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Abstract. Liquid–liquid phase separation (LLPS) in organic
aerosol particles can impact several properties of atmo-
spheric particulate matter, such as cloud condensation nuclei
(CCN) properties, optical properties, and gas-to-particle par-
titioning. Yet, our understanding of LLPS in organic aerosols
is far from complete. Here, we report on the LLPS of one-
component and two-component organic particles consisting
of α-pinene- and β-caryophyllene-derived ozonolysis prod-
ucts and commercially available organic compounds of rel-
evance to atmospheric organic particles. In the experiments
involving single-component organic particles, LLPS was ob-
served in 8 out of 11 particle types studied. LLPS almost
always occurred when the oxygen-to-carbon elemental ra-
tio (O : C) was ≤ 0.44 but did not occur when O : C was
> 0.44. The phase separation occurred by spinodal decom-
position as well as the nucleation and growth mechanism,
and when LLPS occurred, two liquid phases coexisted up to
∼ 100 % relative humidity (RH). In the experiments involv-
ing two-component organic particles, LLPS was observed in
23 out of 25 particles types studied. LLPS almost always oc-
curred when the average was O : C≤ 0.67 but never occurred
when the average O : C was> 0.67. The phase separation oc-
curred by spinodal decomposition as well as the nucleation
and growth mechanism. When LLPS occurred, two liquid
phases coexisted up to ∼ 100 % RH. These results provide

further evidence that LLPS is likely a frequent occurrence in
organic aerosol particles in the troposphere, even in the ab-
sence of inorganic salts.

1 Introduction

Secondary organic aerosol (SOA) is ubiquitous in the atmo-
sphere, comprising up to approximately 80 % of the mass of
submicrometer particles (Kanakidou et al., 2005; Jimenez et
al., 2009; Heald et al., 2010). SOA particles are produced
when OH, NO3, and O3 oxidize volatile organic compounds
(VOCs) in the atmosphere. Depending on the VOC type, oxi-
dant type, and reaction time, the oxygen-to-carbon elemental
ratio (O : C) of SOA can vary from 0.2 to 1.0 (Zhang et al.,
2007; Hallquist et al., 2009; Jimenez et al., 2009; Heald et
al., 2010; Ng et al., 2010). SOA particles are important be-
cause they play critical roles in air quality, cloud formation,
and the Earth’s radiative properties (Seaton et al., 1995; Xi-
aohong and Jian, 2010; Pöschl and Shiraiwa, 2015; Sanchez
et al., 2017; Shiraiwa et al., 2017).

SOA can undergo phase transitions as relative humidity
(RH) changes in the atmosphere (Hänel, 1976; Martin, 2000;
Krieger et al., 2012; You et al., 2014; Freedman, 2017).
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One possible phase transition is liquid–liquid phase sepa-
ration (LLPS) (Pankow, 2003; Marcolli and Krieger, 2006;
Ciobanu et al., 2009; Bertram et al., 2011; Krieger et al.,
2012; Song et al., 2012a; Zuend and Seinfeld, 2012; Veghte
et al., 2014; You et al., 2014; Obrien et al., 2015; Freedman,
2017; Zhang et al., 2018, 2019; Olson et al.,2019; Riva et al.,
2019). The occurrence of LLPS has implications for the op-
tical properties (Brunamonti et al., 2015; Fard et al., 2018),
gas–particle partitioning (Zuend et al., 2010; Zuend and Se-
infeld, 2012; Shiraiwa et al., 2013), hygroscopic properties
(Hodas et al., 2016), and cloud condensation nuclei (CCN)
properties (Ovadnevaite et al., 2017; Liu et al. 2018) of at-
mospheric particles.

Many researchers have focused on LLPS in particles con-
taining organic material mixed with inorganic salts. They
found that LLPS can occur when the O : C of the organic ma-
terial is smaller than 0.8 (Bertram et al., 2011; Krieger et al.,
2012; Song et al., 2012a, 2012b; Schill and Tolbert, 2013;
You et al., 2013, 2014). More recently, studies on LLPS in
organic aerosol particles free of inorganic salts have shown
that LLPS occurs in SOA generated in environmental cham-
bers when the average O : C of the organic material is smaller
than roughly 0.5 across the RH range of ∼ 95 % to ∼ 100 %
(Renbaum-Wolff et al., 2016; Rastak et al., 2017; Song et al.,
2017; Ham et al., 2019) with implications for the CCN prop-
erties of the SOA (Petters et al., 2006; Hodas et al., 2016;
Renbaum-Wolff et al., 2016; Ovadnevaite et al., 2017; Rastak
et al., 2017; Liu et al., 2018; Ham et al., 2019). In addition,
Song et al. (2018) showed that LLPS occurs in organic par-
ticles containing one commercially available organic com-
pound when the O : C is smaller than 0.44, while LLPS oc-
curs in organic particles containing two commercially avail-
able organic species when the average the O : C is smaller
than ≤ 0.58.

In the following, we investigate LLPS in particles contain-
ing one and two organic species generated from ozonoly-
sis products of α-pinene and β-caryophyllene, which are at-
mospherically relevant, and commercially available organic
compounds. α-Pinene and β-caryophyllene are the most
abundant types of monoterpene (C10H16) and sesquiterpenes
(C15H24) in the atmosphere, respectively (Guenther, 1995;
Sakulyanontvittaya et al., 2008; Henrot et al., 2017). How-
ever, studies of LLPS and morphologies for α-pinene and
β-caryophyllene oxidation products are still rare. Our results
can provide additional insight into the O : C range required
for LLPS in organic particles free of inorganic salts. More-
over, our results can provide the chemical complexity of or-
ganic particle effects on LLPS. These observations should
improve our understanding of LLPS behavior and provide
more accurate constrained values of the O : C ratio for LLPS.
The results from these studies should also improve the un-
derstanding and modeling of CCN activity of SOA free of
inorganic salts.

2 Experimental design

2.1 Materials

Table 1 presents the physical properties of the organic com-
pounds investigated. In this study, 11 organic species were
used, including seven products from the ozonolysis of α-
pinene and β-caryophyllene and four commercially available
organic compounds. These species covered an O : C range of
0.13–1.00 (Table 1). All species were liquid at room temper-
ature.

Seven of the products from the ozonolysis of α-pinene and
β-caryophyllene were synthesized. The detailed synthesis
methods for these species are described in Bé et al. (2017).
Using 1H NMR, 13C NMR, and IR spectroscopy, the ozonol-
ysis products were characterized to confirm their identity and
purity. The purity of all synthesized compounds was> 95 %.
All products contained a carboxylic acid, ketone, and/or alde-
hyde, which are abundant organic functional groups in the
atmosphere (Hallquist et al., 2009; Nozière et al., 2015). The
O : C range of the ozonolysis products was between 0.13 and
0.44 (Table 1). To achieve O : C ratios up to 1.00, we used
commercially available organic compounds (Sigma-Aldrich,
purities ≥ 97 %) (Table 1).

2.2 Preparation of particles consisting of one and two
organic species

Particles consisting of either one or two organic compounds
were prepared at room temperature without the addition of
a solvent. Particles consisting of the commercially available
organic compounds were nebulized directly on siliconized
hydrophobic glass slides (Hampton Research, Canada). Par-
ticles consisting of ozonolysis products were slightly vis-
cous. To form particles on a substrate, these ozonolysis prod-
ucts were picked up with the tip of a pipette, and the pipette
was then flicked towards a hydrophobic glass slide.

Particles consisting of two organic compounds were pre-
pared using mixtures (1 : 1 mass ratio) of pure organic
species without addition of a solvent. To prepare the mixtures
with a 1 : 1 mass ratio, each organic species was weighed
in a vial and then combined. After mixing, the solutions
were homogenous based on visual inspection. Particles were
generated from these mixtures and deposited on hydropho-
bic slides either by nebulization (for the mixtures involv-
ing commercially available organic compounds) or by the
flicking method via the tip of a pipette as described above
(for the ozonolysis products). This method of producing
two-component organic particles did not work for α-pinene
ozonolysis products and β-caryophyllinic acid due to the
stickiness of these materials. Hence, these materials were not
included in the systems used to generate two-component or-
ganic particles.
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Table 1. Molecular formula, molecular structure, molecular weight, oxygen-to-carbon elemental ratios (O : C), and functional groups of
organic compounds studied. All compounds are liquid at room temperature.

Molecular Molecular Molecular weight
Compounds formula structure (g mol−1) O : C Functional group

O
zo

no
ly

si
s

pr
od

uc
ts β−caryophyllene aldehyde C15H24O2 237.19 0.13 Aldehyde, ketone

β−caryophyllonic acid C15H24O3 252.35 0.20 Carboxylic acid, ketone

β−nocaryophyllone aldehyde C14H22O3 238.32 0.21 Aldehyde, ketone

β−nocaryophyllonic acid C14H22O4 254.32 0.29 Carboxylic acid, ketone

β−caryophyllinic acid C14H22O4 254 0.29 Carboxylic acid

Pinonaldehyde C10H16O2 169.12 0.20 Aldehyde, ketone

Pinic acid C9H14O4 209.08 0.44 Carboxylic acid, ketone

C
om

m
er

ci
al

ly
av

ai
la

bl
e

or
ga

ni
c

co
m

po
un

ds Suberic acid monomethyl ester C9H16O4 188 0.44 Carboxylic acid, ester

Polyethylene glycol-400 C2nH4n+2On+1 400 0.56 Alcohol, ether

Diethyl L-tartrate C8H14O6 206 0.75 Alcohol, ester

Pyruvic acid C3H4O3 88.06 1.00 Carboxylic acid, ketone

2.3 Optical microscopy for observation of liquid–liquid
phase separation

The organic particles on hydrophobic glass slides were
placed into an RH- and temperature-controlled flow cell cou-
pled to an optical microscope (Olympus BX43, 40× objec-
tive, Japan) (Parsons et al., 2004; Pant et al., 2006; Bertram
et al., 2011; Song et al., 2012a, 2018; Ham et al., 2019). Dur-
ing all experiments, the temperature inside the flow cell was
maintained at 291± 1 K. The RH was controlled by a con-
tinuous flow of a wet and dry N2 mixture with a total flow
rate of 500 sccm. The temperature and RH were monitored
by a humidity and temperature sensor (Sensirion, SHT 71,
Switzerland). RH inside the flow cell was calibrated by mea-
suring the deliquescence RH of four different pure inorganic
salts (potassium carbonate, sodium chloride, ammonium sul-

fate, and potassium nitrate) (Winston and Bates, 1960). The
RH uncertainty from the calibration was ±1.5 %.

At the beginning of LLPS experiments, organic particles
inside the flow cell were equilibrated at ∼ 100 % RH for
15–20 min. If LLPS was observed, the RH was decreased
from ∼ 100 % to ∼ 5 %–10 % lower than the RH at which
the two liquid phases merged into one phase, followed by an
increase in RH to ∼ 100 %. If LLPS was not observed, the
RH was decreased from ∼ 100 % to ∼ 0 %, followed by an
increase to∼ 100 %. During all experiments, the RH was ad-
justed at a rate of 0.1 %–0.2 % RH min−1. The optical images
during experiments were recorded every 5 s using a CMOS
(complementary metal–oxide–semiconductor) detector (Di-
giRetina 16, Tucsen, China). Organic particles were selected
in the diameter range of 30–100 µm, which was required for
LLPS experiments. Each organic species was measured four
to five times within this size range.
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3 Results and discussion

3.1 Liquid–liquid phase separation in particles
containing one organic species

A total of 11 different types of particles containing one or-
ganic species were investigated for LLPS at 291± 1 K. Out
of the 11 different types of one-component organic parti-
cles studied, eight underwent LLPS during humidity cy-
cles (Table S1 in the Supplement). LLPS occurred in all
one-component organic particles containing α-pinene and β-
caryophyllene ozonolysis products.

Shown in Fig. 1 and Movies S1–S7 in the Supplement are
optical images recorded while the RH was decreased for all
the cases in which LLPS was observed in one-component
organic particles. For these cases, two liquid phases were al-
ways observed at∼ 100 % RH. As the RH was decreased, the
two liquid phases merged into one liquid phase at ∼ 95 %
RH, except for particles of β-caryophyllinic acid (Fig. 1e
and Movie S5). For β-caryophyllinic acid particles, the two
liquid phases merged into one liquid phase at 82.1 % RH
(Fig. 1e and Movie S5).

Shown in Fig. 2 and Movies S8–S14 are optical images of
the same seven particles shown in Fig. 1 and Movies S1–S7,
except the images were recorded while the RH was increased
rather than decreased. At low RH values, the particles con-
tained one phase. As the RH increased, LLPS occurred at
∼ 95 % RH for all cases except for β-caryophyllinic acid
particles, which underwent LLPS at 82.9 % RH (Fig. 2e and
Movie S12). At the onset of LLPS, many small inclusions
formed in the particles. As the RH was further increased, the
small inclusions coagulated and coalesced, and the particles
continued to grow (Fig. 2 and Movies S8–S14). At ∼ 100 %
RH, all particles contained two liquid phases. These results
for LLPS occurrence in the organic particles were consistent
within the studied size ranges (∼ 30–100 µm in diameter).

LLPS in the single-component organic particles occurred
by nucleation and growth, as well as spinodal decomposition,
with RH increasing. Particles of β-nocaryophyllonic acid
and suberic acid monomethyl ester had two liquid phases
with inclusions by the nucleation and growth mechanism
(Fig. 2d and Movies S11), while the other single-component
organic particles had a core–shell morphology by spinodal
decomposition (Fig. 2a, b, c, e, f, g and Movies S8, 9, 10, 12,
13, 14). The nucleation and growth mechanism is a phase
transition that has to overcome an energy barrier to form
stable nuclei of the second phase within a liquid (Shelby,
1995; Papon et al., 1999; Ciobanu et al., 2009; Song et al.,
2012a). Spinodal decomposition is a phase transition that
occurs within a liquid without an energy barrier (Shelby,
1995; Papon et al., 1999; Ciobanu et al., 2009; Song et al.,
2012a). Previous studies also observed LLPS by spinodal
decomposition in α-pinene-derived SOA, β-caryophyllene-
derived SOA, and limonene-derived SOA (Renbaum-Wolff
et al., 2016; Song et al., 2017; Ham et al., 2019). We ex-

Figure 1. Optical images of particles for decreasing RH:
(a) β-caryophyllene aldehyde, (b) β-caryophyllonic acid, (c) β-
nocaryophyllone aldehyde, (d) β-nocaryophyllonic acid, (e) β-
nocaryophyllinic acid, (f) pinonaldehyde, and (g) pinic acid. The
last columns indicate the lower RH boundary for LLPS (LLPSlower)
with decreasing RH. The scale bar is 20 µm.

pect that the inner phase consisted mainly of water, while
the outer phase consisted mainly of organic molecules be-
cause the amount in the inner phase was reduced in size as
the RH was decreased (Renbaum-Wolff et al., 2016; Song et
al., 2017, 2018). This assumption has also been reported in
several other studies (Renbaum-Wolff et al., 2016; Song et al.
2017, 2018; Ham et al. 2019). The surface tension of water
and the surface tensions of organics are consistent with this
assumption (Jasper, 1972).

Illustrated in Fig. 3a is the lower RH boundary for LLPS
(LLPSlower) and upper RH boundary for LLPS (LLPSupper)

determined for one-component organic particles (blue sym-
bols). LLPS occurred in the one-component organic parti-
cles when the O : C was ≤ 0.44. Our results are consistent
with the results from Song et al. (2018), who observed LLPS
in one-component organic particles when the O : C was ≤
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Figure 2. Optical images of particles for increasing RH:
(a) β-caryophyllene aldehyde, (b) β-caryophyllonic acid, (c) β-
nocaryophyllone aldehyde, (d) β-nocaryophyllonic acid, (e) β-
nocaryophyllinic acid, (f) pinonaldehyde, and (g) pinic acid. The
particles are the same ones in Fig. 1. The last columns indicate the
upper RH boundary for LLPS (LLPSupper)with increasing RH. The
scale bar is 20 µm.

0.44 (Fig. 3a, gray symbols). Our results are also consis-
tent with LLPSlower and LLPSupper determined for SOA pro-
duced from α-pinene and β-caryophyllene (Renbaum-Wolff
et al., 2016; Song et al., 2017; Ham et al., 2019). In all cases,
LLPSupper was ∼ 100 % RH.

The values of LLPSlower and LLPSupper determined in the
experiments using a decreasing RH were within the uncer-
tainty of LLPSlower and LLPSupper values determined in the
experiments using an increasing RH (Tables S1 and S2). In
addition, no dependence on particle size was observed for
LLPSlower and LLPSupper within the size range investigated
(30–100 µm).

Figure 3. Relative humidity (RH) for LLPS as a function of the
O : C of the organic particle consisting of (a) one organic species
and (b) two organic species for increasing RH. Open blue circles
are the LLPS upper boundary (LLPSupper) with increasing RH, and
closed blue circles are the LLPS lower boundary (LLPSlower) with
increasing RH. Each data point includes four to five particles within
particle size ranges from 30 to 100 µm. The gray diamonds repre-
sent the result from Song et al. (2018). Error bars represent 2σ of
multiple measurements and the uncertainty from the RH calibra-
tion. The solid and dashed lines are Sigmoid–Boltzmann fits to all
the data of LLPSlower and LLPSupper.

3.2 Liquid–liquid phase separation in particles
containing two organic species

To better mimic the complexity of real aerosol compositions,
we also studied LLPS in particles containing two organic
species. Table S2 lists the 25 different mixtures investigated
using combinations of β-caryophyllene ozonolysis products
and commercially available organic compounds. In total, 23
out of the 25 two-component organic particle types inves-
tigated underwent LLPS (Fig. 3b and Table S2). Shown in
Fig. 4 and Movies S15–S19 are examples of images of two-
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Figure 4. Optical images of two-component particles for de-
creasing RH: (a) β-caryophyllene aldehyde–β-nocaryophyllonic
acid, (b) suberic acid monomethyl ester–pyruvic acid, (c) β-
caryophyllonic acid–pyruvic acid, (d) β-nocaryophyllene
aldehyde–pyruvic acid, and (e) β-caryophyllene aldehyde–
polyethylene glycol-400. The last columns indicate the lower RH
boundary for LLPS (LLPSlower) with decreasing RH. The scale bar
is 20 µm.

component organic particles that underwent LLPS during a
decrease in RH. Shown in Fig. 5 and Movies S20–S24 are
the same five particles, but the images were recorded as the
RH was increased.

Out of the 23 particle types that underwent LLPS, 22 of
the particle types formed a core–shell morphology with de-
creasing RH. Only one particle type (β-caryophyllonic acid–
β-nocaryophyllonic acid) was observed to have both core–
shell and partially engulfed morphology with increasing RH
(Fig. S1). As discussed in Sect. 3.1, the inner phase is ex-
pected to be mainly water, while the outer phase is expected
to be mainly organic material (Renbaum-Wolff et al., 2016;
Song et al., 2017, 2018). As RH was decreased, the two liq-
uid phases merged into one phase. For example, particles of
β-caryophyllene aldehyde–PEG-400 merged into one phase
at 39.9 % RH (Fig. 4e and Movie S19).

Interestingly, particles showed different morphologies of
core–shell, partially engulfed, and inclusions after LLPS oc-
curred for RH increasing. These different morphologies have
also been observed previously (Kwamena et al., 2010; Reid
et al., 2011; Song et al., 2012a, 2013). The different mor-
phologies could result from the phase separation mecha-
nisms, volume ratios, and different functional groups (di-
carboxylic acid vs carboxylic acid and ketone), which can
result in different interfacial energies and spreading coeffi-
cients (Kwamena et al., 2010; Reid et al., 2011; Song et al.,
2013; Stewart et al., 2015; Gorkowski et al., 2019).

Figure 5. Optical images of two-component particles for in-
creasing RH: (a) β-caryophyllene aldehyde–β-nocaryophyllonic
acid, (b) suberic acid monomethyl ester–pyruvic acid, (c) β-
caryophyllonic acid–pyruvic acid, (d) β-nocaryophyllene
aldehyde–pyruvic acid, and (e) β-caryophyllene aldehyde–
polyethylene glycol-400. The particles are the same ones in Fig. 5.
The last columns indicate the upper RH boundary for LLPS
(LLPSupper) with increasing RH. The scale bar is 20 µm.

In the experiments with two-component organic particles
and increasing RH, in most cases (19 out of the 23 particle
types that underwent LLPS), phase separation began with the
abrupt formation of many small inclusions (e.g., Fig. 5a, b,
e and Movies S20, 21, 24). This behavior suggests spinodal
decomposition as the mechanism for LLPS. In contrast, the
mechanism for LLPS in the particles containing ozonolysis
products mixed with pyruvic acid was likely the nucleation
and growth mechanism based on the appearance of nucle-
ation from the interior of the particles as the RH increased
(Figs. 5c, d and Movies S22, 23).

Illustrated in Fig. 3b (blue symbols) is the lower RH
boundary for LLPS (LLPSlower) and upper RH boundary
for LLPS (LLPSupper) determined in the experiments with
two-component organic particles. LLPS was observed in all
cases when the average O : C≤ 0.67. When LLPS was ob-
served, LLPSupper was ∼ 100 % RH. These results are sim-
ilar to previous results from Song et al. (2018) (gray sym-
bols in Fig. 3b), even though they studied different types
of two-component organic particles. Figure 3b also presents
Sigmoid–Boltzmann fits of all data points from Song et
al. (2018) and the current study to parameterize LLPSlower
(solid line) and LLPSupper (dashed line) as a function of
O : C. The parameterizations of the Sigmoid–Boltzmann fits
are given in the Supplement (Sect. S3).
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4 Atmospheric implications

The O : C of organic materials has been used to interpret and
parameterize hygroscopicity (Jimenez et al., 2009), oxidation
(Heald et al., 2010; Kroll et al., 2011), and mixing thermo-
dynamics of organic aerosol particles (Donahue et al., 2011;
Hodas et al., 2016). Previous studies have shown that LLPS
in mixed organic and inorganic aerosol particles often occurs
for O : C< 0.8 (Bertram et al., 2011; Krieger et al., 2012;
Song et al., 2012a, 2012b; Schill and Tolbert, 2013; You et
al., 2013, 2014). Even in the absence of inorganic salts, the
occurrence of LLPS was dependent on the O : C of organic
materials (Renbaum-Wolff et al., 2016; Song et al., 2017,
2018; Ham et al., 2019). Our results show that as compo-
sitional complexity increased from one organic species to
two organic species, LLPS occurred over a wider range of
average O : C values of organic materials (increasing from
0.44 to 0.67) (Figs. 3a and b). Considering the chemical com-
plexity and the O : C ratio of organic particles in the tropo-
sphere (0.20<O : C< 1.00) (Zhang et al., 2007; Hallquist et
al., 2009; Jimenez et al., 2009; Heald et al., 2010; Ng et al.,
2010), our result provided additional evidence that LLPS is
likely a common feature of organic aerosols free of inorganic
salts. A caveat is that the mixing ratio of 1 : 1 for two organic
species and the chemical complexity used in our experiments
are rather simple compared to the chemical complexity found
in the atmosphere (Zhang et al., 2007; Hallquist et al., 2009;
Jimenez et al., 2009). Further studies are needed to confirm
LLPS in organic aerosols comprising more complex mixtures
with different mixing ratios. In addition to the O : C ratio, the
types of organic functional groups present in the molecules
are also likely important for LLPS (Song et al., 2012b) be-
cause different functional groups lead to different strengths
of intermolecular interactions with water. Further studies are
needed to elucidate the effect of functional groups on the oc-
currence of LLPS in organic particles.

LLPS in aerosol particles has an impact on heterogeneous
reactions (Folkers et al., 2003; Anttila et al., 2006; Cosman
and Bertram, 2008; Cosman et al., 2008; McNeill et al.,
2008; Lam et al., 2019) and CCN (Petters et al., 2006; Ho-
das et al., 2016; Renbaum-Wolff et al., 2016; Ovadnevaite
et al., 2017; Rastak et al., 2017; Liu et al., 2018). The re-
active uptake of gas-phase oxidants can differ depending on
the number of phases present in the particles (Folkers et al.,
2003; Anttila et al., 2006; Cosman and Bertram, 2008; Cos-
man et al., 2008; McNeill et al., 2008; Lam et al., 2019).
For example, the effective OH uptake coefficient of a 3-
methylglutaric acid–ammonium sulfate particle decreased by
a factor of ∼ 2.4 compared to a 3-methylglutaric acid parti-
cle (Lam et al., 2019). The occurrence of LLPS in organic
aerosol particles at high RH, as observed in the current study,
is important since LLPS at high RH can lower the barrier to
CCN activation by decreasing the surface tension of the par-
ticles (Ovadnevaite et al., 2017; Rastak et al., 2017; Liu et al.,
2018). A decrease in surface tension and lowering of the bar-

rier to CCN can lead to an increase in cloud droplet numbers
in the atmosphere, with implications for modeling the indi-
rect effect of aerosols on climate (Ovadnevaite et al., 2017;
Rastak et al., 2017).
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