluxes. Global sensitivity
analysis is an invaluable first step before such model calibra-
tion techniques, since the parameter dimensionality can be
reduced by neglecting uninfluential parameters. As shown in
Sect. 5.3, the heterogeneity of compiled literature data repre-
sents a challenge to comparing models and measurements.
Therefore, standardized measurement techniques and ade-
quate reporting of sampling, analytical, and post-processing
methods are required so that the model is not calibrated to an
errant measurement.

The ultimate motivation for studying biogeochemical Se
cycling is to better understand how this essential element en-
ters food chains and ecosystems. It has been hypothesized
that atmospheric Se could be an important source of Se to
soils and thus terrestrial food chains (Winkel et al., 2015);
however, until now this could not be proven due to missing

knowledge of global atmospheric Se cycling. Using SOCOL-
AER, the first model of its kind for Se, we can quantify the
atmospheric inputs of Se to terrestrial systems and investi-
gate how these inputs are impacted by different climate con-
ditions and anthropogenic activities. Although human health
effects cannot be directly inferred from atmospheric deposi-
tion maps, SOCOL-AER will be coupled to soil, plant, and
health system models in future work to accurately predict Se
deficiency risks.

7 Conclusions

Now that it includes Se cycling, the SOCOL-AER model
can be used to predict atmospheric Se transport and depo-
sition globally. We created surrogate PCE-based models that
are able to predict the output of the model throughout the
uncertainty space of the input parameters. With these surro-
gate models, we determined that the atmospheric Se lifetime
is around 4.4 d, similar to the lifetime of submicron aerosol
particles in the atmosphere. Assuming that longitudinal wind
speeds are around 10 ms−1 (Jacob, 1999), the likely Se life-
time range of 2.9–6.4 d corresponds to a distance of 2500–
5000 km that Se is transported in the atmosphere. The global
sensitivity analysis of Se deposition fluxes shows that reduc-
ing uncertainties in Se emissions would lead to the biggest
reductions in the uncertainty of deposition maps. Field mea-
surements that elucidate and quantify Se emission processes
should be prioritized, so that model predictions of Se deposi-
tion maps can be improved. Available measurements of Se in
rainwater are within the likely range of model results at 79 %
of background sites; remaining discrepancies may be due to
the time period of the simulations in this study, the coarse
resolution of the model, and analytical challenges leading to
measurement inaccuracies. In future work, deposition maps
from SOCOL-AER can be linked to soil, plant, and health
system models to identify the regions at risk of Se deficiency
in current times and the future.

Code and data availability. The SOCOL-AER code is avail-
able upon request from the authors, after users have signed
the ECHAM5 license agreement: http://www.mpimet.mpg.de/en/
science/models/license/ (last access: 30 January 2020). The relevant
simulation data, along with the experimental design of the training
and validation runs, is available at https://doi.org/10.3929/ethz-b-
000357105 (Feinberg et al., 2019a). The compiled Se precipitation
database is available in the Supplement. The NAtChem precipi-
tation database is available online at http://donnees.ec.gc.ca/data/
air/monitor/monitoring-of-atmospheric-precipitation-chemistry/
metals-in-precipitation/ (Environment and Climate Change
Canada, 2020). Selenium in precipitation measured by EMEP was
extracted from annual reports on heavy metals and POP measure-
ments available at https://projects.nilu.no//ccc/reports.html
(EMEP/CCC, 2020) UQLAB is freely available for aca-
demic and degree-granting institutions by registering at
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https://www.uqlab.com/register (last access: 30 January 2020).
All of the scientific source code is available under the
BSD three-clause license and can be downloaded from
https://www.uqlab.com/obtain-the-sources (last access: 30 Jan-
uary 2020).

Supplement. The supplement related to this article is available on-
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