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Abstract. To better understand and characterize current un-
certainties in the important observational constraint of cli-
mate models of aerosol optical depth (AOD), we eval-
uate and intercompare 14 satellite products, representing
nine different retrieval algorithm families using observations
from five different sensors on six different platforms. The
satellite products (super-observations consisting of 1◦× 1◦

daily aggregated retrievals drawn from the years 2006, 2008
and 2010) are evaluated with AErosol RObotic NETwork
(AERONET) and Maritime Aerosol Network (MAN) data.
Results show that different products exhibit different region-
ally varying biases (both under- and overestimates) that may

reach ±50 %, although a typical bias would be 15 %–25 %
(depending on the product). In addition to these biases, the
products exhibit random errors that can be 1.6 to 3 times
as large. Most products show similar performance, although
there are a few exceptions with either larger biases or larger
random errors. The intercomparison of satellite products ex-
tends this analysis and provides spatial context to it. In par-
ticular, we show that aggregated satellite AOD agrees much
better than the spatial coverage (often driven by cloud masks)
within the 1◦× 1◦ grid cells. Up to ∼ 50 % of the differ-
ence between satellite AOD is attributed to cloud contam-
ination. The diversity in AOD products shows clear spatial
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patterns and varies from 10 % (parts of the ocean) to 100 %
(central Asia and Australia). More importantly, we show that
the diversity may be used as an indication of AOD uncer-
tainty, at least for the better performing products. This pro-
vides modellers with a global map of expected AOD un-
certainty in satellite products, allows assessment of products
away from AERONET sites, can provide guidance for future
AERONET locations and offers suggestions for product im-
provements. We account for statistical and sampling noise in
our analyses. Sampling noise, variations due to the evaluation
of different subsets of the data, causes important changes in
error metrics. The consequences of this noise term for prod-
uct evaluation are discussed.

1 Introduction

Aerosols are an important component of the Earth’s atmo-
sphere that affect the planet’s climate, the biosphere and hu-
man health. Aerosol particles scatter and absorb sunlight as
well as modify clouds. Anthropogenic aerosol changes the
radiative balance and influences global warming (Ångström,
1962; Twomey, 1974; Albrecht, 1989; Hansen et al., 1997;
Lohmann and Feichter, 2005, 1997). Aerosol can transport
soluble iron, phosphate and nitrate over long distances and
so provide nutrients for the biosphere (Swap et al., 1992;
Vink and Measures, 2001; McTainsh and Strong, 2007; Ma-
her et al., 2010; Lequy et al., 2012). Finally, aerosols can
penetrate deep into lungs and may carry toxins or serve as
disease vectors (Dockery et al., 1993; Brunekreef and Hol-
gate, 2002; Ezzati et al., 2002; Smith et al., 2009; Beelen
et al., 2013; Ballester et al., 2013).

The most practical way to obtain observations on the
global state of aerosol is through remote sensing observa-
tions from either polar orbiting or geostationary satellites
(Kokhanovsky and de Leeuw, 2009; Lenoble et al., 2013;
Dubovik et al., 2019). Unfortunately, that is a complex pro-
cess as it requires a relatively weak aerosol signal to be dis-
tinguished from strong reflections by clouds and the surface.
Even if cloud-free scenes are properly identified and sur-
face reflectances properly accounted for, aerosols themselves
come in many different sizes, shapes and compositions that
affect their radiative properties. It is challenging to remotely
sense aerosol, as this is essentially an under-constrained in-
version using complex radiative transfer calculations.

Therefore it is no surprise that much effort has been spent
on developing sensors for aerosol, the algorithms that work
on them and the evaluation of the resulting retrievals. Among
the retrieved products, AOD (aerosol optical depth) is the
most common retrieval and the topic of this paper.

Intercomparison of a small number of satellite datasets
probably goes back to a spirited discussion of the
(dis)agreement between L2 MODerate resolution Imaging
Spectroradiometer (MODIS) and Multi-angle Imaging Spec-

troRadiometer (MISR) AOD (Liu and Mishchenko, 2008;
Mishchenko et al., 2009, 2010; Kahn et al., 2011). Not only
did these studies show the value in intercomparing satellite
datasets (in part to compensate for the sparsity of surface
reference sites) but also the various challenges in doing so.
Evaluation and intercomparison of satellite AOD products
are difficult for a number of reasons: the data exist in dif-
ferent formats and for different time periods that may overlap
only partially; computational requirements (especially for L2
data) are large; and the data usually come in different spatio-
temporal grids. In addition, data have often been filtered in
different ways and aggregates produced differently. Listing
all papers that intercompare two or three satellite datasets
would probably not be accepted by the editors of this journal,
so in Table 1, we constrain ourselves to publications with at
least five different datasets.

Most of the papers in Table 1 quantify only global bi-
ases for daily or monthly data. More than half of them
use monthly satellite data, potentially introducing signifi-
cant temporal representation errors (Schutgens et al., 2016b)
in their analysis. Seldom is the spatial representativity of
AErosol RObotic NETwork (AERONET) sites accounted
for (Schutgens et al., 2016a), although most studies do ex-
clude mountain sites. As a result both the evaluations with
AERONET and the satellite product intercomparisons are no
apples-to-apples comparisons. Finally, most studies do not
systematically address (statistical or sampling) noise issues
inherent in their analysis.

In this paper, we will assess spatially varying (as op-
posed to global) biases in multi-year averaged satellite AOD
(appropriate for model evaluations). As truth references
AERONET and Maritime Aerosol Network (MAN) data will
be used. The analysis uses only AERONET sites with high
spatial representativity and collocates all data within a few
hours, greatly reducing representation errors. Throughout,
a bootstrapping method is used to assess statistical noise
in the analysis. Sampling issues (e.g. due the sparsity of
AERONET sites) are addressed through, for example, a pair-
wise satellite intercomparison.

This paper is the result of discussions in the AeroCom
(AEROsol Comparisons between Observations and Models;
https://aerocom.met.no, last access: 21 October 2020) and
AeroSat (International Satellite Aerosol Science Network;
https://aero-sat.org, last access: 21 October 2020) commu-
nities. Both are grassroots communities, the first organized
around aerosol modellers and the second around retrieval
groups. They meet every year to discuss common issues in
the field of aerosol studies.

The structure of the paper is as follows. The remote sens-
ing products are described in Sect. 2 and the methodology
to collocate them in space and time in Sect. 3. Section 4 de-
scribes screening procedures for representative AERONET
sites and establishes the robustness of our collocation pro-
cedure. Section 5 evaluates the satellite products individu-
ally against AERONET and MAN, at daily and multi-year
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Table 1. Papers intercomparing multiple satellite datasets.

Reference Period Resolution Region AERONET Sensors

Temporal Spatial

Myhre et al. (2004) Nov 1996–Jun 1997 monthly 1◦ ocean 13 AVHRR-1,-2, OCTS, POLDER, TOMS

Myhre et al. (2005) Sep 1997–Dec 2000 monthly 1◦ ocean 33 ATSR, AVHRR-1,-2, MODIS (2×),
MISR, SeaWiFS, TOMS, VIRS

Kinne (2009) 1981–2005
(partially overlapping)

monthly 1◦ globally 264 AVHRR, MISR, MODIS (2×),
POLDER, TOMS

Bréon et al. (2011) 2004–2011 30 min 50 km globally ∼ 200 MERIS, MODIS (2×), POLDER,
SEVIRI

Holzer-Popp et al.
(2013)

Sep 2008 daily 1◦ globally unknown AATSR (3×), MERIS, PARASOL

Petrenko and Ichoku
(2013)

2006–2010 30 min 55 km globally 393 MISR, MODIS (2×), OMI, POLDER,
SeaWiFS

Leeuw et al. (2015) 4 months in 2008 daily 1◦ globally unknown AATSR (3×), MERIS,
MODIS-TERRA, POLDER

Sogacheva et al.
(2019)

15 years
(partially overlapping)

monthly 1◦ globally unknown AATSR (3×), ATSR-2 (3×), AVHRR,
EPIC, POLDER, MISR, MODIS (4×),
OMAERUV, SeaWiFS, TOMS,VIIRS

Wei et al. (2019) 20 years
(partially overlapping)

monthly mostly 1◦ globally unknown AATSR (3×), AVHRR, POLDER,
MISR, MODIS, SeaWiFS, VIIRS

timescales. An intercomparison of pairs of satellite products
is presented in Sect. 6. A combined evaluation and intercom-
parison of the products is made in Sect. 7. More importantly,
the diversity amongst satellite products is discussed and in-
terpreted. A summary can be found in Sect. 8.

2 Remote sensing data

Original satellite L2 data were aggregated onto a regu-
lar spatio-temporal grid with spatio-temporal grid boxes of
1◦×1◦×30 min. The resulting super-observations (1◦×1◦×
30 min aggregates) are more representative of global model
grid boxes (∼ 1◦–3◦ in size) while allowing accurate tem-
poral collocation with other datasets. At the same time, the
use of super-observations significantly reduces the amount of
data without much loss of information (at the scale of global
model grid boxes). A list of products used in this paper is
given in Table 2. A colour legend for the different products
can be found in Fig. 1. More explanation of the aggregation
procedure can be found in Appendix A.

The main data are AOD at 550 nm, the wavelength at
which models typically provide AOD. If AOD was not re-
trieved at this wavelength, it was interpolated (or extrapo-
lated) from nearby wavelengths.

In addition, the number of L2 retrievals used per super-
observation as well the average pixel size for these L2 re-
trievals were included. For some products (e.g. MODIS), this
physical pixel size will vary as the view angle changes across

Figure 1. Colour legend used throughout this paper to designate the
different satellite products, organized by approximate local Equator
crossing time.

the imager’s field of view. In that case, actual pixel foot-
prints can be difficult to calculate due to the Earth’s curvature
(Sayer, 2015), and only estimates were provided. Other prod-
ucts (MAIAC and those from AATSR) are based on regrid-
ded radiance data and use a fixed pixel size. The combination
of number of retrievals and average pixel size can be used to
estimate the spatial coverage: the fraction of a 1◦× 1◦ grid
box covered by L2 retrievals (at a particular time) per super-
observation. This spatial coverage would ideally be 100 %
but in practice is smaller for several reasons: the imager’s
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Table 2. Remote sensing products used in this study.

Platform Overpass Sensor Swath Pixel Product AOD∗ Comments References
time (km) (km) 550 nm

Terra 10:30 MODIS 2330 1 Dark Target C6.1 R Terra-DT Remer et al. (2005)
Deep Blue C6.1 I/E Terra-DB Hsu et al. (2013, 2019)

and Sayer et al. (2019)
MAIAC v2.0 E Terra-MAIAC Lyapustin et al. (2018)
BAR v1.0 R Terra-BAR Lipponen et al. (2018)

ENVISAT 10:30 AATSR 500 1 ADV/ASV Ver2.30 R AATSR-ADV Sogacheva et al. (2017)
ORAC v03.20 R AATSR-ORAC Thomas et al. (2009)
AARDVARC v4.21 R AATSR-SU North et al. (1999),

North (2002) and
Bevan et al. (2012)

Aqua 13:30 MODIS 2330 1 Dark Target C6.1 E Aqua-DT see Terra-DT
Deep Blue C6.1 I/E Aqua-DB see Terra-DB
MAIAC v2.0 E Aqua-MAIAC see Terra-MAIAC
BAR v1.0 R Aqua-BAR see Terra-BAR

SeaStar 12:20 SeaWiFS 1502 13.5 Deep Blue I/E SeaWiFS Hsu et al. (2013) and
& SOARv004 R Sayer et al. (2012a, b)

noaa18 14:58 AVHRR 2900 8.8 Deep Blue E AVHRR Hsu et al. (2017) and
& SOAR v001 R Sayer et al. (2017)

AURA 13:30 OMI 2600 18 OMAERUV v1.7.1 E OMAERUV Ahn et al. (2014) and
Jethva et al. (2014)

∗ Interpolated or extrapolated to 550 nm, depending on surface type, or retrieved at 550 nm.

field of view may miss part of the 1◦×1◦ grid box; sun glint,
snow, desert surface or clouds may prevent retrievals; or re-
trievals may fail. As we use an estimate of coverage, based
on an average pixel size, values in excess of 100 % do occur.
We provide evidence in Sects. 5 and 6 that cloud masking is
the dominant factor in determining spatial coverage; see also
Zhao et al. (2013), who suggest that spatial coverage might
be interpreted as an estimate of the complement to cloud frac-
tion.

All products were provided globally for 3 years (2006,
2008 and 2010, years used in AeroCom control studies).
Many products only provided data over land. Seven datasets
belong to sensors that have an equatorial crossing time in the
morning, and another seven belong to sensors that have an
equatorial crossing time in the afternoon.

AERONET (Holben et al., 1998) DirectSun L2.0 V3
(Giles et al., 2019; Smirnov et al., 2000) and MAN L2.0
(Smirnov et al., 2011) data were downloaded from https:
//aeronet.gsfc.nasa.gov (last access: 19 May 2020). These
AOD observations are based on direct transmission measure-
ments of solar light and have a high accuracy of ±0.01 (Eck
et al., 1999; Schmid et al., 1999). They were aggregated per
site by averaging over 30 min. MAN aggregates were as-
signed averaged longitude and latitudes for those 30 min.

The entire satellite dataset requires 14 GB of storage and
is stored in the netCDF format.

3 Collocation and analysis methodology

To evaluate and intercompare the remote sensing datasets,
they will need to be collocated in time and space to reduce
representation errors (Colarco et al., 2014; Schutgens et al.,
2016b, 2017). In practice this collocation is another aggre-
gation (performed for each dataset individually) to a spatio-
temporal grid with slightly coarser temporal resolution (1 or
3 h; the spatial grid box size remains 1◦× 1◦). This is fol-
lowed by a masking operation that retains only aggregated
data if they exist in the same grid boxes for all datasets in-
volved. More details can be found in Appendix A.

During the evaluation of products with AERONET, a dis-
tinction will be made between either land or ocean grid boxes
in the common grid. A high-resolution land mask was used
to determine which 1◦× 1◦ grid box contained at most 30 %
land (designated an ocean box) or water (designated a land
box). Most ocean boxes with AERONET observations will
be in coastal regions, with some over isolated islands.

3.1 Taylor diagrams

A suitable graphic for displaying multiple datasets’ corre-
spondence with a reference dataset (“truth”) is provided by
the Taylor diagram (Taylor, 2001). In this polar plot, each
data point (r,φ) shows basic statistical metrics for an en-
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tire dataset. The distance from the origin (r) represents the
internal variability (standard deviation) in the dataset. The
angle φ through which the data point is rotated away from
the horizontal axis represents the correlation with the refer-
ence dataset, which is conceptually located on the horizontal
axis at radius 1 (i.e. every distance is normalized to the in-
ternal variability of the reference dataset). It can be shown
(Taylor, 2001) that the distance between the point (r,φ) and
this reference data point at (1,0) is a measure of the root
mean square error (RMSE, unbiased). A line extending from
the point (r,φ) is used to show the bias versus the reference
dataset (positive for pointing clockwise).The distance from
the end of this line to the reference data point is a measure
of the root mean square difference (RMSD, no correction for
bias).

3.2 Uncertainty analysis using bootstrapping

Our estimates of error metrics are inherently uncertain due
to finite sampling. If the sampled error distribution is suffi-
ciently similar to the underlying true error distribution, boot-
strapping (Efron, 1979) can be used to assess uncertainties
in, for example, biases or correlations due to finite sample
size. Bootstrapping uses the sampled distribution to generate
a large number of synthetic samples by random draws with
replacement. For each of these synthetic samples, a bias (or
other statistical properties) can be calculated, and the distri-
bution of these biases provides measures of the uncertainty,
e.g. a standard deviation, in the bias due to statistical noise.
Bootstrapping has been shown to be reliable, even for rela-
tively small sample sizes (that is the size of the original sam-
ple, not the number of bootstraps); see Chernick (2008). In
this study, the uncertainty bars in some figures were gener-
ated by bootstrap analysis.

If the sampled error distribution is different from the true
error distribution, bootstrapping will likely underestimate
uncertainties. Sampled error distributions may be different
from the true error distribution because the act of collo-
cating satellite and AERONET data favours certain condi-
tions; e.g. the effective combination of two cloud screen-
ing algorithms (one for the satellite product, the other for
AERONET) may favour clear sky conditions and limit sam-
pling of errors in case of cloud contamination. This uncer-
tainty due to sampling is unfortunately hard to assess, but we
attempt to address it by comparing evaluations for different
combinations of collocated satellite products.

3.3 Error metrics for evaluation

For most of this study we will focus on the usual global er-
ror statistics (bias, RMSD, Pearson correlation, regression
slopes), treating all data as independent. Regression slopes
were calculated with a robust ordinary least squares regres-
sor (OLS bisector from the IDL sixlin function; Isobe
et al., 1990). This regressor is recommended when there is

no proper understanding of the errors in the independent vari-
able; see also Pitkänen et al. (2016). Global statistics may be
dominated by a few sites with many collocations, which will
skew results. We also performed analyses on regional scales,
but they will not be shown. Instead we show as error met-
rics the bias (sign-less) and the correlation per site, averaged
over all sites. These error metrics do not suffer from a few
sites with many observations dominating the error statistics.
Only sites with at least 32 collocations will be used in this
last analysis.

4 Selection of AERONET sites and collocation criteria

Not all AERONET sites are equal. They differ in their spa-
tial representativity for larger 1◦× 1◦ areas and in their level
of maintenance. Ideally, only sites with the highest spatial
representativity and maintenance levels should be used for
satellite evaluation. In addition, a temporal criterion for satel-
lite collocation with AERONET observations needs to be es-
tablished that yields sufficient data for analysis yet also al-
lows meaningful comparison (i.e. the difference in observa-
tion times should not be too large).

Kinne et al. (2013) provide a subjective ranking of all sites
(before 2009) based on their general level of maintenance
and spatial representativity. The ranking is based on personal
knowledge of the sites and is mostly qualitative. Schutgens
(2019) provides an objective ranking for all sites (for all
years) based on spatial representativity alone. This ranking
is based on a high-resolution modelling study and is quan-
titative. While there is substantial overlap in their rankings
for spatial representativity, there are also differences. Table 3
describes the AERONET site selections used in this paper.

The impact of using a subset of AERONET sites like
Kinne et al. (2013) or Schutgens (2019) (compared to the full
dataset) on satellite product evaluation is to slightly increase
correlations and decrease RMSDs; i.e. the satellite products
compare better to AERONET data. As this occurs systemat-
ically for all products (see Fig. S1 in the Supplement), we
believe these subsets contain AERONET sites substantially
better suited for satellite evaluation. Averages for these met-
rics over all products are given in Table 4. As we later want to
evaluate satellite products at individual sites, we will use the
Kinne subset defined in Table 3 since it is based on both site
representativity and maintenance level. Note, however, that
the Schutgens subset allows for more observations for our
study period, vastly more AERONET sites (including after
2009) and a slightly better comparison of the satellite prod-
ucts.

A further test of the AERONET sites subset consists of
comparing them individually against all satellite products. It
turns out there are four sites (Canberra, Crozet Island, Ams-
terdam Island and Tinga Tingana) that have low correlations
with and/or high biases vs. all satellite products (see Fig. 2).
While it is possible all satellite products fail badly for these
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Table 3. AERONET site subsets.

Reference Criterion No. of sites

All sites mountain sites included 1144
Kinne et al. (2013) sites with high maintenance (q ≥ 2), mountain sites removed 255
Schutgens (2019) sites with yearly representation error ≤ 20 %, mountain sites above 1500 m removed 859

Kinne et al. (2013) only consider sites before 2009, with at least 5 months of data.

Table 4. Averaged product evaluation with AERONET depending on the selection of AERONET sites used as truth reference.

Metric All Kinne et al. (2013) Kinne et al. (2013) Schutgens (2019)
(pruned)

Bias −0.0024 −0.0031 −0.0031 −0.001
Correlation 0.826 0.841 0.841 0.845
RMSD 0.139 0.133 0.134 0.136
No. of obs. 42 074 28 283 28 150 32 716

Figure 2. Minimum relative bias (sign-less) and maximum corre-
lation per AERONET site, over all products. Red symbols indi-
cate AERONET site bias is always positive; blue symbols indicate
AERONET site bias is always negative. Yellow symbols indicate
that site bias is positive versus some products and negative ver-
sus others. Products were individually collocated with AERONET
(Kinne et al., 2013, selection) within 1 h.

four sites, we assume it is actually the sites that are, in a
way not yet understood, poorly suited to satellite evaluation
(e.g. representativity or maintenance issues not flagged up
by Kinne et al., 2013). These four sites were excluded from
our analysis (this only has a small impact on global statistics;
see Table 4). Note that only for a minority of remaining sites
(10 %) will all satellite products either overestimate or under-
estimate AOD. For most sites, the products form an ensemble
of AOD values that straddle the AERONET value.

Although we now have a subset of suitable AERONET
sites for satellite evaluation, spatial representation errors still
remain since a “point” observation (AERONET) will be

used to evaluate satellite super-observations (1◦× 1◦ satel-
lite aggregates). The difference between a satellite τs and
AERONET τA super-observation AOD can be understood as
the sum of observation errors in both products and a repre-
sentation error εr:

τs− τA = εs+ εA+ εr. (1)

If we assume these errors are uncorrelated and have a Gaus-
sian distribution, we can use the associated uncertainties
(i.e. standard deviations of the errors) to determine the dom-
inant contribution. AERONET observation uncertainty is es-
timated at σA = 0.01 (Eck et al., 1999; Schmid et al., 1999),
and representation uncertainty σr may be estimated as the
standard deviation of L2 AOD retrievals over 1◦× 1◦ (re-
member, the mean of those values is the super-observation
itself). The latter assumes that satellite errors over a grid box
are mostly constant. Since we also know the differences be-
tween satellite and AERONET data, satellite observational
uncertainty σS can be estimated. This suggests that the satel-
lite observational uncertainty is twice as large as the repre-
sentation uncertainty (see also Fig. S2), confirming that it is
reasonable to evaluate super-observations with AERONET
point observations.

Lastly, we investigated the impact of the temporal collo-
cation criterion 1t and minimum number of AERONET ob-
servations n on the satellite evaluation (it was 1 h in the pre-
vious analyses); see Table 5. It turns out that changing this
number only has a small impact on evaluation metrics (see
also Fig. S3) but quite a large impact on number of avail-
able observations. Given the substantial reduction in avail-
able collocated observations, we decided to require only a
single AERONET super-observation for successful colloca-
tion.

We also considered the impact of these choices on regional
evaluations. Broadly, similar conclusions can be drawn, al-
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Table 5. Averaged product evaluation with AERONET depending on temporal constraints (pruned Kinne subset).

Metric 1t = 1, n= 1 1t = 1, n= 2 1t = 3, n= 1 1t = 3, n= 3 1t = 3, n= 5 Sect. 7

Bias −0.0031 −0.0030 −0.0021 −0.0026 −0.0031 −0.017
Correlation 0.841 0.850 0.833 0.847 0.858 0.823
RMSD 0.134 0.125 0.138 0.130 0.120 0.100
No. of obs. 28 150 21 938 31 129 25 558 18 412 3986

though the analysis can become rather noisy due to smaller
sample sizes.

5 Evaluation of individual satellite products

In this section we will evaluate individual satellite products
with either AERONET or MAN observations. In both cases,
the data were collocated within 1 h.

In Fig. 3 we see the evaluation with AERONET using Tay-
lor diagrams (Taylor, 2001); see also Sect. 3.1. Over land the
MODIS algorithms generally do very well, showing simi-
lar high correlations, although biases and standard deviations
can be quite different. The same algorithm applied to either
Aqua or Terra yields very similar results in the Taylor dia-
gram. The exception is a relatively high bias for Terra-DT.
The AATSR products generally have lower correlations than
the MODIS products, although AATSR-ADV comes close.
It is interesting to compare three products (Aqua-DB, SeaW-
iFS and AVHRR) that use a similar algorithm but with dif-
ferent amounts of spectral information. MODIS and SeaW-
iFS perform very similarly, but AVHRR shows much lower
correlation. Some products globally overestimate AOD at
the AERONET sites, whilst others underestimate it (see also
Fig. 2). As the data count over land is high, statistical noise
in these statistics is negligible, as can also be seen in Fig. S1,
which is dominated by land sites.

Over ocean, the message is more mixed. The AATSR
products do relatively better, while Terra/Aqua-DB seem to
be slightly outperformed by AVHRR and SeaWiFS (note that
Terra/Aqua-DB and BAR only retrieve data over land and the
“over-ocean” analysis is confined to coastal regions). Over
ocean no products significantly underestimate global AOD,
although a few (e.g. SeaWiFS and Aqua-MAIAC) have small
negative biases. Several products significantly overestimate
global over-ocean AOD (e.g. Dark Target, OMAERUV and
AATSR-ORAC). The data count for over-ocean evaluation is
not very high, and consequently statistical noise in this anal-
ysis is larger than over land. A sensitivity study using boot-
strapping (see Sect. 3.2) nevertheless suggests these results
are quite robust. They are also partially supported by product
evaluation with MAN in Fig. 4: the AATSR products do bet-
ter than the other products, but it is clearly possible for the
products to either over- or underestimate AOD globally. The
data count for MAN evaluation is low, and statistical noise is
large; see Fig. S4. For OMAERUV, for example, the uncer-

tainty range suggests this could be either one of the worst- or
best-performing products.

If we split each product’s data into two equally sized sub-
sets depending on the collocated AERONET AOD (median
AOD ∼ 0.12), it becomes obvious that the satellite products
have much lower skill at low AOD; see Fig. 5. They corre-
late much worse with AERONET, show much higher inter-
nal variability than AERONET and exhibit relatively larger
biases (normalized to AERONET’s internal variability; see
Sect. 3.1) than at high AOD. Note that biases at low AOD
are all positive, while at high AOD they are negative (excep-
tion: Terra-DT).

In Fig. 6, we consider the impact of spatial coverage on
product evaluation. As minimum spatial coverage increases,
the correlation with AERONET increases while the bias de-
creases. If spatial coverage is mostly determined by cloud
screening, it seems reasonable that cloud contamination of
AOD retrievals increases as spatial coverage decreases. This
would lead to the observed behaviour of biases and cor-
relations. In contrast, it is hard to use other factors deter-
mining spatial coverage (sun glint, surface albedo, failed
retrievals) to explain this. We also note that the change
with spatial coverage is quite dramatic for some products
(AVHRR, OMAERUV, AATSR-ORAC), while for others it
is rather small. It is expected that the quality of cloud mask-
ing (and hence the magnitude of cloud contamination) will
differ among products (depending, for example, on pixel
sizes or available spectral bands). It appears hard to deter-
mine a threshold value for spatial coverage beyond which
there is no substantial change in all the metrics in the major-
ity of products, so we continued to use all data.

The impact of temporal averaging on product differ-
ences vs. AERONET is shown in Fig. 7. The “daily” graph
shows differences for individual super-observations, while
the “3-years” graph shows 3-year averages (averaged per
site). Temporal averaging significantly reduces differences;
e.g. the typical AVHRR difference decreases almost 3-fold
from 0.077 to 0.027. In contrast, the typical difference for
OMAERUV decreases only from 0.094 to 0.059, a fac-
tor of 1.6. It seems OMAERUV exhibits larger biases than
AVHRR, which has rather large random differences. As
noted before, the major part of the daily difference is due
to observation errors, while a smaller part is due to repre-
sentation errors. Previous analyses (Schutgens et al., 2016a,
2017; Schutgens, 2019) and our selection of AERONET
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Figure 3. Taylor diagram for satellite products evaluated over either land or ocean with AERONET. Symbols indicate correlation and internal
variability relative to AERONET; the line extending from the symbol indicates the (normalized) bias (see also Sect. 3.1). Colours indicate
the satellite product (see also Fig. 1); numbers next to coloured blocks indicate the amount of collocated data. Products were individually
collocated with AERONET (Kinne et al., 2013, selection, pruned) within 1 h.

Figure 4. Taylor diagram for satellite products evaluated over either
land or ocean with MAN. Symbols indicate correlation and inter-
nal variability relative to MAN; the line extending from the symbol
indicates the (normalized) bias (see also Sect. 3.1). Colours indi-
cate the satellite product (see also Fig. 1); numbers next to coloured
blocks indicate the amount of collocated data. Products were indi-
vidually collocated with AERONET (Kinne et al., 2013, selection,
pruned) within 1 h.

sites suggest the 3-year average AOD difference will only
have a small contribution from representation errors. After
that amount of averaging, statistical analysis suggests that
the typical 3-year differences may be interpreted as biases;
i.e. the typical multi-year bias per site in Aqua-DT is 0.029.
All products exhibit both positive and negative biases across
AERONET. The global mean bias of a product (the big black
dots in Fig. 7) is usually much smaller than the bias at any
site and results from balancing errors across the network.

Note that the Terra-DT bias is significantly larger than
Aqua-DT’s bias in Fig. 7. Levy et al. (2018) discuss a sys-

tematic difference between Terra and Aqua Dark Target AOD
which they attributed to remaining retrieval issues.

Another way to evaluate the products is presented in Fig. 8,
which shows the average correlation between any product
and an AERONET site versus the average relative (sign-less)
bias with an AERONET site. This analysis is different from
the Taylor analysis presented earlier, where both correlation
and bias were calculated across the entire dataset, instead
of per site and then averaged across all sites. Figure 8 sug-
gests that product biases per site are typically some 20 %.
The relative performance of the products shows significant
differences to the earlier Taylor analysis: AATSR-SU is now
one of the top performers, while Terra/Aqua-DB show 1.3×
larger biases than either Terra/Aqua-BAR or AATSR-SU (in
the Taylor analysis, Terra/Aqua-DB have one of the smallest
global biases).

Both in Figs. 7 and 8, we have considered only AERONET
sites that provide a minimum of 32 collocated observa-
tions. Although each product was individually collocated
with AERONET, only those sites that are common across all
product collocations were retained for analysis.

A more detailed look at each product and its evaluation
against AERONET is provided in Figs. 9, 10, 11 and 12. The
following are shown: a scatterplot of (daily) collocated super-
observations vs. AERONET; the impact of spatial coverage
on the difference between satellite and AERONET AOD; a
global map of the 3-year averaged product AOD; and a global
map of the difference of the 3-year averaged product AOD
with AERONET (again, using only sites with 32 or more col-
locations).

The scatterplots typically show good agreement with
AERONET: correlations vary from 0.73 to 0.89, with regres-
sion slopes of 0.99 possible (mean and standard deviation
refer to the difference with AERONET). The impact of spa-
tial coverage on the differences with AERONET is consis-
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Figure 5. Taylor diagram for satellite products evaluated with AERONET at either low or high AOD (distinguished by median AERONET
AOD ∼ 0.12). Symbols indicate correlation and internal variability relative to AERONET; the line extending from the symbol indicates the
(normalized) bias (see also Sect. 3.1). Colours indicate the satellite product (see also Fig. 1); numbers next to coloured blocks indicate the
amount of collocated data. Products were individually collocated with AERONET (Kinne et al., 2013, selection, pruned) within 1 h.

Figure 6. Evaluation of satellite products with AERONET, binned by minimum spatial coverage. Colours indicate the satellite product; see
also Fig. 1. Individual collocation of datasets with AERONET (Kinne et al., 2013, selection, pruned) within 1 h. Error bars indicate the
5 %–95 % uncertainty range based on a bootstrap analysis of sample size 1000.

tent for all products and relatively muted, as also seen in
the right panel of Fig. 6. The global maps of AOD show
first of all the extent of the product: Terra/Aqua-DB, MA-
IAC and BAR provide no significant coverage of the oceans,
while OMAERUV mostly seems to cover the large out-
flows over ocean. Unlike its most recent version, the MA-
IAC product used in this study misses a sizable portion of
Siberia. Terra/Aqua-DT & BAR, AATSR-ADV and, to a
lesser degree, AVHRR do not retrieve data over the desert
regions in northern Africa and the Middle East. Terra/Aqua-
DT, by the way, sometimes produces negative AOD, lead-
ing to, for example, very low values for averaged AOD over
Australia. (The Dark Target algorithm can retrieve negative
AOD values, for example, as a result of overestimating sur-
face albedo, and the Dark Target team retains those values
to prevent skewing the whole dataset to larger values.) In the
global maps of 3-year averaged differences with AERONET,
land sites are shown by circles, ocean sites by squares and

the remainder by diamonds. These maps show distinct spa-
tial patterns: for example, Aqua-DT mostly overestimates
AOD in the Northern Hemisphere and underestimates it in
the Southern Hemisphere; OMEARUV overestimates AOD
everywhere except in the African greenbelt and south-east
Asia; and MAIAC mostly underestimates AOD (MAIAC
MODIS C6 lacks seasonal dependence of aerosol models,
which leads to an underestimation during the biomass burn-
ing or dust seasons with high AOD. This will be corrected
in C6.1). Regional patterns can also be seen; e.g. several
products overestimate AOD in the eastern continental United
States and underestimate it in the west.

6 Pair-wise intercomparison of the satellite datasets

In this section, we will intercompare the various satellite
products by collocating them pair-wise within 1 h. Our anal-
ysis will be split between products for either morning or af-
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Figure 7. Evaluation of satellite products with AERONET, either
for daily data or 3-year averages. The box-and-whisker plot shows
2 %, 9 %, 25 %, 75 %, 91 % and 98 % quantiles, as well as me-
dian (block) and mean (circle). Numbers above the whiskers in-
dicate mean sign-less product errors. Colours indicate the satellite
product; see also Fig. 1. Products were individually collocated with
AERONET (Kinne et al., 2013, selection, pruned) within 1 h. All
products use the same sites, each of which produced at least 32 col-
locations with each product.

Figure 8. Evaluation of satellite products with AERONET per site,
averaged over all sites. Error bars indicate the 5 %–95 % uncertainty
range based on a bootstrap analysis of sample size 1000. Colours
indicate the satellite product; see also Fig. 1. Products were indi-
vidually collocated with AERONET (Kinne et al., 2013, selection,
pruned) within 1 h. All products use the same sites, each of which
produced at least 32 collocations with each product.

ternoon platforms as this usually leads to a large amount of
collocated data with an almost global distribution. However,
even products from, for example, Terra and Aqua can be col-
located (at high northern latitudes) and will be discussed as
well.

The difference in 3-yearly AOD is shown in Figs. 13 and
14 for morning and afternoon satellites, respectively. We see
that the majority of collocated products only provides data
over land. AOD differences behave very smoothly over ocean

but show a lot of spatial variation over land. AOD differ-
ences can be significant and exceed 50 %. Over ocean, the
difference is longitudinally fairly homogenous, with a clear
latitudinal dependence. Over land, regional variability often
tracks land features: the Rocky Mountains, the Andes, the
Sahara and the African greenbelt can all be easily identi-
fied. That suggests albedo estimates as a driver of product
difference. What is remarkable is the relatively large spatial
scale involved. This analysis confirms the one in the previ-
ous section in which spatial patterns in AOD bias against
AERONET were discussed and extends it in more detail.
The contrasts in the differences over land and neighbouring
ocean (e.g. African outflow for Terra-DT with AATSR-SU
or AATSR-ADV, or Aqua-DT with OMAERUV, or AVHRR
with SeaWiFS) may likewise be driven by the albedo esti-
mate. The OMAERUV product consistently estimates higher
AOD than all other products, with the possible exception of
areas with known absorbing aerosol.

Products retrieved using the same retrieval scheme but ob-
servations from different platforms can be intercompared as
well (MODIS on Aqua and Terra). Collocations are now lim-
ited to a fairly narrow latitudinal belt near the North Pole;
see Fig. 15. The differences in AOD appear much more
muted, suggesting that algorithms are the major driver of
product difference, not differences in orbital overpass times
or issues with sensor calibration. This is further supported
by the difference amongst, for example, AATSR products,
which employ different algorithms but the same measure-
ments (Fig. 13). The three products based on the Deep Blue
algorithm (Aqua-DB, AVHRR and SeaWiFS) suggest that al-
ready small algorithmic differences (due to different spectral
bands) can yield significant differences.

In addition to 3-year biases, correlations of collocated
pairs of AOD super-observations were also considered; see
Fig. 16. The products derived from Aqua and Terra MODIS
measurements tend to correlate well, with lesser correlation
amongst the AATSR products. The highest correlation is
found for products using the same algorithm and a similar
sensor but a different platform (Terra/Aqua). The very low
correlations for AATSR-ORAC with Aqua products stand
out, but no explanation was found. Here again only collo-
cations over high northern latitudes are available. Figure 16
also shows correlations for spatial coverage for all collocated
product pairs. These turn out to be quite low. Even though the
products apparently identify different parts of a 1◦× 1◦ grid
box as being suitable for aerosol retrieval, they still agree
quite well on aggregated AOD.

Figure 17 shows scatterplots of AOD and spatial cover-
age for selected collocated products. It is obvious that the
agreement in AOD is far greater than the agreement in spa-
tial coverage. Only when we consider collocated products for
the same algorithm from different satellites can remarkable
agreement be found (e.g. Terra/Aqua MAIAC). For different
products using the same sensor, spatial coverage can differ
greatly, even though the observed scene is the same.
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Figure 9. For MODIS-Aqua products the following are shown: a scatterplot of individual super-observations versus AERONET (mean and
standard deviation refer to the difference with AERONET; PCorr and OLSB refer to the linear correlation and a robust least squares estimator
of the regression slope); the AOD difference for individual super-observations as a function of spatial coverage (individual data, subsampled
to a 1000 points, are shown as black dots using the left-hand axis, while the distribution per coverage bin, in greyscale, indicating 2 %, 9 %,
25 %, 75 %, 91 % and 98 % quantiles, uses the right-hand axis); a global map of the 3-year AOD average; and a global map of the 3-year AOD
difference average with AERONET (if site provided at least 32 observations; land sites are circles, ocean sites are squares, the remainder are
diamonds). Products were individually collocated with AERONET (Kinne et al., 2013, selection, pruned) within 1 h.

As with AERONET evaluation, product differences de-
pend on spatial coverage; see Fig. S5. AOD agrees better
when the spatial coverage is high, and this is more pro-
nounced in the wings of the difference distributions (“out-
liers”). Fortunately, the impact on AOD differences is not that
large: Fig. 18 shows the ratio of mean sign-less difference
in AOD for spatial coverages of 90 %–100 % to 0 %–10 %.
Typically this ratio is a factor of 0.57. The simplest expla-
nation for the impact of spatial coverage on product differ-
ences is that this coverage is the complement to cloud frac-
tion, and low coverage equals high cloud fraction. Associated

cloud contamination can then explain the larger differences
at low coverage. In other words, at very low spatial coverage,
∼ 40 % of the difference may be due to cloud contamination
(see also Fig. S6, which shows impact of coverage). A sim-
ilar weak dependence on AOD evaluation is seen in Figs. 9,
10, 11 and 12. One possible explanation is that aggregation
into super-observations has a beneficial impact by tempering
retrieval errors from cloud contamination.
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Figure 10. Same as Fig. 9, for AVHRR, SeaWiFS and OMAERUV products.

7 Intercomparison and evaluation of collocated
morning or afternoon products

In this section, we will perform an apples-to-apples com-
parison of the satellite products, collocating either all morn-
ing or all afternoon products together. To ensure sufficient
numbers of collocated data, the temporal collocation crite-
rion was widened to 3 h. Even so, a significant reduction in
data amount results from collocating so many datasets. If we
include AERONET in the collocation, the total count will go
down from ∼ 28 000 to about 4000 collocated cases.

The resulting Taylor diagram is shown in Fig. 19 and can
be compared to Fig. 3. The Terra products show reduced cor-
relation, now almost on par with the AATSR products. The
Aqua and Terra products are not collocated together and, in
contrast to Fig. 3, are clearly separated in the Taylor diagram.
Also, the majority of datasets have negative biases with re-
spect to AERONET. A more in-depth comparison is shown
in Fig. 20. RMSD shows the most conspicuous changes:
across the board RMSDs for the simultaneous collocation of
seven satellite products with AERONET are much smaller.
Global biases are shifted towards negative values; for exam-
ple, OMAERUV now has a much smaller bias, while Aqua-
DT has a much larger negative bias. Correlations are unaf-
fected, except for the Terra and the AATSR-SU products. In

all cases, the uncertainty ranges suggest that the differences
are statistically significant.

Both evaluations in Fig. 20 are valid in their own right.
The evaluation of individual products with AERONET yields
large amounts of data, while the simultaneous collocation
of multiple morning or afternoon products allows proper in-
tercomparison, without the added uncertainty due to differ-
ent spatio-temporal sampling. Depending on one’s point of
view, it is possible to say that either results are not very dif-
ferent (considering all products, the relative performance of
datasets does not change much) or quite different (consid-
ering the best-performing products, significant changes are
visible).

The simultaneous collocation of multiple products yields
a subset of the collocated data that were studied in Sect. 5,
although for every product the subset from the “original” is
different. Unfortunately, we have not been able to explain the
different evaluation results. Due to the different collocation
criteria, there are differences in the mean spatial coverage of
the super-observations and in the relative number of colloca-
tions per AERONET site and per year. How this affects each
product differs, and no systematic variation was found to help
explain results. Ultimately this is testament to the complex
influence of observational sampling.
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Figure 11. Same as Fig. 9, for MODIS-Terra products.

Collocating either the morning or afternoon products with-
out AERONET allows us to study diversity between these
datasets on a global scale. Relative diversity is defined
here as the relative spread (standard deviation divided by
mean) calculated at each grid box from the 3-year aver-
aged AOD of seven (collocated) products; see Fig. 21. Here
we have used all seven morning or afternoon products over
most of the land. Over ocean, the major desert regions and
Siberia, not all products provided data, and only a subset
was used. Over ocean, only Terra-DT and the three AATSR
products or Aqua-DT, AVHRR and SeaWiFS were used.
Over the desert regions (outlined in blue), only Terra-DB,
Terra-MAIAC, AATSR-ORAC and AATSR-SU or Aqua-
DB, Aqua-MAIAC, SeaWiFS and OMAERUV were used.
Over Siberia (outlined in blue), no data were present for MA-
IAC.

Diversity is generally lowest over ocean, never reaching
over 30 %, while over land, values of 100 % are possible.
Over ocean, diversity is lowest for the afternoon products,
presumably because only three products contribute (Aqua-
DT, SeaWiFS and AVHRR) and two (SeaWiFS and AVHRR)
use a similar algorithm (SOAR). The spatial distribution of
diversity is fairly smooth over ocean, in contrast to land
where one sees a lot of structure. This was also seen in the
intercomparison of satellite products in Sect. 6. For an ear-
lier study of satellite AOD diversity, see Chin et al. (2014),
in which a different definition of diversity, a different (and
smaller) set of satellite products and a different (sub-optimal)
collocation procedure led to rather different magnitudes and
spatial patterns of diversity. In contrast, the diversity pre-
sented in Sogacheva et al. (2019), while using a different def-
inition and a different (sub-optimal) collocation procedure,
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Figure 12. Same as Fig. 9, for AATSR products.

agrees more with the one presented in Fig. 21 (there is sub-
stantial overlap in the satellite products used here and in So-
gacheva et al., 2019; see Tables 1 and 2).

Also shown is the average correlation, i.e. the average of
the correlation between all possible pairs of collocated prod-
ucts. Over the deep ocean (e.g. Southern Hemisphere Pa-
cific Ocean) correlations are low. It seems that only in out-
flow regions (e.g. Amazonian outflow, southern African out-
flow, outflow from Sahara and African savannah, Asian out-
flow) will the products strongly agree in their temporal signal
over ocean. This suggests that the correlation depends on the
strength of the AOD signal (see also Sect. 5 and Fig. 5). Over
land, the correlation shows more variation. Interestingly, the
correlation is high when the diversity is low and vice versa:
e.g. Australia shows high diversity in 3-year mean AOD and
very low correlation between individual AOD data. This sug-
gests that the same factor(s) that causes errors in 3-year av-
erages also causes random errors in individual AOD.

The above results are pretty robust. For example, by ex-
cluding OMAERUV (arguably the product with the largest
errors due to its large pixel sizes and extrapolation from UV
wavelengths) from this analysis, the afternoon diversity over
land looks even more like the morning diversity. Diversity
maps for two other collocations (all AATSR products or all
Aqua products) are shown in Fig. S7. The Aqua maps look

similar to before, but diversity is more muted for the AATSR
products (but notice the same spatial patterns).

Diversity is an ensemble property of seven collocated
products and can be interpreted based on other ensemble
properties: the mean AOD and the relative spread in spa-
tial coverage; see Fig. 22. We interpret the mean AOD as
an indication of the signal-to-noise ratio in the satellite re-
trievals and the spread in the spatial coverage as uncertainty
in cloud masking. We see that the diversity goes down when
the signal-to-noise ratio increases and goes up when the un-
certainty in cloud masking increases. This is as one would
expect. Notice that, for the majority of locations, the actual
diversity varies only from ∼ 20 % to ∼ 50 %, e.g. no more
than a factor 2.5.

Diversity turns out to be more than just the spread across
multiple satellite products. The absolute diversity δ in the
satellite AOD can actually be interpreted as the uncertainty
σ sat in multi-year averaged satellite AOD, at least in a statis-
tical sense. Taking the 3-year averaged differences between a
satellite and AERONET AOD (per site) from Sect 5 and di-
viding them by the diversity in the satellite ensemble (at that
site), these normalized errors,

εnorm =
τ sat− τA

δ
, (2)
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Figure 13. Global maps of the 3-year averaged difference in AOD for satellite products on morning satellites. Products were collocated
pair-wise within 1 h.

https://doi.org/10.5194/acp-20-12431-2020 Atmos. Chem. Phys., 20, 12431–12457, 2020



12446 N. Schutgens et al.: Intercomparison of satellite AOD

Figure 14. Global maps of the 3-year averaged difference in AOD for satellite products on afternoon satellites. Products were collocated
pair-wise within 1 h.
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Figure 15. Global maps of the 3-year averaged difference in AOD
for products based on the same algorithm and either Aqua and Terra
satellites. Products were collocated pair-wise within 1 h.

exhibit Gaussian distributions with standard deviations close
to 1; see Fig. 23. We assume that in 3-year averages, both
AERONET observation errors and representation errors are
negligible. We conclude that δ ≈ σ sat, the latter being the un-
certainty in satellite multi-year AOD. To put it differently,
the multi-year AOD error can be statistically modelled as a
random draw from a distribution with the absolute diversity
as standard deviation. This works very well for Aqua-DT,
DB, BAR, SeaWiFS and AATSR-SU products. It works less
well for Aqua-MAIAC, which shows a global bias (iden-
tified before; see Sect. 5) but still has a normalized error
with standard deviation close to 1. The Terra and AVHRR

products show larger spread in the normalized error, while
AATSR-ORAC and OMAERUV show significantly larger
spread. It seems that the products that do better in the eval-
uation (Figs. 3 and 19) have errors that behave according to
the diversity.

The conclusion that, in the current satellite ensemble,
satellite AOD uncertainty may be modelled from satellite
AOD diversity is probably the most important finding of this
study and allows for several useful applications which will be
discussed in Sect. 8. The diversity in AOD amongst satellite
products has been published and is available as a download;
see Schutgens (2020).

8 Summary

A detailed evaluation and intercomparison of 14 different
satellite products of AOD is performed. Compared to pre-
vious studies of this kind (excl. Sogacheva et al., 2019), this
one includes more (diverse) products and considers longer
time periods, as well as of course more recent satellite re-
trieval products. Unlike previous studies it explicitly ad-
dresses the issue of uncertainty due to either statistical noise
or sampling differences in datasets. While satellite products
are assessed at both daily and multi-year timescales, the pur-
pose of this study is to understand satellite AOD uncertainty
in the context of model evaluation. In practice this means
1◦×1◦ aggregates (or super-observations) of the original re-
trievals are evaluated for their multi-year bias.

The 14 satellite products include retrievals from MODIS
(Terra/Aqua), AATSR (ENVISAT), AVHRR (noaa18), Sea-
WiFS (SeaStar) and OMI (Aura). Two other products, based
on POLDER (PARASOL), are part of the database but were
not included in the current paper. They will be reported on
in a follow-up paper. Two other products, MISR (Multi-
angle Imaging SpectroRadiometer) and VIIRS (Visible In-
frared Imaging Radiometer Suite), are also not part of the
current AeroCom–AeroSat study (MISR was in the middle
of an update cycle, and VIIRS was only launched in 2011).
Four different MODIS and three different AATSR retrieval
algorithms were used. The over-land products from AVHRR,
SeaWiFS and one MODIS product use variations of the same
algorithm (Deep Blue).

The evaluation is made with AERONET and MAN obser-
vations. Only AERONET sites with good spatial represen-
tativity and maintenance records were selected, based on a
previously published list by Kinne et al. (2013). The suitabil-
ity of these sites was further assessed by “evaluating” them
against the ensemble of satellite products, which led to the
identification of four sites that show substantially different
AOD than any satellite dataset. Whether these sites are un-
suitable for satellite evaluation or all products retrieve AOD
poorly over those sites is an open question, but we removed
them from our selection of AERONET sites. Lastly we used
the satellite observations themselves to confirm that repre-
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Figure 16. (a) Correlation of AOD super-observations for satellite products. (b) Correlation of spatial coverage in super-observations for
satellite products. Products were collocated pair-wise within 1 h.

sentation errors, while not negligible, are a minor contribu-
tion to the difference between satellite (1◦× 1◦ aggregates)
and AERONET AOD.

For evaluation and intercomparison purposes, different
data products were collocated within a few hours. Sensitivity
studies show this provides a good trade-off between accuracy
and data amount. We make extensive use of bootstrapping to
assess the uncertainty ranges in our error metrics due to sta-
tistical noise. We try to address uncertainty due to the spa-
tial sparsity of AERONET and MAN data, preventing a true
global analysis, through satellite product intercomparisons.

All satellite daily AOD data show good to very good corre-
lations with AERONET (0.73≤ r ≤ 0.89), while global bi-
ases vary between −0.04 and 0.04. In 3-year averaged AOD,
site-specific biases can be as high as 50 % (either positive or
negative), although a more typical value is 15 % for the top-
performing products and 25 % for the products that perform
less well (in absolute values: 0.025 to 0.040). These site-
specific biases show regional patterns of varying sign that
together cause a balancing of errors in the traditional global
bias estimate of satellite AOD, which may not be a very use-
ful metric for satellite AOD performance. In addition to these
biases, satellite products also exhibit random errors that ap-
pear to be at least 1.6 to 3 times larger than the site-specific
biases. Evaluation of satellite products on a daily timescale
(dominated by random errors rather than biases) therefore
gives only limited information on the usefulness of a prod-
uct for global multi-year model evaluation. While evaluation
results for AERONET are usually robust, considerable un-
certainty remains in the evaluation by MAN data due to the
low data count (3 years of data).

The satellite intercomparison confirms the previous eval-
uation but extends its spatial scope. Daily satellite data usu-
ally correlate very well with other satellite products, and 3-
year averages show regional patterns in product differences.
These patterns can often, but not always, be linked to major
orography. In any case, the patterns show large spatial scales
which should aid in the identification of their causes. Over
ocean, product differences are both smaller and spatially
smoother, with a latitudinal dependence. The best agreement
in AOD is found when using the same algorithm for the same
sensor on two different platforms (Terra/Aqua). Large differ-
ences in AOD can be found for products using different al-
gorithms but on the same platform and for the same sensor
(MODIS on either Aqua or Terra, or AATSR on ENVISAT).
Already variations in the same algorithm can lead to substan-
tially different AOD data (Deep Blue for MODIS, AVHRR
and SeaWiFS).

Although the aggregated AOD correlates quite well among
satellite products, we were able to show that the area covered
in each 1◦× 1◦ grid box (called spatial coverage) correlates
significantly less well among the products. We present evi-
dence that this spatial coverage is determined mostly by (ob-
served) cloud fraction and suggest there may be substantial
differences in the quality of cloud screening by the differ-
ent products. The evidence consists of the following obser-
vations: (1) biases vs. AERONET decrease with increasing
coverage; (2) correlations with AERONET increase with in-
creasing coverage; and (3) satellite differences decrease with
increasing coverage. The simplest explanation (Ockham’s ra-
zor) would be that coverage is the complement of cloud frac-
tion, and as coverage goes down, cloud fraction (and cloud
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Figure 17. Scatterplot of AOD and spatial coverage from super-
observations for selected satellite products. Products were collo-
cated pair-wise within 1 h.

contamination) goes up. Product differences at low spatial
coverage (high cloud fraction) are about twice as large than
at high spatial coverage (low cloud fraction).

Intercomparing the product evaluation (with AERONET)
of satellite products is challenging. A true apples-to-
apples comparison requires collocating all datasets (includ-
ing AERONET), but this greatly reduces the number of data

Figure 18. The ratio of typical difference (mean of sign-less dif-
ference) for spatial coverage at 90 %–100 % to 0 %–10 %. Products
were collocated pair-wise within 1 h.

Figure 19. Taylor diagram for satellite products evaluated with
AERONET. Symbols indicate correlation and internal variability
relative to AERONET; the line extending from the symbol indi-
cates the (normalized) bias (see also Sect. 3.1). Colours indicate the
satellite product (see also Fig. 1); numbers next to coloured blocks
indicate the amount of collocated data. All morning products were
collocated together with AERONET (Kinne et al., 2013, selection,
pruned) within 3 h, similar for all afternoon products.

available for analysis. As a consequence, it is likely that those
data sample only part of the underlying true error distribu-
tion. We showed that an apples-to-apples comparison leads to
different results (compared to an individual collocation with
AERONET) for some datasets but no great changes for oth-
ers. As we were able to show, this is unlikely the result of
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Figure 20. Comparison of the evaluation of satellite products for different dataset collocations. Horizontal axis: individual collocation with
AERONET (within 1 h). Vertical axis: combined collocation of morning or afternoon products with AERONET (within 3 h). Colours indicate
the satellite product; see also Fig. 1. Numbers in the upper left and lower right corner indicate the amount of collocated data, averaged over
all products. The AERONET data are the Kinne et al., 2013, selection, pruned. Error bars indicate the 5 %–95 % uncertainty range, based on
a bootstrap sample of 1000.

Figure 21. Global maps of relative diversity and average correlation of collocated satellite products. Diversity is the spread in AOD over
the mean AOD. The average correlation is the average over all pair-wise correlations possible. Dotted areas indicate that the uncertainty due
to statistical noise (standard deviation) is at least 0.1 (or fewer than 10 super-observations for each product were available). Over land, all
seven products are used (blue contours identify areas of exception); over ocean at most four products are used (see text). Morning (left) and
afternoon (right) products were collocated within 3 h.

statistical noise; we seem forced to conclude that a true com-
parison of product skill is only possible for a limited set of
circumstances.

Collocating either the morning or afternoon products to-
gether allows us to create maps of 3-year averaged AOD di-
versity amongst the products. Although there are differences,
the diversity for morning and afternoon products shows sim-

ilar patterns and magnitudes. Diversity shows a lot of spatial
variation, from 10 % over parts of the ocean to 100 % over
parts of central Asia and Australia. Also, in a broad statis-
tical sense, diversity can be shown to relate to the retrieval
signal-to-noise ratio and uncertainty in cloud masking within
the 1◦×1◦ grid boxes of super-observations. The most inter-
esting find, however, is that diversity can be used to predict
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Figure 22. Diversity in AOD amongst morning and afternoon products as a function of mean AOD and the relative standard deviation in
spatial coverage. The values in each bin show averaged diversity (similar to the colour). The contour lines show data density. Morning (a)
and afternoon (b) products were collocated within 3 h. The statistics are dominated by observations over land. Over ocean, similar patterns
are found but the range in diversity is much reduced.

uncertainty in 3-year averaged AOD of individual satellite
products (at least for the better performing products).

The possible applications of diversity and its interpreta-
tion as uncertainty are multiple. First, diversity shows (by
definition) where satellite products differ most and thereby
offers clues on how to improve them. Second, for the same
reason, diversity may be used as guidance in choosing future
locations for AERONET sites. Observations at locations with
large diversity offer more information on individual satellite
performance than those from locations with small diversity.
Third, diversity as uncertainty provides a spatial context to
the product evaluation with sparse AERONET sites. Fourth,
and related to third, diversity as uncertainty offers a very sim-
ple way to evaluate and intercompare new satellite products
to the 14 products considered in this study. To perform bet-
ter than these products, their normalized multi-year differ-
ence from AERONET (Eq. 2) should exhibit a standard de-
viation smaller than 1 (see Fig. 23). Fifth, again related to
third, diversity as uncertainty offers modellers a simple esti-
mate of the expected multi-year average uncertainty in satel-
lite AOD. The diversity in AOD amongst satellite products
has been published and is available as a download; see Schut-
gens (2020).
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Figure 23. The 3-year averaged AOD error distributions, normalized to the diversity (spread in the ensemble; see Fig. 21). Errors are based
on individual collocations of products with AERONET (within 1 h), unlike the diversity which is based on collocation of either all morning
or afternoon satellite products together. Mean and standard deviation of the product’s distribution are shown in the upper left corner. Only
sites with at least 32 observations were used. For comparison, a normal distribution with mean zero and standard deviation of 1 is also shown
(in black).
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Appendix A: Generic aggregation and collocation

The aggregation of satellite L2 products into super-
observations in this paper, and the subsequent collocation of
different datasets for intercomparison and evaluation, used
the following scheme.

Assume an L2 dataset with times and geolocations and ob-
servations of AOD. Each observation has a known spatio-
temporal footprint; e.g. in the case of satellite L2 retrievals,
that would be the L2 retrieved pixel size and the short amount
of time (less than a second) needed for the original measure-
ment.

Satellite L2 data are aggregated into super-observations
as follows. A regular spatio-temporal grid is defined as in
Fig. A1. The spatio-temporal size of the grid boxes (here
30 min× 1◦×1◦) exceeds that of the footprint of the L2 data
that will be aggregated. All observations are assigned to a
spatio-temporal grid box according to their times and geolo-
cations. Once all observations have been assigned, observa-
tions are averaged by grid box. It is possible to require a mini-
mum number of observations to calculate an average. Finally,
all grid boxes that contain observations are used to construct
a list of super-observations as in Fig. A2. Only times and ge-
olocations with aggregated observations are retained.

Station data are similarly aggregated over 30 min× 1◦×
1◦. Point observations will suffer from spatial representative-
ness issues (Sayer et al., 2010; Virtanen et al., 2018; Schut-
gens et al., 2016a), but the representativity of AERONET
sites for 1◦× 1◦ grid boxes is fairly well understood
(Schutgens, 2019); see also Sect. 4. These aggregated L3
AERONET and MAN data will also be called super-
observations.

Different datasets of super-observations can be collocated
in a very similar way. Again a regular spatio-temporal grid
is defined as in Fig. A1 but now with grid boxes of larger
temporal extent (typically 3 h× 1◦× 1◦). Because this tem-
poral extent is short compared to satellite revisit times, ei-
ther a single satellite super-observation or none is assigned
to each grid box. A single AERONET site however may con-
tribute up to six super-observations per grid box (in which
case they are averaged). After two or more datasets are thus
aggregated individually, only grid boxes that contain data for
both datasets will be used to construct two lists of aggregated
data as in Fig. A2. Those two lists will have identical size and
ordering of times and geolocations and are called collocated
datasets. By choosing a larger temporal extent of the grid
box, the collocation criterion can be relaxed.

As the super-observations are on a regular spatio-temporal
grid and collocation requires further aggregation to another
regular, but coarser, grid, the whole procedure is very fast.
It is possible to collocate all seven products from afternoon
platforms over 3 years using an IDL (Interactive Data Lan-
guage) code and a single processing core in just 30 min. This
greatly facilitates sensitivity studies.

Figure A1. A regular spatio-temporal grid in time, longitude and
latitude. Such a grid is used for the aggregation operation that is at
the heart of the collocation procedure used in this paper. Grid boxes
may either contain data or be empty. Reproduced from Watson-
Parris et al. (2016).

Figure A2. A list of data. Such a list is the primary data format
used for both observations and model data in this paper. Reproduced
from Watson-Parris et al. (2016).

Starting from super-observations, a 3-year average can
easily be constructed by once more performing an aggrega-
tion operation but now with a grid box of 3 years× 1◦×1◦. If
two collocated datasets are aggregated in this fashion, their
3-year average can be compared with minimal representa-
tion errors. This allows us to construct global maps of, for
example, the multi-year AOD difference between two sets of
super-observations.

A software tool (the Community Intercomparison Suite) is
available for these operations at http://www.cistools.net (last
access: 20 December 2019) and is described in great detail in
Watson-Parris et al. (2016).
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Code and data availability. All remote sensing data are freely
available. Analysis code was written in IDL and is available from
the author upon request. The diversity in AOD amongst satellite
products has been published and is available as a download; see
https://doi.org/10.34894/ZY4IYQ (Schutgens, 2020).
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