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S1. Estimation of CRIs for the fine and coarse modes 

In order to separate the complex refractive index (CRI) for different modes, first the volume size 

distribution (VSD) needs to be separated into complete log-normal functions following the VSD 

breakdown method. The multi-modal log-normal distributions fits the AERONET-retrieved VSD by 

the following formula: 

𝑑𝑉(𝑟)

𝑑𝑙𝑛𝑟
= ∑

𝐶𝑖

√2𝜋|𝑙𝑛𝜎𝑖|
𝑒𝑥𝑝 [−

1

2
(

𝑙𝑛𝑟−𝑙𝑛𝑟𝑖

𝑙𝑛𝜎𝑖
)

2

]𝑖=1,𝑚 , m=1, 2, …,           (S1) 

where dV/dlnr (in unit of µm3/µm2) is the volume particle size distribution, Ci (µm3/µm2), ri (µm), and 

ln σi are the volume modal concentration, median radius, and standard deviation of ln ri for each log-

normal mode, respectively. Based on the separated VSD for the fine and coarse mode, a limited-

memory optimization algorithm is employed to retrieve the CRIs. The real part (n) of sub-CRIs is 

spectrally independent, and the imaginary part (k) of sub-CRIs varies with wavelength: 

𝑛𝑓/𝑐(𝜆) = 𝑛𝑓/𝑐                                 (S2) 
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where λ denotes the standard wavelengths of AERONET products and “f” and “c” represent the fine 

and coarse modes, respectively. The details of the CRIs separating process are presented in Zhang et 

al. (2017). 

In the study of Zhang et al. (2017), the uncertainties in the estimated complex refractive indices of the 

fine and coarse modes were evaluated using the three typical aerosol models presented in table S1. The 

typical uncertainties in the retrieved complex refractive indices of fine and coarse modes for these 

models are listed in the table 2. The total uncertainty (TU) is calculated by error propagation using the 

formula:  
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where x represents the uncertainty of the sub-CRIs for each aerosol type. The biases of the input 

parameter (aerosol optical depth (τ), single scattering albedo (ω) and VSD) uncertainties are set to 0.01, 

-0.03 and 15%-35% in the WS, BB and DU aerosol models, respectively. The uncertainty in the relative 

humidity is twice the observational error given by the World Meteorological Organization (WMO, 

2008). 

Table S1. Typical aerosol models (WS: Water-soluble, BB: Biomass burning, DU: Dust) parameters 



and relative humidity.  

Type r1 r2 σ1 σ2 C1 /C2 nf kf,440 kf nc kc,440 kc RH 

WS 0.118 1.17 0.6 0.6 2 1.45 0.0035 0.0035 1.53 0.008 0.008 70% 

BB 0.132 4.50 0.4 0.6 4 1.52 0.025 0.025 1.53 0.008 0.008 55% 

DU 0.100 3.40 0.6 0.8 0.066 1.53 0.008 0.008 1.53 0.008 0.008 35% 

 

 

Table S2. Typical uncertainties (±Δ) of the estimated complex refractive indices of the fine and coarse 

modes and relative humidity. 

Type Δnf Δkf,440 Δkf Δnc Δkc,440 Δkc ΔRH 

WS 0.0197 0.0015 0.0004 0.0667 0.0036 0.0029 10% 

BB 0.0270 0.0039 0.0030 0.0500 0.0016 0.0016 10% 

DU 0.0780 0.0036 0.0040 0.0447 0.0016 0.0036 10% 

 

S2. The averaged mass fraction of aerosol components  

Table S3. The averaged mass fraction of aerosol components at SONET sites shown in figure 7. 

Site 
Fine mode Coarse mode 

AW IS OM 
BC WIOM WSOM AN AWf DU SC AWc 

Lhasa 0.43% 7.85% 6.47% 1.89% 2.01% 81.34% 0.00% 0.00% 2.01% 1.89% 14.33% 

Zhangye 0.05% 2.43% 2.36% 2.31% 1.79% 70.23% 11.53% 9.30% 11.09% 13.84% 4.79% 

Kashgar 0.08% 4.57% 2.63% 2.51% 1.19% 65.63% 17.09% 6.30% 7.49% 19.60% 7.20% 

Minqin 0.11% 2.97% 2.33% 6.13% 2.33% 65.70% 12.20% 8.23% 10.56% 18.33% 5.30% 

Xi'an 0.60% 4.74% 9.62% 10.08% 6.56% 60.75% 3.37% 4.28% 10.84% 13.45% 14.37% 

Beijing 0.69% 5.91% 7.67% 10.65% 6.08% 62.86% 2.85% 3.29% 9.38% 13.49% 13.59% 

Nanjing 0.96% 6.26% 15.13% 13.79% 9.68% 46.94% 3.14% 4.10% 13.78% 16.93% 21.39% 

Shanghai 1.30% 5.14% 10.78% 17.68% 10.33% 46.62% 3.87% 4.28% 14.61% 21.55% 15.92% 

Harbin 0.97% 5.43% 12.45% 15.36% 10.80% 50.50% 2.21% 2.26% 13.07% 17.57% 17.88% 

Hefei 0.80% 3.33% 11.51% 14.86% 10.34% 49.79% 3.91% 5.46% 15.80% 18.77% 14.84% 

Songshan 0.59% 8.14% 6.31% 12.09% 6.63% 59.65% 3.10% 3.50% 10.13% 15.18% 14.45% 

Chengdu 0.58% 2.72% 11.90% 22.54% 9.34% 42.10% 3.65% 7.17% 16.51% 26.19% 14.62% 

Zhoushan 0.33% 3.55% 6.84% 17.06% 14.86% 42.82% 5.83% 8.70% 23.56% 22.89% 10.40% 

Guangzhou 0.64% 2.84% 8.18% 23.80% 18.26% 31.54% 4.28% 10.46% 28.72% 28.08% 11.02% 

Haikou 0.83% 2.32% 9.89% 22.03% 14.42% 33.29% 6.90% 10.32% 24.74% 28.93% 12.21% 

Sanya 0.55% 0.32% 14.27% 24.78% 9.46% 37.41% 3.21% 10.00% 19.45% 27.99% 14.59% 

 

S3. The comparison of aerosol components  

We have made the comparison of the aerosol components retrieved with the new algorithm presented 



here, with those from Zhang et al (2018). The number of retrievals in this study is less than that in 

Zhang et al. (2018). There are three reasons: (1) The input data is more rigorously filtered (Li et al., 

2017); (2) the residuals are increased using the new algorithm; (3) stricter residual constraints are used. 

From these, we can obtain more reasonable inversion aerosol components. Figure S1 shows the 

comparison of aerosol components (OM, BC and AN) in the fine mode in atmospheric column from 

this study and those from Zhang et al., 2018 with reference PM1 composition data which were 

measured by a High-Resolution Aerosol Mass Spectrometer at ground level. We use the boundary layer 

height of lidar (obtained from Zhang et al. 2018) to calculate the concentration of the atmospheric 

column to the near surface. The results show that OM components from the improved algorithm are 

not better than from Zhang et al. (2018). Black carbon is closer to the identity line although the 

correlation coefficient is slightly smaller than in 2018. For AN, a water-soluble inorganic salt, the new 

algorithm shows a good effect. The slope with ground observations changes from negative to positive. 

In our opinion, such a comparison is not sufficient due to the various vertical distribution of aerosol 

components. In future studies, we will make a more detailed and comprehensive comparison. 

This comparison does not show the comprehensive advantages of the new algorithm. Although the 

algorithm in this paper has been improved, the basic assumption (e.g. Nonhygroscopic assumption of 

OM mixture) is not different from the paper in 2018. The current algorithm can easily add more kinds 

of hygroscopic components without obtaining the single component hygroscopic formula (A 

polynomial in water activity and solution concentration in paper of 2018 Eqs (5) & (6)) to better solve 

the problem of OM mixture.  
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Figure S1. The comparison of aerosol components (OM, BC and AN) between this study and Zhang 

et al., 2018. 

The daily volume fraction of AWf from the algorithm of 2020 and 2018 is present in figure S2. The 



volume fraction of AWf obtained by the two algorithms is consistent with the change of relative 

humidity. AWf from the algorithm of 2020 is slightly higher than that of 2018. The new algorithm 

increases the low AWf when the RH is more than 40%, obtaining more reasonable results.  
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Figure S2. The RH and daily volume fraction of AWf from the algorithm of 2020 and 2018. 

 


