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Abstract. Atmospheric inversions have been used for the
past two decades to derive large-scale constraints on the
sources and sinks of CO2 into the atmosphere. The devel-
opment of dense in situ surface observation networks, such
as ICOS in Europe, enables in theory inversions at a resolu-
tion close to the country scale in Europe. This has led to the
development of many regional inversion systems capable of
assimilating these high-resolution data, in Europe and else-
where. The EUROCOM (European atmospheric transport in-
version comparison) project is a collaboration between seven
European research institutes, which aims at producing a col-
lective assessment of the net carbon flux between the terres-
trial ecosystems and the atmosphere in Europe for the period
2006–2015. It aims in particular at investigating the capacity
of the inversions to deliver consistent flux estimates from the
country scale up to the continental scale.

The project participants were provided with a common
database of in situ-observed CO2 concentrations (including
the observation sites that are now part of the ICOS network)
and were tasked with providing their best estimate of the net
terrestrial carbon flux for that period, and for a large domain
covering the entire European Union. The inversion systems
differ by the transport model, the inversion approach, and the
choice of observation and prior constraints, enabling us to
widely explore the space of uncertainties.

This paper describes the intercomparison protocol and the
participating systems, and it presents the first results from
a reference set of inversions, at the continental scale and in
four large regions. At the continental scale, the regional in-
versions support the assumption that European ecosystems
are a relatively small sink (−0.21± 0.2 Pg C yr−1). We find
that the convergence of the regional inversions at this scale
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is not better than that obtained in state-of-the-art global in-
versions. However, more robust results are obtained for sub-
regions within Europe, and in these areas with dense obser-
vational coverage, the objective of delivering robust country-
scale flux estimates appears achievable in the near future.

1 Introduction

The carbon budget of Europe has been explored in sev-
eral large-scale synthesis studies, such as the CarboEurope-
Integrated Project (Schulze et al., 2009) and the REgional
Carbon Cycle Assessment and Processes project (RECCAP;
Luyssaert et al., 2012), to name a few. Although these have
helped refine the knowledge of the European carbon cycle,
large uncertainties remain regarding the quantification of the
flux between terrestrial ecosystems and the atmosphere, usu-
ally quantified as the net ecosystem exchange (NEE), i.e.
the sum of emissions (total ecosystem respiration (TER), i.e.
autotrophic and heterotrophic respiration) and uptake (gross
primary production (GPP), i.e. photosynthesis) of carbon by
ecosystems to and from the atmosphere, or alternatively NBP
(net biome production), which includes the impact of ecosys-
tem disturbances (fires, land use change, etc.). For instance,
Luyssaert et al. (2012) report average estimates of European
land carbon sink in a −200 to −360 Tg C yr−1 range for
the years 2001–2005, depending on the estimation method,
and each of these estimates is provided with large uncer-
tainties (with 1σ relative uncertainties of 50 % to 100 %).
Confronting the ensemble of results from different synthe-
ses, Reuter et al. (2017) report annual land–atmosphere flux
ranging from−400±420 up to−1030±470 Tg C yr−1 in the
2000s. Beyond the annual long-term budget, the year-to-year
annual flux variations are also poorly known (Bastos et al.,
2016). In practice, the lack of a robust and precise quantifi-
cation of the natural CO2 fluxes in Europe limits our ability
to understand the links between the NEE flux and external
forcings such as, for example meteorological variability (in-
cluding the impact of extreme events like droughts and cold
spells) and trends (Ciais et al., 2005; Maignan et al., 2008)
or land use change (Naudts et al., 2016), and to forecast the
evolution of the land sink in Europe, in the context of global
climate change.

Despite the large uncertainties, there is a growing demand
from the policy makers and the society in general for more
accurate and relevant numbers, such as estimates of the na-
tional budgets of CO2 fluxes, these demands being reinforced
by the Paris Agreement. For instance, the European Com-
mission (under the VERIFY and CHE H2020 projects) is
supporting the development of observation-based monitoring
systems for estimating CO2 fluxes at national to sub-national
scales, with a clear interest in both land ecosystem fluxes and
anthropogenic emissions.

Atmospheric transport inversions rely on transport mod-
els and statistical methodologies to derive the most likely es-
timates of CO2 fluxes given large datasets of observed at-
mospheric CO2 concentrations and prior information pro-
vided in general by ecosystem models. Global inversion sys-
tems, using coarse-resolution global transport models (typi-
cally > 2◦) have so far been the dominant tool for producing
top-down estimates of NEE fluxes. The coordination of the
inverse modelling community through intercomparison ex-
ercises with ≈ 10 global inverse modelling systems, such as
that conducted in the frame of the TRANSCOM and REC-
CAP projects (Law et al., 1996; Gurney et al., 2002; Patra
et al., 2008; Peylin et al., 2013) have been valuable for under-
standing the strengths and weaknesses of global inversions
and to characterize the real uncertainty of the different esti-
mates. However, despite this long-term effort, global inver-
sions remain limited by the coarse resolution of the transport
models they rely on, as these do not allow a proper represen-
tation of observation sites in regions with complex orogra-
phy or nearby large anthropogenic CO2 emissions and do not
reproduce the high-resolution spatial variability of the CO2
concentrations that is captured by dense networks.

Regional-scale inversions started to emerge about a decade
ago. They rely on mesoscale transport models (at 1◦ down to
10 km resolution), capable of better representing the spatial
and temporal variability of concentrations observed by dense
networks of CO2 observations, such as that of the Integrated
Carbon Observation System (ICOS) in Europe. In particular
the models should be able to account for CO2 fluxes at a scale
that does not smooth too much the hot spots of fossil fuel
CO2 emissions in cities and industrial areas. They demon-
strated some potential to solve for continental to subconti-
nental budgets at the monthly scale (e.g. Peters et al., 2007;
Rödenbeck et al., 2009; Schuh et al., 2010; Gourdji et al.,
2012; Broquet et al., 2013; Meesters et al., 2012). However,
until recently, there has only been limited efforts to routinely
perform regional inversion estimates in Europe (partly ow-
ing to the difficult access to long-term time series of quality-
controlled CO2 data). Most published synthesis studies have
therefore relied on European NEE estimates from global-
scale inversions, based on global networks of mostly back-
ground sites.

The ICOS atmospheric network (https://icos-atc.lsce.ipsl.
fr, last access: 6 August 2020) is now operational and its
number of stations should regularly increase from the cur-
rent 19 labelled stations towards at least 37 sites, currently
run by 12 and hopefully in the future more European member
states. Precursor networks such as those set up in the frame-
work of the CarboEurope and GHG-Europe projects (Ra-
monet et al., 2010) and the ICOS preparatory phase provide
a robust basis for regional inversions during the pre-ICOS
decade. The ICOS Carbon Portal (https://www.icos-cp.eu,
last access: 6 August 2020) has been set up to support the
exchange of observational data and elaborated products re-
lated to the carbon cycle, such as CO2 fossil fuel flux maps.
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In addition to in situ data, the development of satellite obser-
vations of CO2 following the launch of GOSAT (Kuze et al.,
2009) in 2009 and OCO-2 in 2014 (Crisp et al., 2004) should
further densify the observation coverage, in particular with
the foreseen European constellation of CO2 high-resolution
imagers of the Copernicus Anthropogenic CO2 Monitoring
mission (CO2M; Pinty et al., 2017), starting from 2025. The
use of mesoscale transport models will then become neces-
sary to fully exploit the potential of these large datasets with
observations at high spatial and temporal resolution.

In this context, the EUROCOM (EUROpean atmospheric
transport inversion COMparison) project aims to coordinate
a European effort to improve the knowledge on the NEE
based on an ensemble of long-term European-scale inver-
sions (i.e. covering geographical Europe). The project in-
volved the participation of seven research groups, which
have produced an ensemble of more than (to date) 12 in-
versions (including sensitivity experiments), estimating the
European NEE for the period 2006–2015 following a pro-
tocol described further in this document. The EUROCOM
project is therefore one of the first regional inversion inter-
comparisons, and the first one at such a scale dedicated to
the European NEE.

The first task of the project, to which this paper is ded-
icated, is to assess the capacity of regional inversions to
robustly estimate European NEE. We focus on key diag-
nostics which are typically looked at in synthesis studies,
such as the annual and monthly budgets of NEE and the
inter-annual variability, for all of Europe and for large re-
gions. We use the results from an ensemble of six inversions
(one for each participating system), covering a large spec-
trum of inversion characteristics (prior constraints, inversion
technique, transport models, etc.): PYVAR-CHIMERE (Bro-
quet et al., 2011; Fortems-Cheiney et al., 2019, developed
at LSCE, France); LUMIA (Lund University Modular Inver-
sion Algorithm) (Monteil and Scholze, 2019), developed at
Lund University (Sweden) as part of the EUROCOM project;
CarboScope-Regional (Kountouris et al., 2018a, b, devel-
oped at MPI-Jena, Germany); FLEXINVERT (Thompson
and Stohl, 2014, from NILU, Norway); NAME-HB (White
et al., 2019b, from the University of Bristol, United King-
dom) and CarbonTracker Europe (Peters et al., 2010; van der
Laan-Luijkx et al., 2017), from the University of Wagenin-
gen, the Netherlands.

The EUROCOM project extends beyond the scope of this
paper. Forthcoming studies using a larger ensemble of in-
versions (including additional sensitivity experiments) will
focus on quantifying and reducing specific aspects of the un-
certainty, supporting the improvement of both the regional
inversion techniques and the design of the European obser-
vation network.

The paper is organized in five sections. Section 2 briefly
summarizes the theoretical background behind atmospheric
transport inversions. Section 3 details the inversion proto-
col, the participating inverse modelling systems and the in-

put products (fluxes and observations) shared within EURO-
COM for conducting the inversions. Results are presented in
Sect. 4 and then discussed in Sect. 5. Finally, Sect. 6 summa-
rizes the paper and provides some remarks on the future of
the EUROCOM collaboration, and on regional inverse mod-
elling in general.

2 Inverse modelling methodology and terminology

The theoretical framework of the atmospheric inverse trans-
port modelling has been extensively detailed in past publica-
tions (e.g. Enting, 2002; Rayner et al., 2019). Here we only
give a brief overview of the basic principles, to facilitate the
comprehension of the paper for readers unfamiliar with the
approach and to remind of some of the components discussed
in detail in Sect. 3.

Bayesian atmospheric inversions rely on the fact that ob-
served spatio-temporal gradients of CO2 in the atmosphere
reflect the distribution of carbon exchanges between the at-
mosphere and other carbon reservoirs. The link between the
net CO2 exchange at the surface and the CO2 concentrations
in the atmosphere is established by a forward atmospheric
transport model. A first set of modelled CO2 concentrations
(ym
=H(x)) is computed at the time and location of real

observations (yo), based on a prior assumption of what the
CO2 fluxes are (xb). The mismatch between the modelled
and observed concentrations (δy =H(x)−yo) is used to de-
rive a correction δx to the prior flux estimate xb. The pos-
terior flux estimate (x = xb+ δx) then represents the best
statistical compromise between fitting the observations and
limiting the departures to the prior, accounting for the sta-
tistical distribution of uncertainties in both observations and
prior fluxes.

The vector x is called the control vector. It contains all
the parameters that the inversion can adjust. In our case it
contains at least the terrestrial ecosystem component of the
CO2 fluxes. It can also contain other adjusted parameters
such as bias or boundary concentration terms. The operator
H , which establishes the deterministic relationship between
a given control vector x and the corresponding modelled con-
centrations ym is called the observation operator. It encom-
passes the transport model, but also the impact on the mod-
elled concentrations of any input of the transport model that
is not further adjusted in the inversions (prescribed anthro-
pogenic emissions, boundary conditions, etc.).

Following the Bayesian approach and using a classical
Gaussian error hypothesis the problem is reduced to finding
the posterior control vector xa that minimizes the cost func-
tion J (x), defined as follows:

J (x)=
1
2
δxTB−1δx︸ ︷︷ ︸

Jb

+
1
2
δyTR−1δy︸ ︷︷ ︸

Jobs

. (1)
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The prior error covariance matrix B contains a represen-
tation of the uncertainties on the prior control vector xb and
the error covariance matrix R contains the observational er-
ror, which combines the measurement uncertainties (uncer-
tainty of the observations y) and the uncertainties associ-
ated with the observation operator H : the representation er-
ror (due to the comparison of point concentration measure-
ments with gridded model concentration) and the model error
(uncertainty in non-optimized model parameters, such as the
boundary and initial conditions, the non-optimized fluxes,
and uncertainty in the model physics). Departing from the
prior control vector xb increases Jb, and improving the fit to
the observations reduces Jobs. B and R modulate the relative
weight of each departure to the prior and to the observations
in J .

The exact specifications of B and R affect to a certain ex-
tent the outcome of an inversion. For practical reasons, the
error covariance matrix for the observations R is usually de-
fined as a diagonal matrix with the measurement and model
uncertainty (σ ) for each observation site specified on the di-
agonal. Potential error correlations between observations are
typically dealt with by limiting the density of observations
or inflating their individual uncertainties. The diagonal el-
ements of the prior error covariance matrix B contains the
uncertainties of the prior control parameters (typically here
the NEE at the grid scale). The off-diagonal elements, cor-
responding to the covariances between uncertainties in dif-
ferent control parameters, are difficult to specify because the
uncertainties in the NEE estimates have hardly been char-
acterized and quantified (Kountouris et al., 2015). They are,
however, a critical component of the inversion as they deter-
mine how independently from each other the different com-
ponents of the control vector can be adjusted. The inversions
in this study follow different implementations of this general
methodology, listed in Sect. 3.3.2.

The optimal control vector xa can be solved for using
different solution methods. Here we only briefly recall the
methods employed by the systems in this study (variational
and sequential ensemble approaches, and Markov Chain–
Monte Carlo); more information on these methods is given
in Rayner et al. (2019) and references therein.

The variational method minimizes J (x) based on iterative
gradient descent methods. Efficient implementations of this
method rely either on the availability of the adjoint of the
transport model or pre-computed transport Jacobian matrices
representing the sensitivity of the observation vector to the
control vector. The Monte Carlo approach directly samples
the cost function, and in the case of the Markov chain–Monte
Carlo (MCMC) approach, the samples form a Markov chain;
i.e. each sample is not obtained independently, but rather a
perturbation of the last previously accepted sample. This al-
lows non-Gaussian PDFs to be used in the inversion and al-
lows the specification of uncertainties to be explored in so-
called “hierarchical” Bayesian frameworks (Ganesan et al.,
2014; Lunt et al., 2016). Finally, the ensemble Kalman filter-

ing (EnKF) directly derives xa following its analytical for-
mulation based on the reduction of the dimensions of the
problem through the split of the inversion into sequential
windows, and based on the computation of the matrices in-
volved in the EnKF formulation through an ensemble Monte
Carlo approach.

3 Protocol and participating models

Given the overall objective of the study (to assess the ro-
bustness of inversion-derived European flux estimates), we
deliberately opted for a relatively loose protocol: the partici-
pants were requested to use a common set of anthropogenic
CO2 emissions (fossil fuel combustion, cement production
and large-scale fires) and to use only atmospheric observa-
tions from a common dataset, prepared specifically for the
EUROCOM project (Sect. 3.1). They were requested to pro-
vide a monthly gridded estimate of the net land–atmosphere
CO2 exchange (net ecosystem exchange, NEE) over the pe-
riod 2006 to 2015, covering at least the area 15◦W–35◦ E by
33–73◦ N, at a 0.5◦ by 0.5◦ spatial resolution (independently
of the actual resolution of the inversions).

A set of fluxes (prior NEE, anthropogenic and ocean
fluxes) was made available to the modellers through a data
repository hosted at the ICOS Carbon Portal, along with the
common observation database, but except for the imposed
anthropogenic emissions, the participants were essentially
free to choose the characteristics of their inversions. In par-
ticular they could perform further selections on the observa-
tions database (selection of observation sites and selection of
observations to use at each site) and choose their prior NEE
and ocean flux estimates. The treatment of boundary condi-
tions and the precise specification of uncertainties (prior and
observation uncertainties) were also left to the modellers.

The inversions in our ensemble are constructed with the
aim to maximize the diversity of the systems, and hence to
obtain a better estimate of the overall uncertainty of inversion
results. A stricter protocol, for example fixing the prior fluxes
and the prior uncertainties, would facilitate the interpretation
of results but would artificially decrease their spread. Fur-
thermore, some parameters should not be prescribed. For in-
stance, the observations are selected based on the capacity
of the underlying transport model to reproduce them, and the
type of boundary condition is also dependent on the transport
models, which differ across the systems. It is, however, clear
that further steps will be needed, with a stricter protocol, to
fully understand the specific causes of the discrepancies that
were obtained.

3.1 Common atmospheric observation database

A comprehensive dataset of atmospheric CO2 concentration
observations in Europe was compiled as input for the inver-
sion systems, on the basis of the GLOBALVIEWplus v3.2
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Observation Package (ObsPack), a product compiled and co-
ordinated at NOAA’s Earth System Research Lab together
with the ICOS Carbon Portal (Cooperative Global Atmo-
spheric Data Integration Project, 2017). The dataset was
further extended by including measurements that had been
collected in several national and EU-funded projects, like
CarboEurope-IP and GHG-Europe, and during the prepara-
tory phase of the Integrated Carbon Observation System
(ICOS) Research Infrastructure. Finally, for two stations, the
data were obtained from the World Data Center for Green-
house Gases (https://gaw.kishou.go.jp/, last access: 6 August
2020).

Compared to the original GLOBALVIEWplus product, we
added time series from nine measurement stations and partly
complemented time series at two stations. The datasets were
harmonized with respect to format and sampling interval and
provided in the ObsPack format (Masarie et al., 2014). The
original datasets and data providers of the time series are re-
ported in Table 1, and the locations of the observation sites
are also shown in Fig. 1.

The majority of sites (35 out of 39) sample concentrations
continuously (i.e. hourly or more frequently); 18 sites are tall
towers (intake height> 50 m), some with observations avail-
able at different levels, in which case only the upper level
was used (as it is more difficult for the transport models to
represent concentration gradients close to the ground).

The modellers were free to refine the observation selection
according to the ability of their inversion systems to simulate
specific stations, and in particular to use their preferred ap-
proach to select data within a day (i.e. use of all the observa-
tions within a time frame or use of an average of the obser-
vations, etc.). The precise observation selection approaches
are discussed further in Sect. 3.3.3, and a full comparison
of the observation assimilated by each system is provided in
Figs. S1 and S2 in the Supplement.

3.2 Prior and prescribed CO2 fluxes

All groups split the total surface–atmosphere CO2 flux in
three or four categories: biosphere (NEE, optimized), ocean
(sea–atmosphere CO2 exchanges, prescribed or optimized),
anthropogenic (prescribed) and biomass burning (prescribed,
used by LUMIA and FLEXINVERT+).

Note that we use the term NEE (sum of photosynthesis
and ecosystem respiration) for the posterior fluxes over land
throughout the paper, because this is what the prior flux esti-
mates from the terrestrial ecosystem models represent. How-
ever, strictly speaking, the inversions optimize the flux that
is not explained by the prescribed anthropogenic (and some-
times ocean) fluxes. This includes the effect of ecosystem
disturbances (land use, land management, biotic effects) but
also projection of errors in the prescribed fluxes.

3.2.1 Terrestrial-ecosystem fluxes

Atmospheric inversions usually rely on NEE simulations
from terrestrial ecosystem models to provide the prior value
of the NEE component of the control vector (as defined above
in Sect. 2). Within EUROCOM four different simulations of
gross (GPP and ecosystem respiration) and net (NEE) ter-
restrial biosphere fluxes were included: three from process-
based models (ORCHIDEE, LPJ-GUESS and SiBCASA),
and one from a diagnostic model (VPRM). Two of the four
models (ORCHIDEE and LPJ-GUESS) are providing input
for the Global Carbon Project annual global CO2 assessment
(Le Quéré et al., 2018).

– ORCHIDEE (used by PYVAR-CHIMERE, FLEXIN-
VERT+ and NAME-HB): ORCHIDEE (Krinner et al.,
2005) computes carbon, water and energy fluxes be-
tween the land surface and the atmosphere and within
the soil–plant continuum. The model computes the
gross primary productivity with the assimilation of car-
bon based on Farquhar et al. (1980) for C3 plants.
Land cover changes (including deforestation, regrowth
and cropland dynamic) were prescribed using annual
land cover maps derived from the harmonized land use
dataset (Hurtt et al., 2011) combined with the ESA-CCI
land cover products. The ORCHIDEE simulation used
here has been produced at a global, 0.5◦ resolution with
3-hourly output.

– LPJ-GUESS (used by LUMIA): LPJ-GUESS (Smith
et al., 2014) combines process-based descriptions of
terrestrial ecosystem structure (vegetation composition,
biomass and height) and function (energy absorption,
carbon and nitrogen cycling). Vegetation is dynamically
simulated as a series of replicate patches, in which in-
dividuals of each simulated plant functional type (or
species) compete for the available resources of light and
water, as prescribed by the climate data. LPJ-GUESS
includes an interactive nitrogen cycle. The simulation
used here is forced using the WFDEI meteorological
dataset (Weedon et al., 2014) and produces a 3-hourly
output of gross and net carbon fluxes at a 0.5◦ horizon-
tal resolution.

– SiBCASA (used by CTE): SiBCASA (Schaefer et al.,
2008) combines the parameterization of the Simple Bio-
sphere model (SiB) with the biogeochemistry of the
Carnegie–Ames–Stanford approach (CASA) calculat-
ing the exchange of water, carbon and energy between
25 soil layers, plants and the atmosphere. The rate of
photosynthesis is found using the Ball–Berry–Woodrow
model of stomatal conductance (Ball et al., 1987), and
C3 and C4 vegetation types are treated separately in the
kinetic enzyme model of Farquhar et al. (1980). The
simulation used here is forced using meteorological in-
puts from ERA-Interim and run with a 10 min time step
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Table 1. Observation sites used in the inversions. Datasets with in situ continuous (C) as well as flask (F) measurements were taken from
GLOBALVIEWplus ObsPack, WDCGG, and the EU-funded projects CarboEurope-IP, GHG-Europe and ICOS preparatory phase (all indi-
cated as pre-ICOS).

Code Station name Lat. Long. Alt. Intake C/F Period Dataset Data provider
(◦ N) (◦ E) (m a.s.l.) (m a.g.l.)

BAL Baltic Sea 55.350 17.220 3 25 F 2006–2011 GV+ v3.2 NOAA
BIK Białystok 53.232 23.027 183 300 C 2006–2007 pre-ICOS MPI-BGC
BIR Birkenes 58.389 8.252 219 2 C 2015 GV+ v3.2 NILU
BRM Beromünster 47.190 8.175 797 212 C 2012–2015 GV+ v3.2 Uni.Bern
BSC Black Sea Coast 44.178 28.665 0 5 F 2006–2011 GV+ v3.2 NOAA
CES Cabauw 51.971 4.927 −1 200 C 2006–2015 GV+ v3.2 ECN
CIB Centro de Investigación 41.810 −4.930 845 5 F 2009–2015 GV+ v3.2 NOAA

de la Baja Atmósfera
CMN Monte Cimone 44.180 10.700 2165 12 C 2006–2015 WDCGG IAFMCC
CRP Carnsore Point 52.180 −6.370 9 14 C 2010–2013 pre-ICOS EPA
ELL Estany Llong 42.575 0.955 2002 3 F 2008–2015 GV+ v3.2 ICTA-ICP
GIF Gif-sur-Yvette 48.710 2.148 160 7 C 2006–2009 pre-ICOS LSCE
HEI Heidelberg 49.417 8.674 116 30 C 2006–2015 GV+ v3.2 UHEI
HPB Hohenpeißenberg 47.801 11.024 985 5 F 2006–2015 GV+ v3.2 NOAA
HPB Hohenpeißenberg 47.801 11.010 934 131 C 2015 GV+ v3.2 DWD-HPB
HTM Hyltemossa 56.098 13.419 115 150 C 2015 GV+ v3.2 Uni.Lund-CEC
HUN Hegyhátsál 46.950 16.650 248 115 C 2006–2015 GV+ v3.2 HMS
JFJ Jungfraujoch 46.550 7.987 3570 10 C 2006–2015 GV+ v3.2 KUP
JFJ Jungfraujoch 46.550 7.987 3570 10 C 2010–2015 GV+ v3.2 Empa
KAS Kasprowy 49.232 19.982 1989 5 C 2006–2015 GV+ v3.2 AGH
LMP Lampedusa 35.510 12.610 45 5 F 2006–2015 GV+ v3.2 NOAA
LMP Lampedusa 35.520 12.620 45 8 C 2006–2012 pre-ICOS ENEA
LMU La Muela 41.594 −1.100 571 79 C 2006–2009 pre-ICOS ICTA-ICP
LUT Lutjewad 53.404 6.353 1 60 C 2006–2015 GV+ v3.2 Uni.Groningen
MHD Mace Head 53.326 −9.904 5 15 C 2006–2015 GV+ v3.2 LSCE
NOR Norunda 60.086 17.479 46 101 C 2015 GV+ v3.2 Uni.Lund-CEC
OPE Observatoire Pérenne 48.562 5.504 390 120 C 2011–2015 pre-ICOS LSCE

de l’Environnement
OXK Ochsenkopf 50.030 11.808 1022 163 F 2006–2015 GV+ v3.2 NOAA
OXK Ochsenkopf 50.030 11.808 1022 163 C 2006–2007 pre-ICOS MPI-BGC
PAL Pallas 67.973 24.116 565 5 C 2006–2015 GV+ v3.2 FMI
PRS Plateau Rosa 45.930 7.700 3480 10 C 2006–2015 GV+ v3.2 RSE
PUI Pujio 62.910 27.655 232 84 C 2011–2014 pre-ICOS FMI
PUY Puy de Dôme 45.772 2.966 1465 15 C 2006–2015 GV+ v3.2 LSCE
RGL Ridge Hill 51.998 −2.540 204 90 C 2012–2015 GV+ v3.2 Uni.Bristol
SMR Smear/Hyytiälä 61.847 24.295 181 125 C 2012–2015 GV+ v3.2 UHELS
SSC Sierra de Segura 38.303 −2.590 1349 20 C 2014–2015 GV+ v3.2 ICTA-ICP
SSL Schauinsland 47.920 7.920 1205 12 C 2006–2015 GV+ v3.2 UBA
STM Station M 66.000 2.000 0 7 F 2006–2015 GV+ v3.2 NOAA
TAC Tacolneston 52.518 1.139 56 185 C 2013–2015 GV+ v3.2 Uni.Bristol
TRN Traînou 47.965 2.112 131 180 C 2006–2015 pre-ICOS LSCE
TTA Tall Tower Angus 56.555 −2.986 400 222 C 2013–2015 GV+ v3.2 Uni.Bristol
VAC Valderejo 42.879 −3.214 1102 20 C 2013–2015 GV+ v3.2 ICTA-ICP
WAO Weybourne 52.950 1.122 20 10 C 2007–2015 GV+ v3.2 UEA
WES Westerland 54.930 8.320 12 9 C 2006–2015 WDCGG UBA

and a spatial resolution of 1◦×1◦. The actual temporal
resolution used in the inversion is 3 h.

– VPRM (used by CarboScope-Regional): VPRM (Ma-
hadevan et al., 2008) calculates photosynthetic up-

take based on a light-use efficiency approach and
temperature-dependent ecosystem respiration. It uses
ECMWF operational meteorological data for radiation
and temperature, the SYNMAP land cover classifica-
tion (Jung et al., 2006), and MODIS-derived EVI (en-
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Figure 1. EUROCOM domain (pale blue grid with the 0.5◦ resolution) and location of the observation sites. The size of the dots is propor-
tional to the number of months with at least one observation available (in the common observation database, not all observations are used
in the inversions), and the colour map shows the altitude of the sites (height above ground + sampling height). The four regions used in the
analysis are also represented: western Europe (green), southern Europe (blue), central Europe (yellow) and northern Europe (grey).

hanced vegetation index) and LSWI (land surface water
index). Model parameters were optimized for Europe
using eddy covariance measurements made during 2007
from 47 sites (Kountouris et al., 2015). The VPRM sim-
ulation used here has been produced at a 0.25◦ spatial
and hourly temporal resolution.

The mean seasonal cycle and the inter-annual variabil-
ity of these NEE simulations are shown in Fig. 2. Among
the notable features is the annual mean NEE of VPRM,
which is much lower (≈−1.1 Pg C yr−1) than that of the
three other models (ranging from −0.1 to −0.4 Pg C yr−1).
VPRM is known to produce an uptake that is too large
(Oney et al., 2017), which can be explained by the opti-
mization of this diagnostic model against flux measurements
from one year. The year-to-year variations of the annual
budget are significant (≈ 0.1 Pg C yr−1) but not always in
phase between the four models. For the mean seasonal cy-
cle, the peak-to-peak amplitude differs significantly between
the models, with the smallest amplitude obtained with LPJ-

GUESS (around 0.4 Pg C per month) and the largest with
ORCHIDEE (around 0.8 Pg C per month). Another visible
feature is the phasing of the seasonal cycle in LPJ-GUESS,
with an earlier CO2 peak uptake than the other three models
(May versus June) and a peak release in August. This phase
difference has already been described by Peng et al. (2015).

3.2.2 Anthropogenic emissions

The anthropogenic emissions from combustion of fossil fu-
els and biofuels and from cement production are based on a
pre-release of the EDGARv4.3 inventory for the base year
2010 (Janssens-Maenhout et al., 2019) and were provided as
a 0.5◦, hourly resolution product. This specific dataset in-
cludes additional information on the fuel mix per emission
sector (Janssens-Maenhout, personal communication, 2017)
and thus allows for a temporal scaling of the gridded an-
nual emissions for individual years (2006–2015) according
to year-to-year changes of fuel consumption data at national
level (BP, 2016), following the approach of Steinbach et al.
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12070 G. Monteil et al.: First results from EUROCOM

Figure 2. Seasonal cycle (a) and inter-annual variability (b) of the
prior NEE (coloured lines/shading) and prescribed anthropogenic
flux (black) used in the inversions, for geographical Europe (see
definition in Sect. 3). The solid lines in the upper plot represents the
mean seasonal cycle over the 10 years of the study, while the shaded
envelopes show the minimum and maximum values over the same
period.

(2011). A further temporal disaggregation into hourly emis-
sions is based on specific temporal factors (seasonal, weekly
and daily cycles) for different emission sectors (Denier van
der Gon et al., 2011). The seasonality and inter-annual vari-
ability of this anthropogenic emissions prior are also reported
in Fig. 2 (in black).

Agricultural waste burning is already included in the ver-
sion of the EDGAR v4.3 anthropogenic emission inven-
tory that we are using. Also, large-scale biomass burn-
ing emissions are negligible in Europe (of the order of
0.01 Pg C yr−1), and therefore we decided that no extra
biomass burning emission dataset should be used in the in-
versions. Nevertheless, two models (LUMIA and FLEXIN-
VERT) included a prescribed biomass burning source, based
on the Global Fire Emission Database v4 (Giglio et al.,
2013).

3.2.3 Ocean fluxes

The role of the ocean flux in causing spatial CO2 gradi-
ents between stations at the European scale is very mi-
nor in regard to the magnitude of other fluxes (below
−0.1 Pg C yr−1). Therefore modelling groups were free to
choose which ocean fluxes to use.

Two groups (LUMIA and FLEXINVERT+) used ocean
fluxes from the CarboScope surface-ocean pCO2 interpola-
tion (oc_v1.6 and oc_v1.4 respectively) (Rödenbeck et al.,
2013). The CarboScope interpolation provides temporally
and spatially resolved estimates of the global sea–air CO2
flux. Fluxes are estimated by fitting a simple data-driven
diagnostic model of ocean mixed-layer biogeochemistry to
surface-ocean CO2 partial pressure data from the SOCAT
database. NAME-HB used a climatological prior from Taka-
hashi et al. (2009), which is based on a climatology of surface
ocean pCO2 constructed using measurements taken between
1970 and 2008. The CarboScope-Regional inversion used an
ocean flux estimate taken from the Mikaloff Fletcher et al.
(2007) global oceanic air–sea CO2 inversion and Carbon-
Tracker Europe optimized prior fluxes from the ocean inver-
sion of Jacobson et al. (2007). Finally, PYVAR-CHIMERE
used a null ocean prior but allowed the inversion to adjust it.

3.3 Inversion systems

The six inversion systems encompass a wide range of
mesoscale regional transport models (with both Lagrangian
and Eulerian models) and of approaches for the inversion
(variational, ensemble and MCMC methods). The systems
also differ by the definition of the boundary conditions, the
selection of the observations to be assimilated, the definition
of the control vector and the parameterization of uncertainty
covariance matrices. Table 2 presents an overview of the par-
ticipating systems characteristics.

3.3.1 Transport models and boundary conditions

The six systems cover a diversity of models and model set-
ups. Two systems (PYVAR-CHIMERE and CTE) rely on Eu-
lerian transport models. The atmosphere is represented by a
3D grid (latitude, longitude and height). The CO2 concen-
tration is defined at each grid point and is altered at each
time step by the CO2 sources and sinks (i.e. the inversion
control vector) in the surface layer, and by the air mass ex-
changes between the grid cells (at all layers). The other sys-
tems (LUMIA, FLEXINVERT, CarboScope-Regional and
NAME-HB) all rely on Lagrangian transport models. In these
systems, a Lagrangian transport model is used to compute,
for each observation, a response function (footprint), i.e. a
Jacobian matrix containing the sensitivity of the observed
concentration to surface fluxes. The change in CO2 concen-
trations resulting from the surface fluxes are simply the dot

Atmos. Chem. Phys., 20, 12063–12091, 2020 https://doi.org/10.5194/acp-20-12063-2020



G. Monteil et al.: First results from EUROCOM 12071

Ta
bl

e
2.

O
ve

rv
ie

w
of

th
e

in
ve

rs
e

m
od

el
lin

g
sy

st
em

s
an

d
co

nfi
gu

ra
tio

n
of

th
e

in
ve

rs
io

ns
.

In
ve

rs
io

n
sy

st
em

PY
VA

R
-C

H
IM

E
R

E
(L

SC
E

)
L

U
M

IA
(L

un
d

U
ni

ve
rs

ity
)

FL
E

X
IN

V
E

R
T

(N
IL

U
)

C
ar

bo
Sc

op
e-

R
eg

io
na

l
(M

PI
-B

G
C

-J
en

a)
C

ar
bo

nT
ra

ck
er

E
ur

op
e

(W
U

R
)

N
A

M
E

-H
B

(U
ni

.B
ri

st
ol

)

R
ef

er
en

ce
B

ro
qu

et
et

al
.(

20
11

),
Fo

rt
em

s-
C

he
in

ey
et

al
.

(2
01

9)

M
on

te
il

an
d

Sc
ho

lz
e

(2
01

9)
T

ho
m

ps
on

an
d

St
oh

l
(2

01
4)

K
ou

nt
ou

ri
s

et
al

.(
20

18
a)

Pe
te

rs
et

al
.(

20
10

),
va

n
de

r
L

aa
n-

L
ui

jk
x

et
al

.(
20

17
)

W
hi

te
et

al
.(

20
19

b)

M
et

ho
d

V
ar

ia
tio

na
l

V
ar

ia
tio

na
l

V
ar

ia
tio

na
l

V
ar

ia
tio

na
l

E
nK

F
M

C
M

C

Tr
an

sp
or

tm
od

el
C

H
IM

E
R

E
(E

ul
er

ia
n)

FL
E

X
PA

R
T

(L
ag

ra
ng

ia
n)

FL
E

X
PA

R
T

(L
ag

ra
ng

ia
n)

ST
IL

T
(L

ag
ra

ng
ia

n)
T

M
5

(E
ul

er
ia

n)
N

A
M

E
(L

ag
ra

ng
ia

n)

M
et

eo
ro

lo
gi

ca
l

fo
rc

in
g

E
C

M
W

F
op

er
at

io
na

l
fo

re
ca

st
s

E
C

M
W

F
E

R
A

-I
nt

er
im

re
an

al
ys

is
E

C
M

W
F

op
er

at
io

na
l

fo
re

ca
st

s
E

C
M

W
F

op
er

at
io

na
l

fo
re

ca
st

s
E

C
M

W
F

E
R

A
-I

nt
er

im
re

an
al

ys
is

U
K

M
et

O
ffi

ce
’s

U
ni

fie
d

M
od

el
(C

ul
le

n,
19

93
)

B
ac

kg
ro

un
d/

bo
un

da
ry

co
nd

iti
on

Pr
es

cr
ib

ed
at

do
m

ai
n

ed
ge

fr
om

a
C

A
M

S
L

M
D

Z
in

ve
rs

io
n

Pr
es

cr
ib

ed
at

ob
s.

lo
ca

tio
n

fr
om

a
T

M
5-

4D
VA

R
in

ve
rs

io
n

in
te

rp
ol

at
io

n
of

N
O

A
A

da
ta

+
tr

an
sp

or
to

f
pr

es
cr

ib
ed

flu
xe

s
ou

ts
id

e
th

e
E

U
R

O
C

O
M

do
m

ai
n

Pr
es

cr
ib

ed
at

ob
s.

lo
ca

tio
n

fr
om

a
gl

ob
al

C
ar

bo
Sc

op
e

in
ve

rs
io

n

N
on

e
(g

lo
ba

li
nv

er
si

on
)

O
pt

im
iz

ed
at

do
m

ai
n

ed
ge

,
fr

om
a

M
O

Z
A

R
T

si
m

ul
at

io
n

pr
io

r

Tr
an

sp
or

ta
nd

in
ve

rs
io

n
do

m
ai

n
31

.5
to

74
◦

N
;

15
.5
◦

W
to

35
◦

E
33

to
73
◦

N
;

15
◦

W
to

35
◦

E
G

lo
ba

lt
ra

ns
po

rt
,i

nv
er

si
on

on
a

30
–7

5◦
N

,−
15

–3
5◦

E
do

m
ai

n

33
to

73
◦

N
,

15
◦

W
to

35
◦

E
G

lo
ba

l,
zo

om
ov

er
E

ur
op

e
(1

2–
66
◦

N
,2

1◦
W

–3
9◦

E
)

10
.7

29
to

79
.0

57
◦

N
;

97
.9
◦

W
to

39
.3

8◦
E

In
ve

rs
io

n
sp

at
ia

l
re

so
lu

tio
n

0.
5◦
×

0.
5◦

0.
5◦
×

0.
5◦

PF
T

s
×

co
un

tr
ie

s
0.

5◦
×

0.
5◦

1◦
×

1◦
ov

er
E

ur
op

e,
3◦
×

2◦
gl

ob
al

ly
L

ar
ge

re
gi

on
s
×

PF
T

s

In
ve

rs
io

n
te

m
po

ra
l

re
so

lu
tio

n
6

h
1

m
on

th
12

h
3

h
W

ee
kl

y
V

ar
ia

bl
e

(m
ax

1
d)

Pr
io

re
st

im
at

e
of

N
E

E
O

R
C

H
ID

E
E

L
PJ

-G
U

E
SS

O
R

C
H

ID
E

E
V

PR
M

Si
B

C
A

SA
O

R
C

H
ID

E
E

C
or

re
la

tio
n

(s
pa

tia
l,

te
m

po
ra

l)
sc

al
es

of
th

e
pr

io
r

un
ce

rt
ai

nt
y

20
0

km
,1

m
on

th
20

0
km

,1
m

on
th

N
o

sp
at

ia
lc

or
re

la
tio

n
be

tw
ee

n
PF

T
/c

ou
nt

ry
re

gi
on

s,
1

m
on

th

10
0

km
,1

m
on

th
20

0
km

w
ith

no
co

rr
el

at
io

n
be

tw
ee

n
di

ff
er

en
tP

FT
s,

5
w

ee
ks

N
o

co
rr

el
at

io
ns

(l
ar

ge
re

gi
on

s)

O
ce

an
flu

xe
s

Pa
rt

of
th

e
co

nt
ro

lv
ec

to
r

(6
h

an
d

0.
5◦

re
so

lu
tio

n)
,

nu
ll

pr
io

r

Pr
es

cr
ib

ed
(R

öd
en

be
ck

et
al

.,
20

13
)

Pr
es

cr
ib

ed
(R

öd
en

be
ck

et
al

.,
20

13
)

Pr
es

cr
ib

ed
(M

ik
al

of
fF

le
tc

he
re

ta
l.,

20
07

)

O
pt

im
iz

ed
(J

ac
ob

so
n

et
al

.,
20

07
)

Pr
es

cr
ib

ed
(T

ak
ah

as
hi

et
al

.,
20

09
)

O
bs

er
va

tio
n

se
le

ct
io

n∗
12

:0
0

to
18

:0
0

LT
be

lo
w

10
00

m
a.

s.
l.

an
d

00
:0

0
to

06
:0

0
LT

ab
ov

e

11
:0

0
to

15
:0

0
LT

lo
w

al
tit

ud
e,

23
:0

0
to

03
:0

0
LT

hi
gh

al
tit

ud
e

12
:0

0
to

16
:0

0
LT

be
lo

w
10

00
m

a.
s.

l.
an

d
00

:0
0

to
04

:0
0

LT
ab

ov
e

11
:0

0
to

16
:0

0
U

T
C

lo
w

al
tit

ud
e

an
d

23
:0

0
to

04
:0

0
U

T
C

at
m

ou
nt

ai
n

st
at

io
ns

11
:0

0
to

15
:0

0
LT

lo
w

al
tit

ud
e,

23
:0

0
to

03
:0

0
LT

at
hi

gh
al

tit
ud

e

B
as

ed
on

tr
an

sp
or

tm
od

el
pe

rf
or

m
an

ce

∗
T

he
cl

as
si

fic
at

io
n

of
lo

w
an

d
hi

gh
al

tit
ud

e
va

ri
es

on
a

ca
se

-b
y-

ca
se

ba
si

s
in

so
m

e
sy

st
em

s;
se

e
Fi

g.
S2

fo
rm

or
e

in
fo

rm
at

io
n.

https://doi.org/10.5194/acp-20-12063-2020 Atmos. Chem. Phys., 20, 12063–12091, 2020



12072 G. Monteil et al.: First results from EUROCOM

product of each footprint by the corresponding (slice of) the
flux vector.

Beyond the Lagrangian/Eulerian distinction, the models
differ by the underlying meteorological data used, and by the
domain extent:

– The CHIMERE model (used in the PYVAR-CHIMERE
system) is a regional Eulerian Chemistry transport
model (Menut et al., 2013), forced with ECMWF op-
erational forecasts. The simulations are performed at a
horizontal resolution of 0.5◦ and with 29 vertical lev-
els up to 300 hPa, for the exact EUROCOM domain (as
described at the beginning of Sect. 3).

– The CTE inversion relies on the global Eulerian trans-
port model TM5 (Huijnen et al., 2010), driven by air
mass transport from the ECMWF ERA-Interim reanal-
ysis. TM5 is here run at a global resolution of 3◦× 2◦,
with a nested 1◦× 1◦ zoom over Europe (12–66◦ N,
21◦W–39◦ E), and 25 vertical sigma-pressure levels.

– The CarboScope-Regional system (Kountouris et al.,
2018a) relies on footprints from the STILT model (Lin
et al., 2003). STILT footprints are computed for the
exact EUROCOM domain, at a horizontal resolution
of 0.25◦, and at hourly temporal resolution, and they
cover a period of 10 d prior to each observation. STILT
is driven by short-term forecasts of the ECMWF-IFS
model at 0.25◦ resolution. The surface layer (up to
which surface fluxes are mixed instantaneously) is de-
fined as half the height of the planetary boundary layer,
at any given time.

– In LUMIA, footprints covering the EUROCOM do-
main at a 0.5◦, 3-hourly resolution were generated with
the FLEXPART 10.0 model (Pisso et al., 2019), driven
by ECMWF ERA-Interim meteorology. The footprints
cover a period of 7 d prior to each observation and
the surface layer is defined as the atmosphere below
100 m a.g.l.

– The FLEXINVERT inversion (Thompson and Stohl,
2014) also relies on footprints from the FLEXPART
model, but driven by ECMWF operational forecasts. In
contrast to CarboScope-Regional and LUMIA, the foot-
prints are computed globally, on a 0.5◦ hourly grid, and
cover a period of 5 d before each observation.

– The NAME-HB system (White et al., 2019b) uses foot-
prints from the NAME Lagrangian particle dispersion
model. NAME is driven by 3-hourly meteorology from
the UK Met Office’s Unified Model (Cullen, 1993), at a
spatial resolution which changes in time of 0.233◦ lat-
itude by 0.352◦ longitude before mid-2014. The foot-
prints are defined on a large regional domain, ranging
from 10.729◦ N, 97.9◦W to 79.057◦ N, 39.38◦ E with a

spatial resolution of 0.233◦×0.352◦ (it covers the east-
ern half of North America, Europe and the northern half
of Africa). The footprints are computed for a period of
30 d before each observation, at a 2-hourly temporal res-
olution in the first 24 h, and the remaining 29 d are inte-
grated. The surface layer is defined as the layer below a
height of 40 m.

Except for CTE which relies on a global model (although
it runs at a very coarse resolution outside Europe), and all the
other systems need boundary conditions (also called back-
ground concentrations), which represent the contribution of
fluxes outside the space–time domain of the simulation:

– In PYVAR-CHIMERE and in NAME-HB, the back-
ground concentration (BCs) correspond to the trans-
port of a boundary condition defined at the edge of the
domain, by the transport model used in the inversion.
In PYVAR-CHIMERE, the boundary condition is pro-
vided by a CAMS global inversion (Chevallier et al.,
2010) and in NAME-HB it is derived from a global CO2
simulation with the MOZART transport model (Palmer
et al., 2018) (sampled at the time when and location
where the NAME trajectories leave the NAME domain).

– CarboScope Regional and LUMIA both implement the
two-step approach described in Rödenbeck et al. (2009).
In short, the background concentrations correspond to
the transport to the observation points of a boundary
condition, taken from a global, coarse-resolution in-
version, by the global transport model used in that
global inversion. CarboScope-Regional relies on TM3
for its global inversion, and LUMIA relies on the TM5-
4DVAR model.

– In FLEXINVERT, the footprints are global, therefore
the background (from the perspective of the transport
model) results only from the transport to the observa-
tion sites of the initial CO2 distribution (i.e. the CO2
distribution at the start of the period covered by each
footprint). This initial concentration is calculated as a
weighted average of a global CO2 distribution sampled
where and when the FLEXPART trajectories are ter-
minated, and this global CO2 distribution is based on
a bivariate interpolation of observed CO2 mixing ra-
tios from NOAA sites globally, with monthly resolved
fields. Note that for this system, the domain of the trans-
port model is larger than that of the inversion itself.

The boundary conditions are specific to each system: from a
technical point of view, the differences in domain extent and
in the types of couplings with the boundary or background
would make it hard to impose a common BC, but also, the
boundary condition is an uncertain term: allowing a diversity
of implementations is a way to maximize the exploration of
the uncertainties in our intercomparison.

Atmos. Chem. Phys., 20, 12063–12091, 2020 https://doi.org/10.5194/acp-20-12063-2020
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3.3.2 Inversion approaches

Four out of the six systems (PYVAR-CHIMERE, LUMIA,
CarboScope-Regional and FLEXINVERT+) implement a
variational inversion approach, in which the minimum of
the cost function J (x) (Eq. 1) is searched for iteratively.
The CTE inversion (Peters et al., 2007; van der Laan-Luijkx
et al., 2017) employs an ensemble Kalman smoother with
150 members and a 5-week fixed-lag assimilation window.
The NAME-HB inversion uses the MCMC method (Rigby
et al., 2011; Ganesan et al., 2014; Lunt et al., 2016; White
et al., 2019b). In short, this method samples the parameter
space, and proposals for parameter values are accepted or re-
jected according to some rules based on the likelihood of the
proposal.

Regardless of the inversion technique used, all the groups
were asked to provide optimized NEE fluxes at a monthly,
0.5◦ resolution on the EUROCOM domain. However, the
precise control vector optimized in some of the inversions
differ from this requested product:

– In PYVAR-CHIMERE, the NEE is optimized at a 6-
hourly resolution on each grid cell (on the standard EU-
ROCOM grid), starting from a prior NEE estimate from
the ORCHIDEE model (See Sect. 3.2.1). In addition,
the inversion also adjusts the ocean flux estimate, start-
ing from a null prior. The prior uncertainty for each
control vector element is proportional to the respira-
tion in the corresponding grid cell (according to the
same ORCHIDEE simulation) and further scaled to ob-
tain an average uncertainty at the 0.5◦ and 1 d scale of
2.27 µmol CO2 m−2 s−1 (after Kountouris et al., 2018b).

– The LUMIA inversion controls the NEE fluxes monthly,
on the standard EUROCOM grid, starting from prior
NEE from the LPJ-GUESS model. The prior uncer-
tainty is set to 50 % of the prior control vector (i.e. the
prior NEE), with a minimum uncertainty set to 1 % of
the grid point with the largest uncertainty, to avoid zero-
uncertainty when NEE is close to zero. The decadal
inversion was decomposed in 10 14-month inversions,
from which the first and last month were not used.

– In the CarboScope-Regional system, the NEE fluxes are
optimized every 3 h at a 0.5◦ resolution in the EURO-
COM domain, based on a prior NEE estimate from the
VPRM model. The uncertainty of the prior NEE is set to
a uniform value of 2.27 µmol CO2 m−2 s−1, using a spa-
tial error structure with a hyperbolic correlation shape.
The set-up is identical to the “nBVH/” case in Koun-
touris et al. (2018a). The decadal inversion period was
divided into three periods (2006–2007, 2008–2011 and
2012–2015).

– FLEXINVERT+ controls the NEE per country × plant
functional type (116 control variables per time step

across Europe, with PFTs based on those in the CLM
model). The fluxes are optimized for 6-hourly periods
(00:00–06:00, 06:00–12:00, 12:00–18:00, 18:00–00:00
local time, LT), averaged over 5 d. The prior NEE flux
is based on the ORCHIDEE simulation described in
Sect. 3.2.1, and the uncertainties are set proportional to
this prior NEE. The transport model in FLEXINVERT+
is global, therefore the flux estimates used in the inver-
sions are defined over the entire globe. However, the in-
version only adjusts NEE within the EUROCOM do-
main.

– In NAME-HB, the domain of NAME has been split into
eight boxes: four “background” boxes outside the EU-
ROCOM domain, and four “foreground” boxes within
the EUROCOM domain. The latter were further di-
vided based on a PFT map used in the JULES veg-
etation model (Still et al., 2009), which includes six
PFTs. The inversion optimizes separately the gross pri-
mary production (GPP, i.e. the uptake of carbon by
plants) and the heterotrophic respiration (TER, with
NEE=GPP+TER). The flux components are opti-
mized at a variable temporal resolution, with a maxi-
mum resolution of 1 d (see White et al., 2019b, for fur-
ther details). The oceanic flux is prescribed (based on
the Takahashi et al., 2009, climatological pCO2 esti-
mate), but the background concentrations are part of the
control vector and are therefore adjusted during the in-
version. Therefore, there are 56 elements in the control
vector, 4 elements to optimize the background concen-
trations, 4× 2 elements to optimize the “background”
regions for each of GPP and TER, 4× 5 elements for
the PFT regions for GPP (as one of the six PFTs is not
applicable to GPP) and finally 4× 6 elements for the
PFT regions for TER. The uncertainties are set to 100 %
of the prior for GPP and TER, and to 3 % of the initial
value for the background terms.

– in CTE, the NEE and ocean fluxes are optimized glob-
ally on a weekly time resolution in a 5-week lagged win-
dow. The global domain is split into 11 TRANSCOM
regions, which are further decomposed in ecoregions
corresponding to 19 ecosystem types. The fluxes are op-
timized on 1◦× 1◦ resolution for the Northern Hemi-
sphere land regions, and by ecoregion and ocean region
for the rest of the world. The prior NEE is taken from
the SiBCASA simulation described in Sect. 3.2.1, and
the prior oceanic flux is based on Jacobson et al. (2007).

In the three systems that optimize NEE at the pixel scale
(LUMIA, PYVAR-CHIMERE and CarboScope-Regional),
the spatial resolution of the control vector is in practice fur-
ther limited by the use of distance-based spatial and tempo-
ral covariances in the flux covariance matrices (B in Eq. 1),
which in effect smoothes the results by preventing the in-
version from adjusting neighbouring pixels totally indepen-
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dently. The values of 100 km (CarboScope-Regional) and
200 km (PYVAR-CHIMERE and LUMIA) used for the spa-
tial covariance lengths correspond well to the diagnostics
of comparisons between the ecosystem simulations and flux
eddy covariance measurements (Kountouris et al., 2018a).
These systems and FLEXINVERT+ also assume temporal
error covariances of 1 month at each grid cell.

The NAME-HB and FLEXINVERT+ inversions only con-
trol a limited number of PFTs in each region, which means
that pixels in the same region and corresponding to the
same PFT have a correlation coefficient of 1. Finally, CTE
follows an intermediate approach. The flux uncertainties
of Northern Hemisphere land pixels within a same ecore-
gion are correlated with a variable spatial covariance length
to reflect the observation network density (200 km in Eu-
rope), and the uncertainties of grid boxes corresponding to
different ecoregions are assumed to be uncorrelated. For
the rest of the world, the uncertainties are coupled within
each TRANSCOM region, decreasing exponentially with
distance. The chosen prior standard deviation is 80 % on land
parameters and 40 % on ocean parameters (van der Laan-
Luijkx et al., 2017).

3.3.3 Observation vectors and errors

All the inversions use observations from the stations listed
in Table 1. Each participant was, however, free to refine their
selection of observations (both in terms of the number of sites
assimilated and of data selection at each site) to adapt it to
the skills of their own inversion system. In practice, five of
the six inversions used data from nearly all the observation
sites. NAME-HB used only a restricted list of 15 sites (see
Fig. S1).

Most of the systems assimilate instantaneous or 1 h av-
erages of the measurements, taken, when there are several
vertical levels of measurements, at the top level of the sta-
tions, as it is the least sensitive to very local surface fluxes.
NAME-HB assimilates 2-hourly observations (average of the
observed concentrations in each 2-hourly interval). Due to
the traditional limitations of transport models in terms of
representation of the orography and simulation of the ver-
tical mixing (Broquet et al., 2011), most of the systems use
observations at low-altitude sites during the afternoon only,
and observations at high-altitude sites during night-time only
(vertical gradients of CO2 near to the surface are notoriously
difficult to simulate accurately, so observations when the ver-
tical gradients are expected to be lower are preferred.)

– PYVAR-CHIMERE assimilates 1 h averages of the
continuous or flask measurements over specific time
windows that depend on the altitude of the stations
above sea level. The selection window is 12:00–
18:00 UTC time for stations below 1000 m a.s.l. and
00:00–06:00 LT for stations above 1000 m a.s.l. (follow-
ing the analysis and choices by Broquet et al., 2011).
The observation errors are set up as a function of sta-

tions, of the height of the station level above the ground
and of the season, following the estimates by Broquet
et al. (2011, 2013), based on comparison of simulations
and measurements of radon. Their standard deviation
for the 1 h averages ranges from 3 to 17 ppm.

– In LUMIA, observations from sites with con-
tinuous observations are selected based on the
‘‘dataset_time_window_utc” flag in the
metadata of the observation files. That corresponds,
for most sites, to a 11:00 to 15:00 UTC time range,
and to a 23:00 to 03:00 UTC time range for mountain
sites. At sites with only flask observations, all samples
were used. The observation uncertainties are set as the
quadratic sum of the measurement uncertainties, of the
uncertainty associated with the foreground transport
model (i.e. FLEXPART) and to the background con-
centrations. The measurement uncertainties are taken
from the data files when available, and a minimum un-
certainty of 0.3 ppm is enforced. Foreground transport
model uncertainties are computed by performing two
similar forward model runs, with TM5 and LUMIA
(i.e. FLEXPART + background concentrations from
TM5), configured such that the only difference is
the model used to compute the transport within the
EUROCOM domain (since the two models run at very
different resolutions, this provides a reasonable proxy
for the representation error). The uncertainties on the
background concentrations are set as the standard
deviation of the vertical profile of background CO2
concentrations around each observation (see Monteil
and Scholze, 2019, for details about the approach).
Finally, a minimum value of 1 ppm was enforced for
the combined uncertainty. On average, the combined
uncertainty is of the order of 2 ppm (with site averages
ranging from 1.02 for MHD to 4 ppm for PUI), but for
individual observations it can be as high as 30 ppm.

– CarboScope-Regional assimilates observations, be-
tween 11:00 and 16:00 UTC for tall-towers, ground-
based or coastal stations, and from 23:00 to 04:00 UTC
for mountain stations (the time intervals refer to the be-
ginning of the observation hour). A base representation
error of 1.5 ppm was assumed for tall towers, coastal
and mountain. For ground based continental sites it was
raised to 2.0 ppm, and to 4 ppm for Heidelberg, which
is in a urban environment. For sites that provide hourly
observations, an error inflation was applied (e.g. for tall
towers: 1.5 ppm ×

√
6 obs per day× 7 day per week=

9.7 ppm).

– In FLEXINVERT+, observations were assimilated
hourly between 12:00 and 16:00 LT for sites below
1000 m a.s.l. and between 00:00 and 04:00 LT for sites
higher than 1000 m a.s.l. The observation uncertainties
are calculated as the quadratic sum of the measurement
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errors (with a minimum of 0.5 ppm), the uncertainty of
the initial mixing ratio, assumed to be 1 ppm and the
contribution of uncertainties in the fossil fuel emission
estimates and in the NEE fluxes from outside the do-
main, both transported by FLEXPART to the observa-
tion sites. The total observation-space uncertainties typ-
ically range between 1 and 3 ppm.

– In NAME-HB, observations are filtered based on a com-
bination of two metrics. One is the ratio of the NAME
footprint magnitude in the 25 grid boxes closest to the
measurement site. If this ratio is high it indicates that
a large proportion of the air arriving at a measurement
site is from very local sources and may not be resolved
by the model. The second metric is the lapse rate mod-
elled by NAME, which is the change of temperature
with height and is a measure of atmospheric stability.
A high lapse rate suggests very stable atmospheric con-
ditions and may also indicate that there is a lot of local
influence on the measurement. With these criteria, some
data outside the usual daytime time constraints can be
included and daytime data that are not collected during
favourable conditions can be removed. In practice, how-
ever, most of the data included are measured during the
daytime. The measurement uncertainties are taken from
the data providers and averaged over the month for each
measurement site to give a fixed monthly value. The
observation uncertainty is adjusted during the inversion
but initially it is the sum of the average measurement
uncertainty and a model uncertainty of 3 ppm.

– In CarbonTracker-Europe, flags from data providers
are used to screen for representative observations (usu-
ally equivalent to the afternoon hours for typical sites
and night-time hours for mountain sites). A model–
data mismatch based on the station category (tower,
flask, etc.) is assigned to each site, accounting for both
measurement errors and modelling errors at that site.
If the difference between the forecast and observation
is greater than 3 times that assigned model–data mis-
match, the observations is not used in the inversion.

The range of uncertainties varies a lot across the systems
and can range from one up to tens of parts per million. It
reflects the different types of coupling between global and
regional transport models, and the different range of diagnos-
tics available for each group to quantify their uncertainties.
The precise impact of these differences in prescribed obser-
vation uncertainties will be analysed in a follow-up study.

4 Results

4.1 Fit to the observations

Before presenting the posterior NEE, we first briefly anal-
yse the misfits to the CO2 observations assimilated by each

inversion. The aims are to check that all inversions actually
improve the model fits to the observations (which is a basic
diagnostic of atmospheric inversions) but also to determine
whether some sites are particularly problematic for some or
all of the inversions.

Comparisons between the prior and posterior bias and root
mean square (RMS) differences (denoted RMS errors, i.e.
RMSE) between the time series of measured and simulated
data are shown for each inversion in Fig. 3, for each site
(sorted according to the prior bias, for each inversion) and
for the whole ensemble of assimilated observations. The ex-
pectation in this analysis is that all the systems should show
a reduction of the misfits (both in terms of mean bias and
RMSE). Ideally the posterior misfits should also be close to
unbiased (i.e. with respect to the prescribed observational un-
certainties).

All the inversions do indeed satisfy these expectations.
The mean posterior biases range from −0.32 ppm (PYVAR-
CHIMERE) to+0.04 ppm (NAME-HB). The largest bias re-
ductions are obtained for the inversions that had the largest
prior biases (CarboScope-Regional, with a mean bias re-
duced from −0.91 to −0.18 ppm, and NAME-HB, with a
mean bias reduced from −0.87 to +0.04 ppm). The spread
of the residuals is also reduced in all the inversions, with the
strongest improvements obtained by NAME-HB (from 4.85
to 2.97 ppm), CarboScope-Regional (from 6.11 to 4.70 ppm)
and FLEXINVERT (from 5.85 to 4.54 ppm). The best over-
all posterior fit is, however, obtained by CTE, with a posterior
RMSE of 2.90 ppm and a posterior bias of +0.01 ppm.

The larger prior bias in CarboScope-Regional is easily ex-
plained by the substantially larger CO2 sink of the VPRM
prior (Sect. 3.2.1). On the contrary, NAME-HB uses the same
ORCHIDEE prior as other inversions (PYVAR-CHIMERE,
FLEXINVERT) so its prior bias must have a different ori-
gin (background, transport or oceanic flux). Note also that
NAME-HB only covers a reduced 5-year period (2011–
2015), which limits its comparability with the other inver-
sions. The comparatively low RMSE obtained in the CTE in-
version (including in the prior step), despite it using a lower-
resolution transport model, shows that the resolution of the
transport (and of the underlying meteorological data) is not
the main limitation to fitting the observations.

At the site scale, the decrease in the misfits is rather mod-
erate, up to 30 % but mostly below 20 %. Some sites tend to
systematically be poorly fitted by the inversions (including
in the posterior step), in particular those in the vicinity of
large urban areas (with large anthropogenic emissions), such
as HEI and GIF. Note that this is accounted for in several of
the inversions, but not all, by inflating the model represen-
tation errors (which allows the model to degrade the fit to
the observations, at a low “cost”). Besides these two sites, it
does not appear that the distribution of the fits is systematic.
In particular, there is no major difference between the fit to
mountain-top (with night-time observations assimilated) and
plain sites.
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Figure 3. Prior (blue) and posterior (red) mean bias (dots) and RMSE (solid lines) at each observation site, for each inversion. The size of
the dots is proportional to the number of assimilated observations. The histograms at the right of each subplot show the prior and posterior
distribution of fit residuals for the entire ensembles of assimilated observations.

Error statistics computed on hourly to annual averages of
the observations (Table 3) show considerably larger RMSE
reduction for monthly and annual averages (respectively
33 % and 34 % ensemble median RMSE reduction) than for
hourly and daily averages (20 % and 23 %, respectively). The
only exception is NAME-HB, for which the error reduction

is of the same order at all timescales (from 41 % for hourly
averages to 49 % for monthly averages). This likely reflects
the fact that, except for NAME-HB, all inversions use prior
error covariance matrices implementing a temporal correla-
tion length of 1 month between the flux adjustments, regard-
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Table 3. Prior and posterior RMS difference (ppm) and percentage RMS difference reduction between modelled and observed concentra-
tions, averaged hourly to annually. The average is first performed site by site, and then the site values are averaged together, with weights
proportional to the length of each time series.

Annual Monthly Daily Hourly

Prior Post. Reduct. Prior Post. Reduct. Prior Post. Reduct. Prior Post. Reduct.

LUMIA 1.57 1.07 31 % 2.79 2.04 27 % 4.78 4.16 13 % 4.76 4.11 14 %
PYVAR-CHIMERE 1.80 1.51 16 % 2.71 2.00 26 % 4.50 3.69 18 % 4.85 4.10 16 %
CTE 0.88 0.57 36 % 1.57 1.13 28 % 3.28 2.52 23 % 3.30 2.70 18 %
CarboScope-Regional 1.56 0.73 53 % 2.54 1.33 48 % 4.75 3.32 30 % 5.39 4.18 23 %
NAME-HB 1.32 0.76 42 % 2.97 1.50 49 % 4.67 2.65 43 % 4.77 2.81 41 %
FLEXINVERT 1.63 1.10 33 % 2.88 1.80 37 % 5.04 3.87 23 % 5.32 4.19 21 %

Median 1.56 0.92 34 % 2.75 1.65 33 % 4.71 3.51 23 % 4.81 4.10 20 %

less of the actual temporal resolution of the inversions (see
Table 2).

The monthly statistics are the most consistent across the
ensemble (the larger error reduction obtained in CarboScope-
Regional and NAME-HB are easily explained by their larger
prior bias), which suggests that this is the temporal scale for
which the comparison is the most robust.

This comparison of the residuals is an important technical
diagnostic but does not indicate how realistic the posterior
fluxes are and should not be interpreted as a ranking of the
inversions. In particular, a good posterior representation of
the observations is only a sign that the inversion had enough
independent degrees of freedom to match the observed con-
centrations, but does not mean that the observations are suf-
ficient to robustly constrain the control vector, or that the un-
derlying transport model is accurate.

4.2 Posterior European-scale NEE

The monthly prior and posterior NEE values from the six
inversions, integrated over the whole European domain (as
defined in Sect. 3) and over the 10-year period of the inter-
comparison, are displayed in Fig. 4. The dominant feature
in Fig. 4 is the systematic differences between the seasonal
cycles; i.e. each inversion shows a similar pattern in the sea-
sonal cycle (large/small amplitude or timing of peak values)
for each year of the simulation period.

Overall, the posterior fluxes remain within or close to the
range of values defined by the different priors. In Sect. 4.2.1
and 4.2.2, we compare the prior and posterior mean fluxes
and their variability, at the annual and monthly timescales. In
Sect. 4.2.3 we have a first look at the sub-continental scale.
Results at the grid scale are provided for completeness in the
Supplement but are not further discussed in this paper.

4.2.1 Long-term mean and variability of the annual
NEE budget

Prior and posterior estimates of the annual budgets of the
NEE over the European domain, as well as their mean and
standard deviation over the inversion period, are reported in
Fig. 5.

We find an ensemble mean posterior estimate of the
10-year average NEE of −0.09 Pg C yr−1 (−0.16 Pg C yr−1

when excluding NAME-HB, which only covers the
last 5 years), with values ranging from a net source
of 0.28 Pg C yr−1 (PYVAR-CHIMERE) to a net sink
of −0.41 Pg C yr−1 (FLEXINVERT). LUMIA and
CarboScope-Regional estimate net sinks (−0.36 and
−0.32 Pg C yr−1, respectively) and the CTE inversion yields
an almost neutral NEE budget (+0.02 Pg C yr−1). Finally,
besides PYVAR-CHIMERE, only the NAME-HB system
finds the European ecosystems to be on average a net source
of CO2 to the atmosphere over our simulation period. Over-
all, the range of estimates from our inversions (0.7 Pg C yr−1)
is narrower than that of the priors (1.06 Pg C yr−1 between
VPRM and SiBCASA).

A large fraction of the average spread is due to systematic
offsets between the optimized fluxes: the standard variation
of the annual flux obtained in each inversion (taken as a met-
ric for the inter-annual variability, IAV) is generally much
smaller than the spread of the ensemble. The standard de-
viation of the annual NEE ranges from 0.11 Pg C yr−1 (LU-
MIA) to 0.33 Pg C yr−1 (FLEXINVERT), while the ensem-
ble spread of the annual NEE is of the order of 0.8 Pg C yr−1.

In the case of the CarboScope-Regional inversion, an ob-
vious source for an offset from the other inversions is the
prior flux from VPRM, which is much more negative than
the other three priors. However, the differences between the
three inversions using the NEE field from ORCHIDEE as a
prior flux (PYVAR-CHIMERE, FLEXINVERT and NAME-
HB) show that the biases between prior estimates can, at best,
only partially explain the offsets in posterior estimates.
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Figure 4. Monthly posterior fluxes, aggregated on the entire domain.

Figure 5. Annual NEE budget (positive for a source to the atmosphere and negative for a sink) for the six inversions (upper section of the
array), for the four priors (middle section), and median prior and posterior fluxes (lower section). The two last columns show the mean NEE
and the standard deviation of the NEE estimate, respectively, for each simulation. The colours of the cells indicate the strength and direction
of the annual NEE anomaly (respective to the mean of each row; see Fig. 6 for the actual values).
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Figure 6. NEE anomalies of the six inversion posteriors and of the four priors. The median of the prior anomalies is shown as a thick blue
solid line; that of the posteriors is shown as a thick red solid line. The blue shaded area shows the envelope of prior anomalies.

The annual anomalies of NEE are compared in Fig. 6,
and the colours of the cells in Fig. 5 also scaled to these
anomalies (with the long-term mean of each estimate taken
as a reference). The ensemble spread of the posterior anoma-
lies is generally much larger than that of the prior, although
one system (FLEXINVERT) is contributing the most to such
spread (in 2009 and 2014 for instance). The spread also
strongly varies from year to year, from a minimum spread
of 0.21 Pg C yr−1 in 2007 to a maximum of 0.67 Pg C yr−1 in
2009. In order to provide metrics less sensitive to potential
model outliers, the medians of the prior (blue) and posterior
(red) anomalies are shown in the Fig. 6.

There are a few consistent features, such as a clear posi-
tive anomaly in 2012, already present in the priors (median
of +0.19 Pg C yr−1) and further confirmed by the inversions
(median value of +0.16 Pg C yr−1). In contrast to the pri-
ors, however, the inversions point to a continuation of this
anomaly in 2013 (+0.10 Pg C yr−1) and do not confirm the
negative anomaly present in most priors in 2014. The in-
versions also point to negative anomalies in 2006, 2009 and
2015 (respectively −0.16, −0.19 and −0.1 Pg C yr−1) that
are clearly outside the range of prior anomalies, although the
spread of the ensemble is rather large for each of these three
years (> 0.5 Pg C yr−1). Overall, however, the posterior me-
dian anomalies remain within or close to the range of prior
anomalies for most of the 10-year period, but individual in-
versions can diverge a lot from the rest of the ensemble of
posterior estimates, like FLEXINVERT before 2010 and in
2014.

In summary, the inversions clearly reduce the interval of
estimates regarding the mean annual NEE of the European
domain (compared to the ensemble of priors) but do not ro-
bustly capture the inter-annual variability of that annual flux.
Analysing the differences in annual IAV is, however, com-
plicated by the large spatial and temporal scales over which
the fluxes are averaged: the observation network is not homo-

geneous, and the inversions may constrain some parts of the
domain or times of the year better than others. In the follow-
ing sections (Sect. 4.2.2 to 4.2.3) we analyse the inversion
results at finer temporal and spatial scales.

4.2.2 Seasonal variability of NEE

The mean monthly posterior NEE estimates for the six inver-
sions together with the prior fluxes are shown in Fig. 7. At
first glance, the spread of the posterior fluxes approximately
matches that of the prior estimations, with very similar mean
spring (May–June) uptakes, ranging from −0.24 (NAME-
HB) to −0.55 Pg C per month (FLEXINVERT) in the poste-
riors and from −0.28 to −0.62 Pg C per month in the priors.
Winter posterior emissions are slightly higher (from +0.13
(LUMIA) to +0.32 Pg C per month in FLEXINVERT) than
the priors (+0.11 to +0.23 Pg C per month). As a result, the
median seasonal cycles are also very similar, with a similar
phasing and a seasonal cycle amplitude of ≈ 0.55 Pg C.

This similarity between the prior and posterior ensembles
hides more significant differences at the level of individual
ensemble members. The phasing of the seasonal cycle is very
consistent among the inversions, with terrestrial ecosystems
becoming a CO2 sink (flux sign switch around April and Au-
gust and with a peak uptake in June). On the contrary, the
bottom-up simulations used as priors have four relatively dis-
tinct seasonal patterns (see also Fig. 2).

For instance, LPJ-GUESS simulates an early peak CO2
uptake in May, which is not confirmed by the inversions (only
NAME-HB yields to a similar peak). LPJ-GUESS simulates
a NEE alternating between being a neutral flux and a pos-
itive but small (≈ 0.1 Pg C per month) net CO2 source be-
tween July and March. This is most of the time outside or
at the edge of the range of flux estimates derived from the
inversions. The strong peak carbon uptake in June in OR-
CHIDEE (−0.62 Pg C per month in June) clearly exceeds
the lower boundary of the posterior ensemble (−0.55 Pg C
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Figure 7. (a) Average seasonal cycles of the prior and posterior estimates. The prior and posterior ensemble median are represented as thick
solid lines, and the spread of the posterior ensemble is shown as a shaded area. (b) Variability of the seasonal cycle during the 10 years of
the inversion (the shaded areas represent the range of monthly NEE and the solid lines correspond to the individual years).

per month in FLEXINVERT). The positive NEE found by
ORCHIDEE at the end of the summer (0.13 Pg C per month
in August and September) is also contradicted by the inver-
sions (≈ 0.04 Pg C per month ensemble median in these two
months). The phasing of the seasonal cycles in VPRM and
SiBCASA are in good agreement with that of the inversions.
The winter NEE estimate in VPRM (≈ 0.07 Pg C per month
between October and March) is lower than suggested by the
inversions (ensemble median of 0.16 Pg C per month), and on
the contrary, the inversions point to a lower NEE than found
by SiBCASA in the first 3 months of the year (0.19 Pg C
per month between January and March, compared to a corre-
sponding ensemble median of 0.09 Pg C per month).

The variability of the seasonal cycles obtained with each
system are illustrated in Fig. 7b. The systematic differ-
ences between the inversion systems dominate the picture
and far exceed the monthly IAV within each inversion dur-
ing the peak growth period (May–June) and during the au-
tumn (October–November). The peak-to-peak amplitude of
the mean seasonal cycle inferred by the different inver-
sions varies between 0.4 Pg C per month for NAME-HB and
0.9 Pg C per month for FLEXINVERT.

Figure 8 focuses on the monthly anomalies relative to the
average seasonal cycle that drive these main differences. The
figure provides more insights to explain the IAV of the annual
budgets, discussed in Sect. 4.2.1. For instance, the negative
annual flux anomaly (i.e. enhanced sink) found by four inver-
sions in 2006 is explained by a stronger-than-usual carbon
uptake in the summer of 2006. The negative NEE anomaly
remains throughout most of the autumn and winter of 2006–
2007 and becomes even more pronounced in March 2007,
after which it switches sign. The 2012 anomaly is, on the
contrary, spread over the entire year in almost all the inver-
sions. It is, however, already well described by the priors, and
the inversions here provide a confirmation.

In some instances it may be possible to relate these NEE
anomalies to climate anomalies. For example, the summer
2006 in Europe was marked by a heatwave lasting for most
of the month of July, and was followed by a particularly mild
winter, which could explain the relatively stronger carbon
sink from June 2006 to May 2007 (Rebetez et al., 2009).
However, the size of our domain is assumedly much larger
than the spatial extent of most potential climate anomalies,
which complicates this type of analysis. We therefore briefly
delve into the spatial distribution of the flux adjustments in
the following section.

4.2.3 Spatial variability

Analysing the spatial variations of the fluxes may reveal ro-
bust local signals in areas where the transport models are
more reliable and where the observation network is denser.
It can also help to better interpret the results in terms of un-
derlying processes in a large region such as Europe where the
ecosystems and climate are highly heterogeneous. However,
getting robust signals at regional scales is challenging due to
the limited spatial resolution of the transport models and to
the relative simplicity and large scales of the error correla-
tions used for characterizing the prior flux uncertainties. A
detailed analysis of the regional signals will be published in
a follow-up article. Here, we only provide a brief overview
of the spatial distribution of the NEE adjustments to provide
a first assessment of the potential of regional inversions to
analyse subcontinental-scale NEE variations and to support
the previous analysis of the anomalies at the European scale.

We aggregate the fluxes in four large regions: northern Eu-
rope (Scandinavia, Finland and the Baltic states), southern
Europe (the Iberian Peninsula, Italy, Greece, Romania and
the Balkan states), western Europe (France, Benelux, the UK
and Ireland) and central Europe (the remaining countries, up
to the eastern border of Poland). The regions are pictured in
Fig. 1. These four regions correspond roughly to four climate
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Figure 8. Monthly prior and posterior anomalies of the seasonal cycle, with each simulation compared to its own average seasonal cycle
(Fig. 7a).

zones (Nordic, Mediterranean, oceanic and continental) and
exclude parts at the edge of our domain which are not sam-
pled by the observation network (North Africa, Turkey, far
east of Europe).

Average regional monthly budgets for both prior and pos-
terior estimates are shown for each region in the upper row
of Fig. 9, along with the prior and posterior ensemble median
and spread. Some of the systematic differences between the
posterior seasonal cycles already noted at the European do-
main scale are present in all or most of the regions. This is
in particular the case for the lower amplitude of the NAME-
HB seasonal cycle and the positive autumn NEE peak in the
FLEXINVERT inversion. But others, such as the positive
bias of the PYVAR-CHIMERE posterior (i.e. 0.28 Pg C yr−1;

see Fig. 5), can be more clearly attributed to one specific re-
gion, like southern Europe.

Central Europe

NEE is most robustly estimated in the central Europe region,
which is not surprising because it is the region most densely
sampled by the observation network. The median prior and
posterior fluxes are nearly identical, but the spread of the pos-
terior ensemble is generally narrower than that of the prior
fluxes. In particular, the LPJ-GUESS NEE estimate is clearly
outside the range of posteriors in the summer (it points to a
peak uptake of −0.04 Pg C per month in June, half of the
−0.08 Pg C per month ensemble median).
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Figure 9. Upper row: mean prior (black lines) and posterior (coloured lines) seasonal cycle of the terrestrial carbon flux in the four regions
highlighted in Fig. 1; prior and posterior ensemble median (thick blue and red lines) and posterior spread (blue shaded area). Lower row:
mean annual net terrestrial carbon flux for these same regions.

In terms of net annual budget, the inversions fall in two
categories: CarboScope-Regional and LUMIA point to a sink
of −0.12 Pg C yr−1, all the other inversion systems yield a
close to zero annual budget. The similarity in the annual bud-
get from these four inversions is, however, most likely by
coincidence because the seasonal distribution of the fluxes
is rather different (FLEXINVERT points to a summer up-
take 30 % larger than that found in the NAME-HB inversion,
compensated for by larger winter emissions).

Western Europe

Western Europe is also well sampled by the observation net-
work, but because of the dominating westerly winds in our
study domain, this region is more sensitive to boundary con-
ditions than the central Europe region. The spread of the prior
fluxes (0.02 to 0.04 Pg C per month) is narrower than in cen-
tral Europe and is not further reduced by the inversions. In
summer, the NAME-HB inversion suggests a reduced carbon
uptake (−0.02 Pg C per month in June, compared to a prior
ensemble mean of −0.06 Pg C per month), but as mentioned
earlier, this is a systematic feature of that inversion, not spe-
cific to western Europe. In autumn (October to December),
two inversions point to a much stronger positive flux than the
priors and the other inversion systems (up to +0.75 Pg C per
month in November, double the value of the posterior ensem-
ble mean of+0.35 Pg C per month). As a result, there is little
convergence between the annual budgets, which range be-
tween a net sink of −0.12 Pg C yr−1 (CarboScope-Regional)
and a source of 0.06 Pg C yr−1 (CTE).

Southern Europe

The strongest corrections to the prior fluxes are obtained in
southern Europe. The median value of the posterior estimates
points to a≈ 30 % reduction of the summer CO2 uptake com-
pared to the median of the prior fluxes. The spread of the
posterior ensemble is larger than in the other regions (−0.08
to 0.14 Pg C per month) but this is also the region where the
spread of the prior interval is the largest (up to 0.13 Pg C in
July).

The shape of the LPJ-GUESS seasonal cycle is different
from that of the other models, with two periods of negative
NEE (February–June and October), and a peak carbon flux
to the atmosphere in August. For most of the year, it remains
outside the range of posterior scenarios and is therefore not
compatible with the atmospheric observations.

The seasonal cycles of the three other prior fluxes are in
phase with that of the inversion ensemble, but the amplitude
of the summer uptake in ORCHIDEE and SiBCASA is larger
than that inferred by the inversions, and the peak of carbon
emissions simulated by ORCHIDEE in August and Septem-
ber is also corrected by the inversions (respectively 0.04 and
0.07 Pg C per month, compared to maximum ensemble pos-
terior values of 0.02 and 0.04 Pg C per month).

Northern Europe

In northern Europe, for most of the year the range of posterior
estimates is larger than that of the prior fluxes. All the simu-
lations (including both prior and posterior) are well in phase,
with a summer peak uptake in June–July and a stable winter
flux between October and March. The inversions contradict
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the near-zero flux of the VPRM prior from August to Decem-
ber. The size of the summer uptake varies by a factor of 3, be-
tween the −0.04 Pg C per month as estimated by NAME in
June and a corresponding value of −0.13 Pg C per month es-
timated by the FLEXINVERT inversion. The prior and pos-
terior median are, however, nearly identical. Three inversions
(CarboScope-Regional, FLEXINVERT and LUMIA) yield a
clear annual net carbon sink (−0.06 to −0.14 Pg C yr−1) for
this region; however, the agreement on the size of the annual
budget by CarboScope-Regional and FLEXINVERT is again
by coincidence, as they distribute the fluxes very differently
throughout the year.

5 Discussion

We have presented an overview of the results from the first
set of inversions from the EUROCOM project. The ensemble
includes one inversion for each of the participating systems
and is designed so as to maximize the exploration of uncer-
tainties, by covering a large diversity of inversion settings
(prior, boundary condition, type of optimization technique
and of optimized vector, etc.). This approach yields a more
realistic approximation of the uncertainties and enables the
dominant features of that uncertainty to be identified, bet-
ter than what could be obtained from, for example, a set of
sensitivity experiments using a single inversion system, or
than the theoretical uncertainty estimates that are sometimes
computed along with the inversions. The trade-off of that ap-
proach is that it does not easily permit the causes for the dis-
crepancies between the inversions to be determined.

In the subsections below, we further discuss several as-
pects of our results, and put them in perspective with the pre-
viously published literature. First we discuss the annual bud-
get of NEE in Europe, which has been a debated topic. Then
in Sect. 5.2 we discuss the aspects of our results that are at
this stage the most robust, and for which regional inversions
seem the most relevant. Finally we briefly discuss the future
perspectives of regional inversions, and of the EUROCOM
intercomparison exercise.

5.1 How well can regional-scale inversions constrain
the annual budget of European NEE?

The annual budget of NEE is a key metric to characterize
the amount of carbon absorbed by the European ecosys-
tems, since it balances the releases in winter and at night
(by ecosystem respiration) with the uptakes during daytime,
mostly in spring and summer (by photosynthesis). Annual to
multi-annual budgets are an important measure to quantify
the impact of environmental conditions such as ecosystem
management, disturbances and climate extremes on the ter-
restrial carbon cycle.

The annual budget has notably been synthesized in Reuter
et al. (2017): on the one hand, global inversions that assim-

ilate only surface observations showed geographical Europe
as a moderate to rather small carbon sink (≈−0.4 Pg C yr−1)
on multi-annual scales and, on the other hand, inversions
constrained by satellite retrievals of total column atmo-
spheric CO2 (XCO2) consistently infer that it is a much
larger sink, of the order of−1 Pg C yr−1. More recent studies
suggest a smaller uptake: Scholze et al. (2019) find a mean
sink of −0.3± 0.08 Pg C yr−1 by assimilating three datasets
(namely in situ atmospheric CO2 and remotely sensed soil
moisture and vegetation optical depth) into their carbon cy-
cle data assimilation system. Similarly, Crowell et al. (2019)
estimate a mean sink of −0.25± 0.46 Pg C yr−1 from the
ensemble of an intercomparison of atmospheric inversions
based on XCO2 observations from OCO-2. These estimates
correspond to a geographical European domain which ex-
tends eastwards to the Urals, and which is much larger than
the domain studied here. The areas of highest uptake in these
satellite inversions are located in the eastern part of Europe,
i.e. east of our EUROCOM domain.

From our ensemble of inversions we find a median sink
of−0.15 Pg C yr−1, relatively constant from year to year and
with no significant trend over the 10 years of the period stud-
ied. Our study therefore tends to support the hypothesis that
ecosystems in the European domain studied here are a weak
carbon sink. Because of the differences in the domain extent,
our inversions cannot close the controversy. But they indicate
that, if there is a strong land sink over Europe (of the order
of 1 Pg C yr−1), then most of it has to be located in eastern
Europe, beyond the extent of our dense observation network.

Figure 10 provides results for our European domain (long-
term mean and IAV) from a set of state-of-the-art global in-
versions that assimilate only surface observations and which
cover the time period studied here. They correspond to the set
of global inversions used for the Global Carbon Project an-
nual analyses (Le Quéré et al., 2018). The range of mean an-
nual NEE obtained from these global inversions is about half
that obtained from our regional inversions (0.8 Pg C yr−1),
which suggests that, at this scale, our regional inversions do
not constrain the annual NEE better than global inversions.
The spread between these four state-of-the-art global inver-
sions selected for the GCP synthesis actually corresponds to
the outcome of a long process of improvement and selec-
tion of inversion configurations, as reflected by the very large
spread of 1.8 Pg C yr−1 obtained from the inter-comparisons
by Peylin et al. (2013). Therefore, one can expect the pro-
cess of inter-comparing regional-scale inversions started here
with the EUROCOM project to yield a much-refined estimate
of the annual to multi-annual budgets in the coming years.

The slightly narrower spread of the global inversions
nonetheless questions specific aspects of the regional inver-
sions, which may prevent them from providing more pre-
cise estimates of the continental-scale fluxes. Part of the con-
straint on the European NEE in global inversions comes from
the observed large-scale atmospheric gradients between sta-
tions located in the Atlantic Ocean and Asia. These con-
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Figure 10. Comparison of the EUROCOM inversion ensemble with global inversions from the Global Carbon Project (Le Quéré et al.,
2018). Panel (a) shows the annual NEE anomalies, with our prior and posterior ensembles shown as shaded areas, for the clarity of the figure.
Panel (b) shows the mean annual budgets. The results from the global inversions were extracted for the exact EUROCOM domain on the
global carbon atlas (http://www.globalcarbonatlas.org, last access: 6 August 2020).

straints are only incompletely transferred to regional inver-
sion via their boundary conditions, and the shorter-scale gra-
dients captured by the continental observations may not be
sufficient to characterize the continental carbon balance. Un-
less the surface network is extended to sufficiently cover the
eastern and southern parts of the domain, it might be useful
to impose a constraint on the large-scale gradients to the re-
gional inversions. However, this also means that the relevant
scale for regional inversions is possibly much smaller. The
next section thus focuses on the spatial and temporal scales
where our ensemble of inversions leads to robust and consis-
tent results.

5.2 New insights into the European land carbon flux

While the net annual carbon flux is an important metric, fo-
cusing on it can give an overly pessimistic view of the results,
especially when integrated over the whole European domain,
for which the observational coverage is not homogeneous. In
fact, a large share of the discrepancies between the inversions
can be attributed to regions located at the eastern and south-
ern borders of our domain that are not part of the four regions
discussed in Sect. 4.2.3 (Russia, Ukraine, Turkey and North
Africa, but also large swathes of the “southern Europe” re-
gion).

Indeed, the ensemble of inversions leads to a narrower
range of estimates than the ensemble of priors for regions
with a dense network such as central Europe (0.21 Pg C yr−1

of difference between the priors, vs. 0.10 Pg C yr−1 between
the posterior estimates). In contrast, the range of the en-
semble of the inversions is almost 3 times the range of the
prior estimates (0.33 Pg C yr−1 between the optimized an-
nual NEE, vs. 0.12 Pg C yr−1 between the prior estimates) in
the parts of the domain that are outside the four regions (see
above), despite these regions being only rarely downwind of
the observation network. This means that although the poste-
rior annual estimates at the continental (whole-domain) scale
may not be more robust than in the GCP global inversions,

for example (as discussed in Sect. 5.1), the regional inver-
sions in our intercomparison are capable of resolving annual
fluxes at the scale of large countries (e.g. 0.8 to 1.6 mil-
lion km2 for the four regions defined in this paper), provided
that the observational network is dense enough.

The size of the spread between the posterior monthly flux
estimates varies by a factor of 5 throughout the year (at the
continental scale). Monthly fluxes are usually well resolved
in the first 9 months of the year except for June, but this larger
spread in June is due to one single inversion (NAME-HB),
which among other differences uses a much reduced observa-
tion network (See Sect. 4.1) and covers only the last 5 years
of our simulation period. The larger range among the esti-
mates at the end of the year is more problematic and points
to a problem of the inversions to robustly resolve the winter
NEE, i.e. the terrestrial respiration flux. Some speculative ex-
planations could be larger systematic transport errors (winter
concentrations are more difficult to represent, in particular at
the highest latitudes, where the boundary layer remains ex-
tremely shallow, and the vertical atmospheric stratification
is high when the days are very short) and/or larger relative
differences in the prescribed prior flux uncertainties between
the inversions (uncertainties are overall smaller in winter be-
cause of the lack of photosynthesis).

In three regions (western, central and northern Europe),
the prior and posterior ensemble median of the seasonal cy-
cle are almost identical, meaning that the inversions mostly
provide a confirmation of the prior knowledge (see Fig. 9).
However, the differences between our ensemble median (i.e.
best-informed guess) and each individual prior are some-
times large. For instance, the inversions consistently yield a
summer uptake twice as large in central Europe compared
to the one computed by LPJ-GUESS. The results therefore
present useful information for bottom-up modellers as they
can be used to identify local or regional shortcomings in their
models. This is also true when looking at the inversion results
for southern Europe. Although the posterior estimates are not
as consistent with each other as in the other regions, we nev-
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ertheless can clearly identify some shortcomings in the priors
because they are far out of the ensemble spread (e.g. summer
uptake by ORCHIDEE and SiBCASA, the double peak from
LPJ-GUESS).

In summary, the relative lack of convergence of the an-
nual fluxes at the scale of the continent hides more robust
features at monthly and smaller regional scales, especially in
central and western Europe, where the observation network is
the densest. The divergences between the inversions regard-
ing the winter fluxes will need to be investigated through a
targeted effort. Nonetheless, the aim of optimizing fluxes at
country scale appears achievable for the large countries in
areas with a dense network. In recent years, the density of
observation sites in northern Europe has increased a lot, so it
is expected that the spread between the posterior estimates in
this region can be reduced significantly in the future.

5.3 Future prospects of regional inversions and of the
EUROCOM intercomparison

Our inversion protocol was intentionally very loose, to allow
for the participation of a wide range of inversion systems and
hence maximize the exploration of the space of uncertainties.
It is therefore expected that the range of estimates would be
large, and we consider it as a rather conservative represen-
tation of the actual uncertainties. The analysis of the results
offers a few clues:

– The resolution of the transport model does not appear
to be a major limitation (the best fit to the observations
is actually obtained by the inversion using the lowest
resolution transport model; see Table 3).

– Systematic patterns such as the differences in seasonal
cycles or the average net annual NEE also seem rela-
tively unaffected by the changes in the site selections
that occur throughout the 10-year period, as the avail-
ability of data evolves (Fig. 7, right).

– The choice of a prior necessarily has an impact but can
only explain a small fraction of the differences between
the inversions (the differences between the three inver-
sions using the ORCHIDEE prior are of the same order
as the differences with the inversions using different pri-
ors).

The explanations for the spread of the ensemble are likely
multi-factorial and specific to each feature of the spread. A
traditional approach to assess the quality of inversion results
would be to verify whether the posterior fluxes also enable
improvements in the fit to independent (i.e. non-assimilated)
observed CO2 concentrations. This approach has, however,
its own limitations. The goodness of fit to observations at
one location cannot be generalized to the entire inversion do-
main or period. Using the few available (not already assim-
ilated) concentration data (e.g. from aircraft measurement
campaigns) could in fact deliver the incorrect message that

one system is systematically over- or under-performing com-
pared to the others. For the same reason, a validation by com-
parison with in situ flux measurements is risky, as the differ-
ences in scales between the fluxes optimized by the inver-
sions and those measured by eddy-covariance sites, for ex-
ample, are very large.

The inter-comparison exercise presented here does not en-
able a direct validation of the optimized fluxes, but it pro-
vides an estimation of how large the uncertainties are, and
it helps identify its dominant features in a more systematic
manner than what could be done with just one inversion sys-
tem. To conclusively determine the drivers of that uncertainty
and discriminate their relative contributions, targeted efforts
will be needed, primarily in the form of sensitivity experi-
ments using a stricter protocol and focusing on one driver of
uncertainty at a time. The knowledge gained from the first
phase of the intercomparison will help design these new ex-
periments, which should rapidly lead to an improved conver-
gence of the ensemble.

6 Conclusions and future of the EUROCOM project

The EUROCOM project delivered a set of European NEE
estimates at a 0.5◦, monthly resolution at the disposal of
the scientific community (Monteil et al., 2020). The data
can be used as a comparison and validation dataset for both
bottom-up and inverse modellers. The input datasets (obser-
vations and prior fluxes) remain available for inverse mod-
elling groups willing to submit additional inversions, and we
expect the size and robustness of the ensemble to grow over
time. An extension of the inversions until 2019 is currently
ongoing.

Our best posterior estimate (ensemble median) of the long-
term mean annual terrestrial European NEE of −0.15±
0.08 Pg C yr−1 over the years 2006–2015 is comparable to
the median value of−0.3±0.11 Pg C yr−1 from our prior es-
timates as well as recent estimates from other studies (e.g.
Scholze et al., 2019; Crowell et al., 2019, albeit for a slightly
different domain). Since our domain here does not cover the
European part of Russia, the area that is postulated to con-
tribute most to the large European carbon sink (see for exam-
ple Reuter et al., 2017), we cannot resolve this controversy
here with our intercomparison.

We deliberately kept the requirements in the intercompar-
ison protocol (i.e. use of prescribed common datasets or in-
version set-ups) to a minimum (namely, prescribed fossil fuel
emissions and common domain) to encourage the participa-
tion of voluntary contributions from regional atmospheric in-
verse modelling groups. Such an intercomparison approach,
where a large number of parameters influencing results of
the inversions vary from one system to another, presents the
advantage that the resulting distribution of results provides
a good approximation of the distribution of uncertainties on
the net European terrestrial carbon flux. Indeed, the analysis
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shows that no inversion is clearly more or less valid than the
others, and, depending on the focus metrics, each can be an
outlier. Such a multi-model and multi-inversion system en-
semble is the best approach for providing robust estimates of
the European carbon budget.

The most robustly modelled feature in our ensemble is the
mean seasonality of the annual CO2 sink in regions with a
dense observational network, i.e. mainly central and west-
ern Europe, illustrating the usefulness of a coordinated in-
frastructure such as ICOS in delivering high-quality obser-
vations. The coverage of the observational network in some
regions of Europe is still limited, which is clearly reflected
in a larger spread in the annual and monthly budgets in these
regions within our ensemble. Observations from satellites,
such as OCO-2 or the upcoming CO2M, may help in increas-
ing the coverage but they have their own limitations (prone
to clouds and aerosols, limited coverage during the winter
season if based on passive optical instruments).

The mean annual terrestrial NEE itself is not strongly
constrained by the observations and we find a spread of
0.7 Pg C yr−1 within our ensemble. As mentioned above, this
is partly because of the high freedom in the choice of set-
tings. This freedom in the choice of settings makes it rather
challenging to fully understand the causes of the spread in
the ensemble results and the underlying uncertainties. We
will investigate these differences in more detail and evalu-
ate some of the specific parameters involved in the inversion
set-ups in a forthcoming paper. Eventually, this will lead to
a much better quality of the regional inversion estimates that
could not have been possible without such an intercompari-
son exercise.

Currently, the main benefit of regional inversions over
global ones does not appear to be at the scale of the conti-
nent, but rather at finer spatial scales, in regions well cov-
ered by the observation networks. The observation network
seems sufficiently dense to envision robust country-scale es-
timates of the carbon balance (at least for the largest coun-
tries) in western and central Europe. Recent expansions of
the networks both in northern and southern Europe should
also enable a significant reduction of the spread between the
inversions in the near future.
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