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Abstract. Clouds are prevalent and alter fine particulate mat-
ter (PM2.5) mass and chemical composition. Cloud-affected
satellite retrievals are subject to higher uncertainty and are
often removed from data products, hindering quantitative es-
timates of tropospheric chemical composition during cloudy
times. We examine surface PM2.5 chemical constituent con-
centrations in the Interagency Monitoring of PROtected Vi-
sual Environments (IMPROVE) network in the United States
during cloudy and clear-sky times defined using Moderate
Resolution Imaging Spectroradiometer (MODIS) cloud flags
from 2010 to 2014 with a focus on differences in particle
species that affect hygroscopicity and aerosol liquid water
(ALW). Cloudy and clear-sky periods exhibit significant dif-
ferences in PM2.5 mass and chemical composition that vary
regionally and seasonally. In the eastern US, relative hu-
midity alone cannot explain differences in ALW, suggesting
that emissions and in situ chemistry related to anthropogenic
sources exert determining impacts. An implicit clear-sky bias
may hinder efforts to quantitatively understand and improve
representation of aerosol–cloud interactions, which remain
dominant uncertainties in models.

1 Introduction

At any given time, visible clouds cover over 60 % of the
Earth’s surface (King et al., 2013), and a warming climate
changes cloud patterns (Norris et al., 2016). The average
cloud fraction over the contiguous US (CONUS) is ∼ 40 %
year-round and higher in winter (44 %–54 %) than summer
(26 %–34 %) (Ju and Roy, 2008; Kovalskyy and Roy, 2015).

Convective cloud droplets act as atmospheric aqueous-phase
reactors, and their condensed-phase oxidative chemistry gen-
erates particle mass aloft, such as sulfate (Zhou et al., 2019),
water-soluble organic carbon (Carlton et al., 2008; Duong
et al., 2011), and organosulfur compounds (Pratt et al., 2013).
Cloud processing alters physical and chemical parameters of
boundary layer aerosol that serve as cloud condensation nu-
clei (CCN). Aqueous chemistry changes aerosol size distri-
bution (Meng and Seinfeld, 1994), hygroscopicity, and the
oxygen to carbon (O : C) ratio (Ervens et al., 2018). Aerosol–
cloud interactions and impacts are complex and a critical un-
certainty in model projections (Fan et al., 2016).

Atmospheric chemistry strategies are often designed in
ways that minimize cloud and water influences. Laboratory
experiments to understand organic particulate matter for-
mation are historically conducted under dry conditions (Ng
et al., 2007), and aircraft typically avoid clouds during atmo-
spheric chemistry field campaigns. Recent laboratory exper-
iments include relative humidity (RH) influence (e.g., Hinks
et al., 2018; Lamkaddam et al., 2017), and understanding
the impact on the amount of aerosol liquid water is criti-
cal (Kamens et al., 2011). With respect to satellites, there
is increased error in remotely sensed aerosol optical thick-
ness (AOT) retrieval techniques during cloudy times (Mar-
tin, 2008). AOT quantification above cloud is improving,
but impacted retrievals are often screened from final data
products to avoid measurement artifacts. Most validation of
satellite-derived AOT through comparison to surface mea-
surements, such as those from sun photometers used to re-
trieve AOT from the ground up, is conducted for cloud-free
periods (Liu et al., 2018). Air quality models are often eval-
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uated with cloud-free satellite retrievals and aircraft samples
(van Donkelaar et al., 2010; Guo et al., 2017; de Hoogh et al.,
2016; Song et al., 2014; Tian and Chen, 2010; Bray et al.,
2017; McKeen et al., 2009). This biases model development
and predictive skill toward cloud-free conditions. Should dif-
ferences in aerosol physicochemical properties exist between
cloudy and clear-sky time periods, current approaches are
limited in their ability to quantitatively assess those differ-
ences. This is a key knowledge gap.

Characterization of fine particulate matter (PM2.5) mass
and chemical composition in the US primarily relies on sur-
face measurements from relatively sparsely spaced moni-
tors. At various locations across the CONUS, the Intera-
gency Monitoring of PROtected Visual Environments (IM-
PROVE) network samples every 3 d, and the Chemical Spe-
ciation Network (CSN) samples every 3 or 6 d (US Envi-
ronmental Protection Agency, 2008). To improve upon sur-
face network spatial and temporal limitations, data can be
interpolated to describe particle mass (Li et al., 2014; Zhang
et al., 2018) and chemical composition over larger areas (Liu
et al., 2009; Tai et al., 2010). Satellite information can also
be used (van Donkelaar et al., 2015b), such as the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) instru-
ments aboard the Aqua and Terra satellite platforms. These
view the entire Earth surface every 1 to 2 d and are used to
impart information for use in air quality applications (van
Donkelaar et al., 2015b; Gupta et al., 2006; Kloog et al.,
2011; Sorek-Hamer et al., 2016). Many advanced satellite
AOT models translate space-based radiation measurements
to surface PM2.5 (van Donkelaar et al., 2010, 2015a,b; Gupta
et al., 2006; Kessner et al., 2013; Kloog et al., 2011; Ku-
mar et al., 2007; Liu et al., 2011; Schaap et al., 2009; Wang
et al., 2012; Wang and Christopher, 2003) and employ so-
phisticated techniques that account for aerosol size and type,
vertical extinction, mass, and relative humidity (RH) (van
Donkelaar et al., 2010). Evaluation of AOT-to-PM2.5 tech-
niques finds that monthly aggregated AOT can robustly es-
timate relationships spanning 5 years of daily mean values
over North America (R > 0.77) (van Donkelaar et al., 2010).
While temporal and geospatial satellite AOT is useful for un-
derstanding trends in PM2.5 concentrations (van Donkelaar
et al., 2015b; Sorek-Hamer et al., 2016; Wang and Christo-
pher, 2003), an implicit constraint for this and other similar
findings is that such agreement is for clear-sky conditions.

Surface networks record PM2.5 mass and chemical com-
position during clear-sky and cloudy time periods alike.
The difference between spatially and temporally aggregated
PM2.5 mass concentrations in the CONUS for cloudy and
all-sky (cloudy + clear-sky) conditions is estimated to be
± 2.5 µgm−3 (Christopher and Gupta, 2010). Less attention
has been given to clear-sky and cloudy differences in PM2.5
chemical composition, especially with regards to particle
hygroscopicity and water uptake. Aerosol mass concentra-
tions and chemical speciation including aerosol liquid water
(ALW) influence AOT (Christiansen et al., 2019; Malm et al.,

1994; Nguyen et al., 2016a; Pitchford et al., 2007), cloud mi-
crophysics, and mesoscale convective systems (Kawecki and
Steiner, 2018), including storm morphology and precipita-
tion patterns (Kawecki et al., 2016). ALW provides a plau-
sible contribution to reconcile surface PM2.5 and remotely
sensed AOT (Babila et al., 2020; Nguyen et al., 2016a). An
implication of this work is that if particle hygroscopicity
changes from clear-sky to cloudy time periods when aerosol–
cloud interactions are most important, a quantitative under-
standing suitable for atmospheric models remains unclear.

In this work, we test the hypothesis that there are quanti-
tative differences in surface PM2.5 chemical composition be-
tween cloudy and clear-sky time periods in ways important
for water uptake. We employ MODIS because it is frequently
utilized in air quality estimates of surface PM2.5 concen-
trations at global and regional scales (van Donkelaar et al.,
2015b; Gupta et al., 2006; Kloog et al., 2011; Sorek-Hamer
et al., 2016). Our goal is to assess differences in PM2.5 chem-
ical composition between cloudy and clear-sky times under
all cloud scenarios, as high and low clouds both interfere
with successful satellite retrievals. We employ a combina-
tion of satellite products, surface measurements, and thermo-
dynamic modeling to analyze annual and seasonal trends in
chemical climatology regions across the CONUS. We assess
and quantify seasonal statistical significance (Kahn, 2005)
for differences in distributions of RH, surface PM2.5, and
chemical speciation during cloudy and clear-sky times us-
ing surface measurements from the IMPROVE network from
2010 to 2014 within the context of MODIS cloud flags. Fur-
ther, we examine one chemical climatology region in detail,
the Mid-South, as a case study. This region encompasses the
location of the Atmospheric Radiation Measurement South-
ern Great Plains (SGP) site in an area of the CONUS that
experiences varied weather patterns, a broad range of cloud
conditions, and distinct seasonal variations in temperature
and humidity (Sisterson et al., 2016).

2 Data and methods

Cloudy and clear-sky classifications are determined using
publicly available data (National Aeronautics and Space Ad-
ministration, 2018) from MODIS on the Aqua and Terra
satellites. We classify the scene based on the MODIS AOD
3 km product retrieval flags (Remer et al., 2013). We do not
differentiate between high and low clouds, and we acknowl-
edge that boundary layer aerosol interacts only with low-
level clouds. Pairing of satellite and surface PM2.5 mass mea-
surements typically works best in rural and vegetated loca-
tions, where the spectral properties of the background tend
to be dark and vary little over the space of a satellite grid
cell (Hauser, 2005; Jones and Christopher, 2010), although
improvements have been made for retrievals over bright sur-
faces (Hauser, 2005; Hsu et al., 2004, 2006, 2013; Zhang
et al., 2016). In this work, we use rural IMPROVE network
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sites located primarily in national parks and focus on the
eastern half of the CONUS. MODIS overpasses occur once
per day for each satellite platform at 10:30 LT (Terra) and
13:30 LT (Aqua). IMPROVE measurements are 24 h sam-
ples. Further, we analyze surface measurements only and do
not address aloft extinction, which can be substantial at IM-
PROVE sites (Christiansen et al., 2019). The mismatch in
timing and poorly captured vertical and diurnal variations in
both clouds and particle composition add uncertainty to this
analysis and represent a limitation. We employ MODIS 3 km
resolution pixels that contain each IMPROVE site. Retrievals
are flagged as cloudy if quality assurance (QA) flags specif-
ically identified clouds as preventing retrieval or if 2.1 µm
reflectance was too high (r > 0.35) and the fraction of 500 m
subpixels that were cloudy was greater than 44.4 %. We
choose 44.4 % because more cloudy subpixels could prevent
acquisition of a sufficient number of subpixels for the 3 km
pixel solution (Remer et al., 2013). IMPROVE monitors are
frequently under a MODIS swath with valid retrievals even if
the pixel containing the IMPROVE station is not successfully
retrieved. Note that the effects of clouds on AOT extend at
least 20 km farther than the cloud itself (Twohy et al., 2009),
and our wide area helps to properly encompass “cloudy” con-
ditions. Misidentifying non-retrievals as cloudy is unlikely to
substantially affect interpretation, as the sample size is large
(N > 70 000 total observations and N > 1500 for an individ-
ual region).

IMPROVE network data were downloaded on 13 July
2015 and 26 May 2016 from public archives (http://vista.
cira.colostate.edu/Improve/, last access: 26 May 2016) (IM-
PROVE Network, 2019) for 132 unique sites across the
CONUS with complete data records for the years 2010–2014
(Fig. S1a in the Supplement). IMPROVE data are collected
every 3 d. We investigate 24 h average PM2.5 mass, ALW,
RH, sulfate (SO2−

4 ), nitrate (NO−3 ), and total organic carbon
(TOC) mass concentrations. Other species affect particle hy-
groscopic properties but are not widely measured in routine
networks. We investigate TOC as a whole even though pri-
mary and secondary species affect water uptake differently.
There is no direct measurement of either in routine moni-
toring network operations, although fractionation can some-
times be used to infer information about sources and forma-
tion processes (Aswini et al., 2019; Cao et al., 2005; Chow
et al., 2004). We group IMPROVE sites across the CONUS
into 22 chemical climatology regions defined by the IM-
PROVE network (Fig. S1b) (Hand et al., 2011; Malm et al.,
2017). PM2.5 mass and composition are provided directly
from the IMPROVE database, while ALW is estimated.

ALW is a function of RH, particle concentration, and
chemical composition. We estimate ALW using a metastable
assumption in the inorganic aerosol thermodynamic equilib-
rium model ISORROPIAv2.1 (Fountoukis and Nenes, 2007).
We use the reverse, open-system problem because only
aerosol measurements are available. Particle mass concen-
tration inputs of SO2−

4 and NO−3 are taken from IMPROVE

measurements. The ammonium ion is not considered, and
this impacts absolute values but not overall temporal trends
(Fig. S2 in the Supplement). Dust is not considered be-
cause water uptake properties are not well constrained (Met-
zger et al., 2018), and there is large spatial heterogeneity
in dust concentrations over the area of a satellite grid cell.
Our approach to employing ISORROPIA introduces uncer-
tainties (e.g., pH estimates would be unreliable; Guo et al.,
2015), and we are more confident in overall trends than ab-
solute values of ALW mass (Fig. S3 in the Supplement).
Organic hygroscopicity values are uncertain (Metzger et al.,
2018; Nguyen et al., 2015), and the magnitude of water up-
take varies by location (Jathar et al., 2016) but is typically
less than the contribution from inorganic constituents at IM-
PROVE sites (Christiansen et al., 2019) and surface locations
globally (Nguyen et al., 2016b). We provide an estimate of
organic ALW using a relevant hygroscopicity value for rural
aerosol of 0.3 (Chang et al., 2010; Nguyen et al., 2014). Or-
ganic speciation at IMPROVE locations changes in time and
space (Christiansen et al., 2020), and the suitability of apply-
ing a constant value for organic hygroscopicity is difficult to
quantitatively assess. Organic ALW is estimated as in Chris-
tiansen et al. (2019) and Nguyen et al. (2015). Briefly, we
use κ-Köhler theory and the Zdanovskii–Stokes–Robinson
(ZSR) mixing rule (Eq. 1).

Vw,o = Voκorg
aw

1− aw
(1)

Here, the water activity (aw) is assumed to be equivalent to
RH, Vo and Vw,o are the volumes of organic matter and wa-
ter from organic species, respectively, and κorg is the organic
hygroscopicity parameter. Vo is determined by dividing or-
ganic mass (OM) by 1.4 gcm−3 (Christiansen et al., 2019).
OM is calculated from IMPROVE-measured OC with site-
and time-specific OM : OC ratios, which are estimated via
a mass balance method, as described in Malm et al. (2020)
and Christiansen et al. (2020). Temperature and RH values
were extracted from the North American Regional Reanaly-
sis (NARR) model (Kalnay et al., 1996) similar to Nguyen
et al. (2016a).

Cloudy and clear-sky differences in ALW are investigated
in two ways. First, we compare ALW estimated using 24 h
average chemical composition and meteorology and group
results into clear-sky and cloudy bins using the MODIS cloud
flag. We use these daily values when comparing ALW within
chemical climatology regions. Second, we investigate trends
across the eastern US to isolate the effect of chemical com-
position. We select the eastern US since ALW concentrations
are largest in this region (Fig. S4 in the Supplement), and
it is in cloud often and consistently (cloud fraction 30 %–
50 % year-round) (Fig. S5 in the Supplement). This makes
statistical comparisons between cloudy and clear-sky times
more robust than in the western US, where cloudy counts
are low in most seasons. We perform ALW estimations us-
ing the medians via three ISORROPIA calculation scenar-
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ios: (1) clear-sky chemical composition and clear-sky mete-
orology (“clear-sky” scenario), (2) cloudy chemical compo-
sition and cloudy meteorology (“cloudy”), and (3) clear-sky
chemical composition and cloudy meteorology (“mixed”)
(Table S1 in the Supplement, Fig. S6 in the Supplement).
We group 24 h average chemical composition and meteorol-
ogy into clear-sky and cloudy bins and take monthly medi-
ans to mitigate the impact of outliers and to avoid complica-
tions that arise from differing numbers of cloudy and clear-
sky days in the mixed scenario. To investigate meteorology
and chemical composition impacts separately, we perform
the mixed scenario in order to reproduce studies in which
cloud-free growth factors (Brock et al., 2016) are eventually
applied to models and used to simulate cloudy meteorolog-
ical conditions (Bar-Or et al., 2012). When the mixed sce-
nario is significantly different than cloudy, we can reject the
hypothesis that RH and temperature alone explain the differ-
ence. The impacts of wet deposition due to precipitation and
dry deposition (i.e., particles are physically larger and more
likely to deposit when water uptake is higher; Carlton et al.,
2020) are unconstrained in this analysis.

Growth factors used in the Mid-South region are estimated
from a modified Köhler equation (Brock et al., 2016; Jeffer-
son et al., 2017) (Eq. 2). We use RH from the NARR and
estimate κd, the particle hygroscopicity, from IMPROVE-
measured chemical composition mass concentrations and in-
dividual species κ values (κSO4 = 0.5, κNO3 = 0.7, κorg =

0.3) (Chang et al., 2010; Nguyen et al., 2014; Petters and
Kreidenweis, 2007). Here, gf (D) is the hygroscopic diame-
ter growth.

gf (D)=

(
1+ κd

RH
100−RH

)1/3

(2)

Statistical significance for differences in measurement dis-
tributions of PM2.5 chemical composition and properties be-
tween cloudy and clear-sky time periods from 2010 to 2014
is determined using the Mann–Whitney U test in R statis-
tical software (R Core Team, 2013). The Mann–Whitney U
test is a nonparametric test that compares two samples to as-
sess whether population distributions differ (McKnight and
Najab, 2010). The 2010–2014 period encompasses typical
conditions and coincides with several intensive observation
periods including the Southeast Atmosphere Studies (SAS)
(Carlton et al., 2018b), the Studies of the Emissions and At-
mospheric Composition, Clouds, and Climate Coupling by
Regional Surveys (SEAC4RS) (Toon et al., 2016), and the
California Research at the Nexus of Air Quality and Climate
Change (CalNex) (Ryerson et al., 2013) field campaigns.
We define cloud fraction for each region as the number of
MODIS-flagged cloudy IMPROVE sampling days over the
total number of IMPROVE sampling days. Further, we define
winter as December, January, and February (DJF), spring as
March, April, and May (MAM), summer as June, July, and
August (JJA), and fall as September, October, and November
(SON).

3 Results and discussion

3.1 PM2.5 mass concentrations

There is evidence that successful retrieval frequency con-
tributes to a clear-sky bias in satellite AOT products when
compared to surface PM2.5 measurements at IMPROVE
monitoring locations in the eastern US. Across the CONUS,
significant differences in PM2.5 mass concentrations mea-
sured at IMPROVE monitoring locations are observed be-
tween cloudy and clear-sky conditions in the majority
(> 60 %) of regions in any given season during 2010–2014
(Fig. 1 and A1; Table S2 in the Supplement), especially dur-
ing summer. Median all-sky PM2.5 concentrations are also
significantly different and typically lower than clear-sky in
multiple chemical climatology regions (Table S3 in the Sup-
plement). Similarly, Christopher and Gupta (2010) found that
cloudy and all-sky PM2.5 surface mass concentrations dif-
fered by 2.5 µgm−3 for the CONUS in 2006, but differ-
ences in that work were not statistically significant as they
are here. This may be due to differing regional and tem-
poral aggregation, the considered timeframes, and clear-sky
definitions. In that work, a day was defined as clear-sky if
one pixel in the 5× 5 grid had a successful AOT retrieval,
whereas we take the 44.4 % approach described above. In all
regions, clear-sky PM2.5 concentrations are generally higher
than cloudy with some exceptions during winter. There is an
increased likelihood of aerosol removal due to scavenging by
precipitation during cloudy times, and this may contribute
to differences in mass concentrations. However, the cloud
definition employed here uses the entire column (i.e., non-
precipitating cirrus and stratus clouds are included), and the
majority of cloud droplets evaporate (Pruppacher and Klett,
2010). Further, differences in PM2.5 mass concentrations are
not a quantitative function of MODIS cloud fraction values
during any season in any region (Fig. S7 in the Supplement),
yet this work suggests that further study with a more sophis-
ticated analysis of cloud properties is warranted.

3.2 PM2.5 chemical composition

Differences in daily mass concentrations during cloudy and
clear-sky periods across the CONUS are spatially and tem-
porally different among PM2.5 mass and its chemical con-
stituents except in the Northwest region (Figs. 2 and A2–A5;
Tables S2 and S4–S12 in the Supplement). Overall patterns
for individual chemical constituents cannot be quantitatively
described as a function of MODIS cloud fraction (Figs. S7
and S9 in the Supplement). If physical meteorology was the
only controlling factor differentiating aerosol concentrations
between clear-sky and cloudy times, then patterns among
PM2.5 and constituents should be similar. However, they vary
(Fig. 2). This suggests that changing emissions and/or in situ
chemistry contribute to distinct patterns among PM2.5 chem-
ical constituents.
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Figure 1. Differences in PM2.5 mass concentrations in the eastern US. Clear-sky values are yellow and cloudy are blue. Median values are
shown as a midline with box boundaries as the 75th and 25th percentiles. Whiskers are the 90th and 10th percentiles. Outliers are not shown
but are included in calculations. PM2.5 mass is typically highest during clear-sky conditions with the exception of winter.

Figure 2. Seasonal median values of PM2.5 chemical constituents in the eastern US during MODIS-defined clear-sky (left stacked bar in
each pair) and cloudy (right stacked bar in each pair) conditions. Total organic carbon mass concentrations are nearly universally higher
during clear-sky conditions in all regions, and this pattern is unique among PM2.5 chemical constituents.
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Figure 3. Distributions of (a) PM2.5, (b) SO4, (c) NO3, (d) TOC, (e) RH, and (f) ALW mass concentrations during all seasons in the eastern
US. Yellow box plots indicate clear-sky times, and blue box plots indicate cloudy times. In (b), the green box plots represent the mixed ALW
scenario.

Clear-sky and cloudy patterns in SO2−
4 and NO−3 mass

concentrations, which affect particle hygroscopicity, vary re-
gionally and seasonally. Outside winter, sulfate mass con-
centrations are significantly higher on clear-sky days in the
eastern US (Fig. 2, Table S4 in the Supplement), while ni-
trate concentrations are consistently highest under cloudy
conditions. Higher clear-sky SO2−

4 concentrations during
summertime are associated with heat waves and stagna-
tion events, which are characterized by a lack of ventilation
in high-pressure systems (Jacob and Winner, 2009; Wang
and Angell, 1999), and increased electricity demand (Farkas
et al., 2016) associated with emissions that form sulfate.
The sharpest clear-sky vs. cloudy differences in sulfate mass
occur in the East Coast, Appalachia, Southeast, and Ohio
River Valley. The highest nitrate concentrations occur dur-
ing cloudy days in winter (Fig. 2, Table S5 in the Supple-
ment), which are cooler (Table S8 in the Supplement) and
promote the thermodynamic stability of nitrate in the con-
densed phase. The sharpest differences in nitrate occur in the
Central Great Plains.

Mass concentrations of TOC are nearly always higher dur-
ing clear-sky times than cloudy (Fig. 3, Table S6 in the

Supplement) in all chemical climatology regions across the
CONUS, with the largest differences during summer and
fall. The patterns are unique among the PM2.5 chemical con-
stituents and consistent with SOA. Summertime wildland
fires in the west and prescribed burning during spring and fall
in the east may obscure interpretation due to large episodic
primary OC emissions (Spracklen et al., 2007; Tian et al.,
2009; Zeng et al., 2008). However, at IMPROVE monitor-
ing locations, the secondary organic aerosol (SOA) contribu-
tion to TOC dominates over primary sources (Carlton et al.,
2018a). The most pronounced differences in clear-sky and
cloudy TOC occur in summer in regions where precursor bio-
genic VOC emissions that form SOA are substantial (Don-
ahue et al., 2009; Gentner et al., 2017; Youn et al., 2013).
Further, increased sunlight and higher temperatures under
clear-sky conditions (Table S8) lead to higher biogenic VOC
emissions that form SOA (Laothawornkitkul et al., 2009;
Sakulyanontvittaya et al., 2008) and enhanced photolysis
rates that facilitate hydroxyl radical production important
to SOA formation (Tang et al., 2003). These findings indi-
cate that TOC mass concentrations are different on clear-sky
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Figure 4. Distributions of (a) inorganic ALW, (b) organic ALW, and (c) total (inorganic+ organic) ALW during clear-sky (yellow) and
cloudy (blue) times in all seasons across the CONUS. The width of the box plot is proportional to the number of observations that make up
each distribution. Note that potential outliers are not shown but are used in calculations.

and cloudy days and suggest organic composition changes as
well.

Cloudy-period ALW mass concentrations are higher than
clear-sky in all seasons from both inorganic and organic con-
tributions, with few exceptions (Fig. 4, Table S7 in the Sup-
plement). The largest cloudy and clear-sky ALW differences
are observed in the central and eastern US during winter. The
pattern of higher ALW during cloudy periods is opposite to
the pattern of dry PM2.5 mass and arises from a combination
of higher RH and changing aerosol composition that affects
hygroscopicity. Nitrate is the most hygroscopic species con-
sidered in this analysis, and high cloudy NO−3 mass concen-
trations increase particle hygroscopicity to facilitate ALW
during these times, despite lower overall dry PM2.5 mass.
Clear-sky and cloudy changes in the precise chemical com-
position of organic compounds and their impacts on ALW
remain critical open questions.

3.3 ALW and growth factor scenarios in the eastern US

Distributions in monthly particle chemical composition
across the eastern US in 2010–2014 are sufficiently changed
between MODIS-defined cloudy and clear-sky times to af-
fect hygroscopicity and alter predicted ALW mass concen-
trations beyond differences that would arise from changes in
meteorology alone (Fig. 5). The only difference between the
mixed and cloudy ALW calculations is that the mixed sce-
nario employs clear-sky chemical composition (rather than
cloudy chemical composition) extrapolated to cloudy meteo-
rology. This type of scenario can occur in model development
or satellite validation applications when PM2.5–AOD rela-
tionships or growth factors remain unmeasured for cloudy
periods (Brock et al., 2016; van Donkelaar et al., 2010; de
Hoogh et al., 2016; Tian and Chen, 2010). When clear-sky
chemical composition is extrapolated to cloudy-period me-
teorology (mixed), monthly median ALW concentrations in
the eastern US, in all seasons except winter, are significantly

different from our best estimate, which employs the actual
chemical composition during cloudy periods (cloudy). These
findings are consistent with analyses showing that chemi-
cal composition is an essential factor for improving cloud
condensation nuclei predictions (Crosbie et al., 2015), deter-
mining ALW (Carlton and Turpin, 2013; Liao and Seinfeld,
2005), and calculating extinction (Pitchford et al., 2007).

Generally, mixed ALW concentrations in the eastern US
are higher than for the cloudy scenario because clear-sky
chemical composition facilitates greater hygroscopicity and
cloudy RH is elevated (Table S7). A notable exception is
the Ohio River Valley during winter, where cloudy SO2−

4 ,
NO−3 , and RH are higher than clear-sky. In this case, cloudy-
period ALW concentrations are higher than for the mixed
scenario. These findings highlight the fact that a changing
PM2.5 chemical composition has a determining effect on
ALW mass concentrations (Nguyen et al., 2016b), a critical
element in the estimation of aerosol–cloud interactions and
particle radiative impacts. Previous work using climate mod-
els shows that the application of ALW uptake that is influ-
enced by incorrect chemical composition significantly affects
top-of-atmosphere radiative forcing estimates and attribution
of anthropogenic climate impacts (Rastak et al., 2017). Dur-
ing cloudy periods, when the accurate prediction of ALW and
aerosol–cloud interactions is most critical, in situ knowledge
of PM2.5 chemical composition is required.

3.4 Case study: the Mid-South

ALW concentrations are significantly higher during cloudy
times than clear-sky in the Mid-South during all seasons (Ta-
ble 1, Fig. 5). RH in the region is high year-round during
cloudy and clear-sky periods alike, with the median greater
than 60 %. This suggests that gas-phase water vapor mix-
ing ratios are not limiting for ALW in the region for any
season. Aerosol mass concentrations and chemical compo-
sition vary, however, and the effects on particle hygroscop-
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Figure 5. Distributions of (a) PM2.5, (b) ALW, (c) RH, (d) SO4, (e) NO3, and (f) TOC mass concentrations in all seasons in the Mid-South.
Yellow box plots indicate clear-sky times, and blue box plots indicate cloudy times. The width of the box plots is proportional to the number
of observations in each. Note that potential outliers are not shown but are used in calculations.

Table 1. Particle chemical constituent concentrations, meteorology, and growth factors during cloudy (Cl) and clear-sky (CS) times in the
Mid-South.

SO2−
4 NO−3 ALW RH Growth factors

CS Cl CS Cl CS Cl CS Cl CS Cl

Win 0.77 1.24 0.90 1.22 1.32 3.61 0.64 0.80 1.24 1.45
Spr 1.46 1.79 0.37 0.50 2.48 4.02 0.62 0.76 1.20 1.37
Sum 1.91 1.69 0.20 0.19 2.92 3.57 0.59 0.72 1.17 1.28
Fall 1.05 1.17 0.18 0.33 1.56 2.74 0.57 0.73 1.16 1.31

icity can be seen in contrasting cloudy and clear-sky ALW
concentrations among the seasons. During clear-sky condi-
tions, the highest ALW mass concentrations occur during
summer and spring, which correspond to the highest SO2−

4
concentrations in the Mid-South, and not when clear-sky RH
is highest (i.e., during winter). Year-round NO−3 concentra-
tions are higher during cloudy conditions than clear-sky. The
largest absolute ALW concentrations and estimated growth
factors occur during cloudy times in the winter and spring,
when NO−3 mass fraction and RH are highest. Nitrate con-

centrations are generally lower than SO2−
4 , and while sulfate

is thought to determine ALW mass concentrations in the re-
gion (Carlton and Turpin, 2013; Gasparini et al., 2006), NO−3
is more hygroscopic. The Mid-South is a continental, agricul-
tural area; in a separate but similar location, the Po Valley in
Italy, NO−3 was found to control ALW concentrations (Hodas
et al., 2014). Independent humidified nephelometer measure-
ments demonstrate that aerosol growth factors are highest in
the winter and spring at the SGP site within the Mid-South
chemical climatology region and identify nitrate and RH as
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determining factors (Jefferson et al., 2017). Observed growth
factors by Jefferson et al. (2017) are higher than those esti-
mated here, and we suspect this arises due to the presence of
hygroscopic species such as ammonium, which is common to
agricultural regions and not included in our ALW estimates.

Patterns in estimated growth factors suggest that the chem-
istry of water uptake by aerosol is different during cloudy
and clear-sky periods and is related to changes in particle
hygroscopicity driven by sulfate and nitrate pollution. Con-
tributions from SOA, enhanced by anthropogenic emissions
(Carlton et al., 2018a), also play a role, though it is difficult
to accurately quantify. These patterns in changing aerosol
hygroscopicity are consistent with findings for the cen-
tral US demonstrating that cloud microphysics, mesoscale
convective systems, and precipitation are impacted by an-
thropogenically influenced aerosol (Kawecki et al., 2016;
Kawecki and Steiner, 2018).

4 Conclusions

Across the CONUS, statistically discernible differences
among PM2.5 and chemical constituent concentrations under
cloudy and clear-sky conditions cannot be explained solely
by physical mechanisms. The chemical properties of aerosol
are important to explain differences in water uptake and par-
ticle composition under different meteorological conditions.
While meteorological phenomena such as pressure systems,
winds, and air mixing affect PM2.5 and chemical component
concentrations, they are insufficient to explain chemical con-
stituent differences between cloudy and clear-sky times. In
situ chemical information is necessary to fully explain tem-
poral and spatial patterns. Spatially and seasonally, PM2.5
and particle speciation information that lends insight into
water uptake, particle properties, and particle growth is in-
complete when gathered only during clear-sky times. Differ-
ences in PM2.5 concentrations under different cloud condi-
tions suggest a potential bias in the understanding of PM2.5
and AOT when using information only from clear-sky times.
The work presented here indicates that aerosol growth due to
water uptake is greatest during MODIS-defined periods iden-
tified as cloudy in many regions, when satellites are unable
to remotely sense surface particle properties and impacts.
This limits understanding of atmospheric particle burden
and its climate-relevant physicochemical properties, which
have implications for the prediction of weather (Kawecki and
Steiner, 2018), air quality, and climate. This indicates that the
clear-sky bias can affect accurate representation of ALW on
cloudy days and suggests that without in situ chemical in-
formation, aerosol–cloud interactions, subsequent estimates
of radiative forcings in models (Lin et al., 2016; Vogelmann
et al., 2012), and feedbacks will remain a large uncertainty.
This work suggests that further study employing new satellite
algorithms and geostationary analysis is warranted.
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Appendix A

Figure A1. Maps of the difference in PM2.5 mass concentration medians (cloudy–clear-sky) for all regions from 2010 to 2014 for (a) winter,
(b) spring, (c) summer, and (d) fall. The color of the point corresponds to the magnitude of the difference. Triangles indicate that median
differences are significant according to the Mann–Whitney U test.

Figure A2. Maps of the difference in SO2−
4 mass concentration medians (cloudy–clear-sky) for all regions from 2010 to 2014 for (a) winter,

(b) spring, (c) summer, and (d) fall. The color of the point corresponds to the magnitude of the difference. Triangles indicate that median
differences are significant according to the Mann–Whitney U test.
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Figure A3. Maps of the difference in NO−3 mass concentration medians (cloudy–clear-sky) for all regions from 2010 to 2014 for (a) winter,
(b) spring, (c) summer, and (d) fall. The color of the point corresponds to the magnitude of the difference. Triangles indicate that median
differences are significant according to the Mann–Whitney U test. Note that the difference in medians for daily NO−3 concentrations in winter
for the Central Great Plains (denoted with asterisk) is substantially larger than other regions (the cloudy median value is 1.07 µgm−3 larger
than clear-sky).

Figure A4. Maps of the difference in TOC mass concentration medians (cloudy–clear-sky) for all regions from 2010 to 2014 for (a) winter,
(b) spring, (c) summer, and (d) fall. The color of the point corresponds to the magnitude of the difference. Triangles indicate that median
differences are significant according to the Mann–Whitney U test.
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Figure A5. Maps of the difference in ALW mass concentration medians (cloudy–clear-sky) for all regions from 2010 to 2014 for (a) winter,
(b) spring, (c) summer, and (d) fall. The color of the point corresponds to the magnitude of the difference. Triangles indicate that median
differences are significant according to the Mann–Whitney U test. Note that the difference in wintertime medians for daily ALW concen-
trations in the Ohio River Valley (denoted with an asterisk) is substantially larger than other regions (the cloudy median value is 4.6 µgm−3

larger than clear-sky).
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