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Abstract. The volatility distribution of the organic com-
pounds present in secondary organic aerosol (SOA) at dif-
ferent conditions is a key quantity that has to be captured
in order to describe SOA dynamics accurately. The develop-
ment of the Filter Inlet for Gases and AEROsols (FIGAERO)
and its coupling to a chemical ionization mass spectrome-
ter (CIMS; collectively FIGAERO–CIMS) has enabled near-
simultaneous sampling of the gas and particle phases of SOA
through thermal desorption of the particles. The thermal des-
orption data have been recently shown to be interpretable
as a volatility distribution with the use of the positive ma-
trix factorization (PMF) method. Similarly, volatility distri-
butions can be inferred from isothermal particle evaporation
experiments when the particle size change measurements are
analyzed with process-modeling techniques. In this study,
we compare the volatility distributions that are retrieved
from FIGAERO–CIMS and particle size change measure-
ments during isothermal particle evaporation with process-
modeling techniques. We compare the volatility distributions
at two different relative humidities (RHs) and two oxidation
conditions. In high-RH conditions, where particles are in a
liquid state, we show that the volatility distributions derived
via the two ways are similar within a reasonable assump-
tion of uncertainty in the effective saturation mass concen-
trations that are derived from FIGAERO–CIMS data. In dry
conditions, we demonstrate that the volatility distributions
are comparable in one oxidation condition, and in the other
oxidation condition, the volatility distribution derived from

the PMF analysis shows considerably more high-volatility
matter than the volatility distribution inferred from particle
size change measurements. We also show that the Vogel–
Tammann–Fulcher equation together with a recent glass tran-
sition temperature parametrization for organic compounds
and PMF-derived volatility distribution estimates are consis-
tent with the observed isothermal evaporation under dry con-
ditions within the reported uncertainties. We conclude that
the FIGAERO–CIMS measurements analyzed with the PMF
method are a promising method for inferring the volatility
distribution of organic compounds, but care has to be taken
when the PMF factors are analyzed. Future process-modeling
studies about SOA dynamics and properties could benefit
from simultaneous FIGAERO–CIMS measurements.

1 Introduction

Aerosol particles have varying effects on health, visibility
and climate (Stocker et al., 2013). Organic compounds com-
prise a substantial amount of atmospheric particulate mat-
ter (Jimenez et al., 2009; Zhang et al., 2007) of which a
major fraction is of secondary origin, i.e., low-volatility or-
ganic compounds formed from oxidation reactions between
volatile organic compounds (VOCs) and ozone, hydroxyl
radicals and nitrate radicals (Hallquist et al., 2009). The
aerosol particles containing these kind of oxidation products
are called secondary organic aerosols (SOAs) as opposed
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to primary organic aerosols, i.e., organic particles emitted
directly to the atmosphere. VOC oxidation reactions result
in thousands of different organic compounds (Goldstein and
Galbally, 2007). There are gaps in the knowledge, especially
on the formation and deposition of SOAs and how the pro-
cesses are affected by changing physicochemical properties
such as volatility (Glasius and Goldstein, 2016). In addi-
tion, the phase state of the organic compounds has also been
shown to play a role in SOA dynamics (Reid et al., 2018;
Shiraiwa et al., 2017; Yli-Juuti et al., 2017; Renbaum-Wolff
et al., 2013; Virtanen et al., 2010)

The physicochemical properties of organic aerosols can be
studied directly and indirectly. The Aerodyne aerosol mass
spectrometer (AMS; Canagaratna et al., 2007; DeCarlo et al.,
2006; Jayne et al., 2000) enabled direct and online composi-
tion measurements of atmospheric particles for the first time.
Combining AMS data with statistical dimension reduction
techniques such as factor analysis and positive matrix factor-
ization (PMF; Zhang et al., 2011, 2007, 2005; Paatero and
Tapper, 1994) allowed researchers to draw conclusions on
sources and types of atmospheric organic particulate matter
from the relatively complex mass spectra data.

The chemical ionization mass spectrometer (CIMS; Lee
et al., 2014) coupled with the Filter Inlet for Gases
and AEROsols (FIGAERO, collectively FIGAERO–CIMS;
Lopez-Hilfiker et al., 2014) is a prominent online measure-
ment device for studying both the gas and particle phases
of SOAs. During particle-phase measurements, a key ad-
vantage over the AMS is the softer chemical ionization
that retains much more of the molecular information of the
compound than the electron impact ionization used in the
AMS. Typically, the collection of the particulate mass is con-
ducted at room temperature, which minimizes the loss of
semivolatile compounds during collection. In addition to the
overall chemical composition, the gradual desorption of the
particulate mass from the FIGAERO filter yields the ther-
mal desorption behavior of each detected ion, i.e., it is a di-
rect measurement of each ion’s volatility. FIGAERO–CIMS
measurements have been carried out in both laboratory and
field environments to study SOA composition from different
VOC precursors and in both rural and polluted environments
(Le Breton et al., 2018; Huang et al., 2018; Lee et al., 2018;
D’Ambro et al., 2017; Lopez-Hilfiker et al., 2015). However,
the volatility information in these data sets has barely been
used.

Besides direct mass spectrometer measurements, SOA
properties have been inferred indirectly from growth (e.g.,
Pathak et al., 2007 and references therein) and isothermal
evaporation (Buchholz et al., 2019; D’Ambro et al., 2018;
Yli-Juuti et al., 2017; Wilson et al., 2015; Vaden et al.,
2011) measurements. The complexity of organic compounds
in these studies can be alleviated with the use of a volatility
basis set (Donahue et al., 2006), where organic compounds
are grouped based on their (effective) saturation concentra-
tion. However, the experimental setup also defines the range

of C∗ values that can be estimated from the data. Vaden
et al. (2011) and Yli-Juuti et al. (2017) have both shown
that the volatility basis sets derived from SOA growth ex-
periments result in too fast an SOA evaporation compared
to measured evaporation rates when the volatility basis set is
used as input for process models. Possible reasons for such
discrepancies include the different C∗ ranges to which the
SOA growth and SOA evaporation experiments are sensitive
and the role of vapor wall losses in SOA growth experiments.
This raises a need for alternative methods to derive organic
aerosol volatility against which the volatilities inferred from
the direct particle size measurements can be compared.

Recently, Buchholz et al. (2020) demonstrated that the
FIGAERO–CIMS measurements during particle evaporation
can be mapped to a volatility distribution of organic com-
pounds by conducting a PMF analysis. On the other hand,
Tikkanen et al. (2019) showed that the volatility distribu-
tion can be inferred from isothermal particle evaporation
measurements by optimizing the evaporation model input
to yield the measured evaporation rate at different humidity
conditions. In this study, we compare these two approaches
for varying oxidation and particle water content conditions.
Our main research questions are as follows. (1) Are the
volatility distributions derived from particle size change dur-
ing isothermal evaporation and from the FIGAERO–CIMS
measurements similar? (2) How should the PMF results of
FIGAERO–CIMS data be interpreted in terms of volatility?
(3) Can a recently published glass transition temperature
parametrization (DeRieux et al., 2018), combined with the
PMF analysis, be used to model particle-phase mass transfer
limitations observed for the evaporation in dry conditions,
i.e., in the absence of particle-phase water?

2 Methods

2.1 Experimental particle evaporation data

The experimental data we use are the same as reported in
Buchholz et al. (2019, 2020). We briefly summarize the mea-
surement setup below. We generated the particles with a po-
tential aerosol mass (PAM) reactor (Kang et al., 2007; Lambe
et al., 2011) from the reaction of α-pinene with O3 and OH
at three different oxidation levels (average oxygen-to-carbon
(O : C) ratios of 0.53, 0.69 and 0.96). We focus on the low-
est O : C (0.53) and medium-O : C (0.69) experiments in this
work. The closer analysis of the high-O : C experiments sug-
gests particle-phase reactions during the evaporation (Buch-
holz et al., 2019, 2020). To avoid the uncertainty that would
arise from unknown particle-phase reactions, we chose not to
include the high-O : C data in our analysis.

We selected a monodisperse particle population (mobility
diameter dp= 80 nm) with two nano-tandem-type differen-
tial mobility analyzers (nano-DMA; TSI Incorporated, model
3085) from the initial polydisperse particle population. The
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size selection diluted the gas phase, initiating particle evap-
oration. The monodisperse aerosol was left to evaporate in
a 100 L stainless-steel residence time chamber (RTC). We
measured the particle size distribution during the evaporation
with a scanning mobility particle sizer (SMPS; TSI Incorpo-
rated, models 3082 and 3775). The RTC filling took approx-
imately 20 min, and we performed the first size-distribution
measurement in the middle of the filling interval. To obtain
short residence time data (data before 10 min of evaporation)
we added a bypass to the RTC, which led the sample di-
rectly to the SMPS. By changing the length of the bypass
tubing, we were able to measure the particle size distribu-
tion between 2 and 160 s of evaporation. We measured the
isothermal evaporation up to 4–10 h, depending on the mea-
surement. We performed the measurements for each oxida-
tion level both at high relative humidity (RH= 80 %) and at
dry conditions (RH< 2 %). The change in particle size with
respect to time is called an evapogram. In an evapogram,
the horizontal axis presents evaporation time, and the verti-
cal axis shows the evaporation factor (EF), i.e., the measured
particle diameter divided by the initially selected particle di-
ameter.

To classify the oxidation level of the particles, we derived
the average O : C ratio from composition measurements with
a high-resolution time-of-flight aerosol mass spectrometer
(AMS; Aerodyne Research, Inc.). Furthermore, we con-
ducted detailed particle composition measurements with an
Aerodyne Research, Inc. FIGAERO (Lopez-Hilfiker et al.,
2014) coupled with a chemical ionization mass spectrometer
(CIMS), with iodide as the reagent ion (Aerodyne Research
Inc.; Lee et al., 2014). Previous studies using FIGAERO–
CIMS with iodide as the reagent ion found 50 % or bet-
ter mass closure compared to more established methods of
quantifying organic aerosol (OA) mass (albeit with high un-
certainties; Isaacman-VanWertz et al., 2017; Lopez-Hilfiker
et al., 2016). Therefore, it appears that the bulk of reac-
tion products expected from α-pinene oxidation contains the
functional groups required for detection by our FIGAERO–
CIMS.

In the FIGAERO inlet, particles are first collected on a
polytetrafluoroethylene (PTFE) filter. Then the collected par-
ticulate mass desorbs slowly due to a gradually heated nitro-
gen flow. The desorbed gaseous compounds are then trans-
ported into the CIMS for detection. We derived the average
chemical composition of the particles by integrating the de-
tected signal of each ion over the whole desorption interval.
For each ion, the change in detected signal with desorption
temperature is called a thermogram, and generally, the tem-
perature at the maximum of the thermogram (Tmax) is corre-
lated to the volatility of the detected ion. Similar to Bannan
et al. (2019) and Stark et al. (2017), we calibrated the Tmax–
volatility relationship using compounds with known vapor
pressure. The calibration procedure is described in the Sup-
plement.

We collected particles for FIGAERO–CIMS analysis at
two different stages of the evaporation. We refer to these
samples as either “fresh” or “RTC” samples. The fresh sam-
ples were collected for 30 min directly after the selection
of the monodisperse population. The RTC samples of the
residual particles were collected for 75 min after 3–4 h of
evaporation in the RTC. The collected particulate mass was
140–260 and 20–70 ng for the fresh and the RTC samples,
respectively. More details about sample collection, desorp-
tion parameters and data analysis can be found in Buchholz
et al. (2020).

2.2 The volatility distribution

We represent the myriad of organic compound in the SOA
particles with a one-dimensional volatility basis set (1D
VBS; below only VBS; Donahue et al., 2006). The VBS
groups the organic compounds into “bins” based on their
effective (mass) saturation concentration C∗, defined as the
product of the compounds’ activity coefficient and satura-
tion concentration. Generally, a bin in the VBS represents the
amount of organic material in the particle and gas phases. In
our study, the walls of the RTC have been shown to work as
an efficient sink for gaseous organic compounds (Yli-Juuti
et al., 2017). Thus, we can assume that the gas phase in our
experimental setup does not contain organic compounds, i.e.,
the amount of organic matter in a bin is the amount in the par-
ticle phase. To distinguish from a traditional VBS that groups
the organic compounds to bins such that there is a decadal
difference in C∗ between two adjacent bins, we call the VBS
in our work a volatility distribution (VD). We present the
amount of material in each VD bin as the dry mole fraction,
i.e., the mole fraction of the organics, excluding water. In the
analysis presented below, we assign properties to each VD
bin (e.g., molar mass), treating each bin as if it consisted of
only a single organic compound with a single set of prop-
erties. The physicochemical properties of each VD bin are
assumed to be the same. These properties and the ambient
conditions of each evaporation experiment are listed in Ta-
ble 1.

2.3 Deriving volatility distribution from an evapogram

We followed a similar approach as in Yli-Juuti et al. (2017)
and Tikkanen et al. (2019) to derive a VD at the start of the
evaporation from an evapogram. To model the evaporation at
high RH, we used a process model (liquid-like evaporation
model, hereafter LLEVAP) that assumes a liquid-like parti-
cle, i.e., a particle in which there are no mass transfer limi-
tations inside the particle and where the mass flux of a VD
bin in the particle phase can be calculated directly from the
gas-phase concentrations of the VD bin both near the parti-
cle surface and far away from the particle (Vesala et al., 1997;
Lehtinen and Kulmala, 2003; Yli-Juuti et al., 2017). In this
case, the main properties for defining the evaporation rate are
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Table 1. The ambient conditions and properties of the organic compounds used in estimating the VDevap. The variables are, from top to
bottom, temperature (T ) during the evaporation, relative humidity (RH), gas-phase diffusion coefficient (Dg,org), molar mass (M), particle-
phase density (ρ), particle surface tension (σ ) and mass accommodation coefficient (α). Rows that only have one value are the same in every
column.

Variable Medium O : C(high RH) Low O : C(high RH) Medium O : C(dry) Low O : C(dry)

T (K) 293.85 293.75 293.75 293.35

RH (%) 82.4 83.5 0 0

D
a,b
gas (cm2 s−1) 0.05

Mb (gmol−1) 200

ρb (kgm−3) 1200

σ b (mNm−1) 40

αb 1

a The gas-phase diffusion coefficients are scaled to correct the temperatures by multiplying with a factor of (T /273.15)1.75 (Reid et al., 1987).
b Values are chosen to represent a generic organic compound with values similar to other α-pinene SOA studies (e.g., Pathak et al., 2007; Vaden
et al., 2011; Yli-Juuti et al., 2017).

the saturation concentrations of each VD bin and their rela-
tive amounts in the particle.

We used the LLEVAP model to characterize the volatility
range that can be interpreted from the evaporation measure-
ments. We calculated the range by modeling the evaporation
of a hypothetical particle that consists of one organic com-
pound evaporating in dry conditions. We calculated the evap-
oration for the range of log10(C

∗) values from −5 to 5. We
determined the minimum C∗ value to be the value that still
showed “detectable evaporation”, i.e., at least 1 % change in
particle diameter during the evaporation time (up to 6 h), and
the maximum C∗ value to be the value before “complete
evaporation” occurred, i.e., 99 % particle diameter change
within the first 10 s. The minimum log10 (C∗) calculated with
this method was −3 and the maximum log10 (C∗) was 2. We
then modeled the particle composition with six VD bins with
C∗ values between these minimum and maximum values.
Each VD bin has a decadal difference in C∗ to an adjacent
VD bin (like in the traditional VBS). We note that, based on
this analysis, all the compounds with log10 (C∗)<−3 will
not evaporate during the experimental timescale. This means
that any compounds with lower C∗ than this threshold will be
assigned to the log10 (C∗)=−3 VD bin. Similarly, any com-
pound with log10 (C∗)> 2 will be classified into the log10
(C∗)= 2 VD bin or not be detected at all due to evaporating
almost entirely before the first measurement point.

We calculated the dry particle mole fraction of each VD
bin at the start of the evaporation by fitting the evapora-
tion predicted with the process model to the measured eva-
pograms. Our goal was to minimize the mean squared error
in a vertical direction between the experimental data and the
LLEVAP output. We used the Monte Carlo genetic algorithm
(MCGA; Berkemeier et al., 2017; Tikkanen et al., 2019) for
the input optimization. In the optimization, we set the popu-
lation size to be 400 candidates, number of elite members to

20 (5 % of the population), number of generations to 10 and
number of candidates drawn in the Monte Carlo (MC) part
to 3420, which corresponds to half of the total process model
evaluations done during the optimization. We performed the
optimization 50 times for each evapogram and selected the
best-fit VD estimate for further analysis.

The VD derived from the evapogram is hereafter referred
to as the VDevap. The initial composition of the SOA parti-
cles in the dry and wet experiments was the same and can
be described by the same fitted VDevap as the particles were
generated at the same conditions in the PAM and only the
evaporation conditions changed.

2.4 Deriving volatility distribution from
FIGAERO–CIMS measurement

As shown by Bannan et al. (2019) and Stark et al. (2017), the
peak desorption temperature, Tmax, can be used together with
a careful calibration to link desorption temperatures from the
FIGAERO filter to C∗ values for the detected ions. In prin-
ciple, this would allow us to assign one C∗ value to each ion
thermogram. But this assumes that one detected ion charac-
terized by its exact mass is indeed just one compound. In
practice, this is not always the case, and for some ion ther-
mograms, a bimodal structure or distinct shoulders and/or
broadening is visible. This can be caused by isomers of dif-
ferent volatility which cannot be separated even by high-
resolution mass spectra.

Another complication arises due to the thermal-desorption
process delivering the collected aerosol mass into the CIMS.
Especially multifunctional and, hence, low-volatility com-
pounds may thermally decompose before they desorb from
the filter and, thus, are detected as smaller ions. The appar-
ent desorption temperature is then determined by the thermal
stability of the compound and not its volatility. Typically, this
decomposition process starts at a minimum temperature and
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will not create a well-defined peak shape (Buchholz et al.,
2020, Schobesberger et al., 2018), presumably because an
observed decomposition product may have multiple sources,
especially when including all isomers, and the ion signal for
the respective composition may overlap with the signal of
isomers derived from true desorption. For example, a true
constituent of the SOA particle may give rise to an observed
main thermogram peak, but it may be broadening and/or tail-
ing if a decomposition product has the same composition.
By ignoring this and simply using the Tmax values, the true
volatility of the SOA particle constituents will be overesti-
mated, i.e., the derived VD will be biased towards higher C∗

bins.
One more potential source of bias is our implicit assump-

tion of a constant sensitivity of the CIMS towards all com-
pounds, which follows from the lack of calibration measure-
ments for our data sets (which indeed is a challenging en-
deavor; e.g., Isaacman-VanWertz et al., 2018). It is plausible
that less volatile compounds tend to be detected at higher
sensitivity (Iyer et al., 2016; Lee et al., 2014), up to a ki-
netic limit sensitivity. Consequently, a volatility distribution
derived from FIGAERO–CIMS thermograms may be biased
towards lower volatility (C∗ bins), at least for compositions
not associated with thermal decomposition.

To separate the multiple sources possibly contributing to
each ion thermogram (isomers and thermal decomposition
products), we applied the positive matrix factorization (PMF;
Paatero and Tapper, 1994) to the FIGAERO–CIMS data set.
PMF is a well-established mathematical technique in at-
mospheric science mostly used to identify the contribution
of different sources of aerosol particle constituents or trace
gases in the atmosphere. PMF represents the measured ma-
trix of the time series of mass spectra, X, as a linear combi-
nation of a known (or unknown) number of constant source
profiles, F, with varying contributions over time, G, as fol-
lows:

X=G ·F+E. (1)

E is a matrix containing the residuals between the measured
(X) and the fitted data (G ·F). Values for G and F are found
by minimizing this residual, Eij , scaled by the correspond-
ing measurement error, Sij , for each ion i at each time j as
follows:

Q=
∑m

i=1

∑n

j=1

(
Ei,j

Si,j

)
. (2)

Each row in F contains a factor mass spectrum and each col-
umn in G holds the corresponding time series of contribu-
tion by each factor. In the case of FIGAERO–CIMS data, the
time series is equivalent to the desorption temperature ramp
during the thermogram and will be called the “mass load-
ing profile” below. The absolute values (temperature or time)
are irrelevant for the performance of PMF as the “x values”
are only used to determine the order of the data points but

have no influence on the model output (Paatero and Tapper,
1994). This allowed us to combine multiple separate ther-
mogram measurements into one data set and conduct a PMF
analysis. This simplified the comparison of factors between
measurements. More details about the PMF method in the
specific case of FIGAERO–CIMS data can be found in Buch-
holz et al. (2020).

Once the PMF algorithm was applied to the FIGAERO–
CIMS data, we calculated the VD from the mass loading ma-
trix G. Due to the very low signal strength of many ions, the
CIMS data had been averaged over 20 s, leading to an en-
hanced reliability of the high-resolution analysis. This leads
to an average desorption temperature difference 1Tdesorp ≈

4 ◦C between two adjacent data points. To overcome this
coarse Tdesorp grid, we interpolated each factor’s mass load-
ing profile with a resolution of 100 sample points between
two temperature steps to gain sufficient statistics for further
analysis. Tmax was determined as the temperature at the max-
imum signal in the factor mass loading profile. We integrated
the factor mass loading profile and defined the temperatures
where the value of the integral reached 25 % and 75 % of its
maximum value. This temperature interval formed the fac-
tor’s desorption temperature range, and the corresponding C∗

values will be used in Sect. 3.3. We converted the Tmax val-
ues into C∗ values and the desorption temperature range into
a C∗ range with a parametrization derived from calibration
measurements (see the Supplement for details) with organic
compounds with known C∗ values.

C∗ =
exp(α+βTfactor)Morg

RTambient
109, (3)

where C∗ is the effective saturation concentration in units
µgm−3, Morg is the molar mass of the organic compound as-
sumed to beMorg= 0.2 kgmol−1, R is the universal gas con-
stant, Tfactor (in ◦C in Eq. 3) is the temperature of the mass
loading profile and Tambient (in Kelvin in Eq. 3) is the ambient
temperature at which the evaporation happens (see Table 1).
α and β are the fitted coefficients from the calibration data,
where α= (−1.431± 0.31) and β = (−0.207± 0.006) ◦C−1.
We applied the lower and higher bounds of the fitting co-
efficients’ uncertainty when we calculated the C∗ range in
Sect. 3.3. Finally, the signal fraction of each factor was cal-
culated by dividing the integral of a factor’s signal over the
whole temperature range with the sum of integrals of all fac-
tors. We compare this signal fraction to the dry mole fraction
in the VDevap. We refrained from converting the counts per
second signal into moles as no adequate transmission and
sensitivity measurements were available for the FIGAERO–
CIMS setup used. We refer to the volatility distribution, cal-
culated from the PMF data using the Tmax values of each
factor as VDPMF, later in this work.

With Eq. (3) we can calculate the minimum and maximum
C∗ values that can be resolved from a FIGAERO thermo-
gram. The desorption temperature was ramped between 27
and 200 ◦C, but defined peaks (and thus Tmax values) can be
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detected only between 30 and 180 ◦C. Thus, the resolvable
log10 (C∗) values range from 1.6 to −11.9. It has to be kept
in mind that, strictly speaking, this calibration only applies
to the Tmax values of a single ion thermogram.

2.5 Modeling particle viscosity at dry conditions

To model the mass transfer limitations observed in the evap-
oration measurements at dry conditions (Buchholz et al.,
2019), we used the kinetic multilayer model for gas parti-
cle interactions (KM-GAP; Shiraiwa et al., 2012), with mod-
ifications described in Yli-Juuti et al. (2017) and Tikkanen
et al. (2019). The main modification to the original model
was that, during evaporation, the topmost layer (the quasi-
static surface layer) merged with the first bulk layer if the
thickness of the layer was smaller than 0.3 nm. We calculated
the viscosity at each layer of the particle as follows:

log10
(
ηj
)
=

∑N

i=1
Xmole,i,j log10 (bi) , (4)

where Xmole,i,j is the mole fraction of the VD bin i in layer
j , and bi is a coefficient that describes the contribution of
each VD bin to the overall viscosity.

Since we generated the particles in the same environment
(PAM chamber) and only the evaporation happened at dif-
ferent conditions, the VD at the start of the evaporation de-
rived from high-RH data also represents the composition at
the start of the evaporation in dry conditions. Then we can
use the best fit VDevap from the high-RH data as input for
KM-GAP and fit the bi values in Eq. (4) to the dry data set.
We set the minimum and maximum allowed values for bi
to 10−15 and 1020, respectively. To estimate the bi values
when modeling the evaporation with VDPMF in dry condi-
tions, we calculated these bi terms using the mass spectra
of each factor (F in Eq. 1) and the Vogel–Tammann–Fulcher
(VTF) equation (DeRieux et al., 2018; Angell, 2002, 1995)
as follows:

ηi = η∞exp
(
T0,iD

T − T0,i

)
, (5)

where ηi is the viscosity of the ith VD bin and/or PMF fac-
tor. ηi can be seen as a proxy for bi in an ideal solution. η∞
is the viscosity at infinite temperature, T0,i is the Vogel tem-
perature of the ith VD bin and D is a fragility parameter.
Setting η∞= 10−5 and η (Tg)= 1012 Pas−1 (e.g., DeRieux
et al., 2018; Gedeon, 2018), where Tg is the glass transition
temperature of a compound, yields the following:

T0,i ≈
39.14Tg,i

39.14+D
. (6)

We calculated Tg for every compound in the PMF mass spec-
tra with a parametrization for SOA matter developed by De-
Rieux et al. (2018). This parametrization requires the number
of carbon, oxygen and hydrogen atoms to calculate the Tg.
We then computed Tg for each PMF factor as a mass fraction

weighted sum of the glass transition temperatures of indi-
vidual compounds (DeRieux et al., 2018; Dette et al., 2014).
Based on the Tg,i of each PMF factor, we calculated the vis-
cosity of each PMF factor with Eqs. (5) and (6) and used
them as an approximation for bi . We used fragility parame-
ter value D = 10 in the calculations, according to DeRieux
et al. (2018).

3 Results

In this section we first focus on the high-RH experiments
in which evaporation is modeled with the LLEVAP model.
We will first compare VDevap to VDPMF for which the C∗

of a PMF factor is determined from the factor’s Tmax value.
Then, we compare the volatility distributions where the C∗

of a PMF factor is determined as a range from the 25th and
75th percentile desorption temperatures. Lastly, we study the
volatility distributions in dry conditions. We investigate the
VD on both a qualitative and quantitative level. On a qual-
itative level, we compare the amount of matter of different
C∗ intervals relevant for the evaporation process. On a quan-
titative level, we study what the evaporation behavior of the
particles is based on the determined VD and how they com-
pare to the measured evaporation.

3.1 PMF solution interpretation

Figure S2 in the Supplement shows the mass loading pro-
files derived from the FIGAERO–CIMS measurements of
medium- and low-O : C particles at high RH. The corre-
sponding factor mass spectra can be found in Figs. S3 and S4
in the Supplement. A key step in any PMF analysis is deter-
mining the “right” number of factors as this can affect the
interpretation of the results. We carefully investigated the
Q/Qexp, the time series of scaled and unscaled residuals,
and the ability of a PMF solution to capture the character-
istic behavior of as many single ion thermograms as possible
(see Buchholz, 2020, for details). Based on this analysis, a
seven-factor solution was chosen for the medium-O : C cases
and a nine-factor solution for the low-O : C ones. The two
additional factors in the low-O : C case were needed to cap-
ture a contamination on the FIGAERO filter during the dry,
fresh sample (factors LC1 and LC2 in Figs. S2 and S4). As
these two factors were clearly an artifact introduced by the
FIGAERO filter sampling, we omitted their contribution for
the following analysis. From careful comparison of the factor
profiles and mass spectra with filter blank measurements, we
determined that factor MB1 in the medium-O : C case and
factor LB1 in the low-O : C case describe the filter and/or in-
strument background and are thus also excluded from the VD
comparison presented below.

Factors 1–5 in both O : C cases exhibit a monomodal
peak shape and can thus be characterized by their Tmax
values. Factor MD1 in the medium-O : C case and factor
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Figure 1. Main positive matrix factorization (PMF) mass loading profiles for the thermal desorption of secondary organic aerosol (SOA) from
α-pinene at high relative humidity (RH) conditions. (a) Fresh sample of medium-O : C SOA. (b) Residual particles of medium-O : C SOA
after 173–259 min of evaporation in a residence time chamber (RTC; the RTC sample). (c) Fresh sample of low-O : C SOA. (d) Residual
particles of low-O : C SOA after 168–254 min of evaporation in the RTC (the RTC sample). Black crosses indicate the peak desorption
temperature Tmax, and the diamonds mark the 25th and 75th percentiles of the area of each factor.

LD1 in the low-O : C case need to be investigated more
closely, as their factor mass spectrum and the sometimes bi-
modal mass loading profile suggest that these factors con-
tain compounds stemming from both direct desorption (des-
orption T < 100 ◦C) and thermal decomposition (desorption
T > 100 ◦C; see Buchholz et al., 2020, for details). To ac-
count for this, the factor is split into two, with the first half
containing the signal from desorption temperatures below
100 ◦C (factor M/LD1a) and the second half containing tem-
peratures above 100 ◦C (factor M/LD1b). We treat these fac-
tors separately. We note that now the latter half of the split
factor is dominated by thermal decomposition products, so
the apparent desorption temperature is actually the tempera-
ture at which thermal decomposition leads to products which
desorb at this temperature. This apparent desorption temper-
ature is thus a lower limit for the decomposing parent com-
pound, i.e., the true volatility of these parent compounds is
even lower. However, the desorption temperatures are so high
that they lead to log10 (C∗)<−3 and are thus below the
comparable range for VDevap. Figure 1 (high-RH data) and
Fig. S10 in the Supplement (dry-condition data) show the
mass loading profiles derived from FIGAERO–CIMS mea-
surements of medium- and low-O : C particles after we ex-
cluded the contamination and background factors and split
the decomposition factors.

3.2 Volatility distribution comparison at high RH
based on factor Tmax

To compare VDevap and VDPMF, we need to determine the
time interval in the evapogram that the VDPMF represents.
We collected the fresh samples directly after the size selec-

tion. As the particles were collected for 30 min, the collected
sample represents particles that have evaporated from 0 up to
30 min in the organic vapor-free air. We note that this is dif-
ferent from the standard FIGAERO–CIMS sample collection
in which the particles are collected in a quasi-equilibrium
with the surrounding gas phase, and no significant evapora-
tion occurs (Lopez-Hilfiker et al., 2014). For RTC samples,
we also need to consider that not all particles have evapo-
rated for the same time due to the filling of the RTC for ca.
20 min. We determined the minimum time the particles have
evaporated in the RTC as the time when we started the sam-
ple collection minus the RTC filling time. We determined the
maximum evaporation time in the RTC to be the time when
we stopped the sample collection plus the filling time. These
minimum and maximum comparison times are shown in Ta-
ble S1 in the Supplement, and they are referred to as min-
imum and maximum (sample) evaporation time. The mean
(sample) evaporation time is defined as being at the middle of
the sample collection interval. For simplicity, we will show,
in the main text, the results from the analysis in which the
FIGAERO–CIMS samples were assumed to represents the
particles at the mean sample evaporation time. We show the
analysis in which the samples were assumed to represent the
particles at minimum and maximum evaporation time in the
Supplement. The choice of sample evaporation time does not
affect the conclusions we draw about the analysis presented
in this section.

Figure 2 shows VDevap and VDPMF for medium- (Fig. 2a–
b) and low-O : C (Fig. 2c–d) particles in high-RH exper-
iments. In the VDPMF calculated from the Tmax value of
each factor (black crosses), the factors fall into three dif-
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Figure 2. Volatility distributions in high-RH experiments determined from model fitting (VDevap) and PMF analysis of FIGAERO–CIMS
data (VDPMF) for the same four cases as shown in Fig. 1. (a) Fresh sample of medium-O : C SOA. (b) Residual particles of medium-O : C
SOA (the RTC sample). (c) Fresh sample of low-O : C SOA. (d) Residual particles of low-O : C SOA (the RTC sample). VDevap is shown for
the best-fit simulation (gray bars) at the mean evaporation time of the FIGAERO–CIMS sample. Black crosses show the log10 (C∗) calculated
for each PMF factor from the peak desorption temperature Tmax. The horizontal colored lines show the range of log10 (C∗) calculated from
the 25th and 75th percentiles of each PMF factor’s mass loading profile.

ferent volatility classes within our chosen particle size
and experimental timescale, namely practically nonvolatile
(log10 (C∗)≤−2), slightly volatile (−2< log10 (C∗)≤ 0)
and volatile (log10 (C∗)> 0). We use these three volatility
classes to compare the volatility distributions in Fig. 3 where
each VD bin is grouped to these three volatility classes. Fig-
ure 3 compares VDPMF to what VDevap is at the mean time
that the FIGAERO samples had evaporated prior to collec-
tion. We show the same comparison for the minimum and
maximum evaporation time in Fig. S6 in the Supplement.

After the volatility class grouping is applied, we see that
there are differences between VDevap and VDPMF. With
VDPMF of the fresh samples, there are excess amounts of
matter in the lowest volatility class (volatility class 1) and
less material in volatility class 2 compared to VDevap for
both oxidation conditions. In addition, the VDPMF of the
low-O : C fresh sample shows more material in the highest
volatility class (volatility class 3) compared to VDevap.

To investigate the observed discrepancies further, we used
the VDPMF shown in Fig. 2 as an input to the LLEVAP model
and calculated the corresponding isothermal evaporation be-
havior (i.e., the evapogram). We show these simulated evap-
ograms in Fig. 4a for the medium-O : C case and in Fig. 4b
for the low-O : C condition together with the simulated eva-
pogram calculated using VDevap as an input for the LLE-
VAP model. The simulated evapograms calculated with the
VDPMF of the fresh samples do not match the measured eva-
pograms, while the evapogram calculated with VDevap agrees
well with the experimental evapogram (black lines in Fig. 4),
as expected, since this is the goal of the VDevap determina-

tion. The simulation calculated with the VDPMF of the fresh
sample (light blue lines in Fig. 4 for the mean evaporation
time; Fig. S7 in the Supplement for other evaporation times)
shows slower evaporation than the observations or the sim-
ulation calculated with VDevap. This is consistent with the
results show in Fig. 3, where the VDPMF contained more low-
volatility material than the VDevap.

Figure 4 also shows the simulated evapograms calculated
with VDPMF of the RTC samples (light brown lines in Figs. 4
and S7). In these cases, the particles size decreases little
within the simulation timescale. With medium-O : C parti-
cles, the simulated evaporation matches the measured evap-
oration well. With low-O : C particles, the evaporation cal-
culated with VDPMF is too fast. The shape of the evapogram
does not match the measured one.

3.3 Applying desorption range to characterize the
volatility of PMF factors

The Tmax value is a practical choice for the characteristic
temperature of the desorption process. However, as we saw
in Sect. 3.2, the VDPMF calculated from the peak desorp-
tion temperatures did not produce the measured evapogram
when used as an input for the LLEVAP model. Working
under the assumption that all material collected on the FI-
GAERO filter, including the higher volatility material, is de-
tected in the CIMS and then captured in the PMF analysis,
we will relax the assumption that the volatility of the fac-
tor is characterized strictly by the Tmax value of the factor
and investigate the VDPMF further. We will explore how the
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Figure 3. Comparison of VDPMF and VDevap at the mean sample evaporation time in high-RH experiments for the same four cases as shown
in Fig. 1. (a) Fresh sample of medium-O : C SOA. (b) Residual particles of medium-O : C SOA (the RTC sample). (c) Fresh sample of low-
O : C SOA. (d) Residual particles of low-O : C SOA (the RTC sample). The VD bins shown in Fig. 2 are grouped into three different volatility
classes based on their evaporation tendency with respect to the measurement timescale and particle size. The limits for each volatility class
are shown at the top and are the same for each subfigure. The VDPMF shows lower overall volatility than the VDevap, except for (d) (RTC
sample of low-O : C SOA) where the VDPMF shows higher overall volatility than the VDevap.

Figure 4. Evapograms of high-RH experiments showing the evaporation factors (remaining fraction of the initial particle diameter; circles)
and their uncertainty in time for (a) medium-O : C SOA and (b) low-O : C SOA. Liquid-like evaporation model (LLEVAP) simulated eva-
pograms calculated using the best fit VDevap (solid black lines) and LLEVAP simulated evapograms calculated with VDPMF (turquoise
lines for VDPMF of fresh SOA and light brown lines for simulations with VDPMF of the residual particles evaporated for 173–259 and
168–254 min for medium- and low-O : C SOAs, respectively). The evapograms calculated with the VDPMF of the fresh samples show a
lower rate of evaporation than the evapogram calculated with the VDevap, which is consistent with volatility distribution shown in Fig. 3.
The evapograms calculated with the VDPMF of the residual particles (the RTC sample) show a similar rate of evaporation for medium-O : C
SOA and a faster rate of evaporation for low-O : C SOA compared to evapograms calculated with VDevap, which is similarly consistent with
Fig. 3.

VDPMF changes when the desorption temperature and the re-
sulting C∗ are interpreted to contain uncertainty and if the
VDPMF, considering these uncertainty ranges, is consistent
with the observed isothermal evaporation. The uncertainty
in the desorption temperature raises from the fact that com-

pounds volatilize from the FIGAERO filter throughout the
heating, and therefore, one value might not be adequate to
characterize the C∗ of a factor and each PMF factor contains
multiple compounds with distinct C∗.
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Table 2. The best-fit C∗ values for medium- and low-O : C high-RH experiments, when C∗ values of PMF factors were optimized with
respect to the measured isothermal evaporation. C∗ values were optimized by assuming that the FIGAERO–CIMS sample represents particle
composition at the mean sample evaporation time for the fresh sample and the minimum sample evaporation time for the RTC sample. The
C∗ values are rounded to two significant digits and are in units µgm−3. C∗ values below 10−3 µgm−3 are not reported explicitly since the
evapogram-fitting method is not sensitive to these values.

Medium O : C (fresh sample) Medium O : C (RTC sample) Low O : C (fresh sample) Low O : C (RTC sample)

Factor M1/L1 4.96× 10−1 36.10 3.06× 10−1 < 10−3

Factor M2/L2 2.89× 10−1 4.12× 10−1 3.55× 10−1 2.40× 10−2

Factor M3/L3 9.93× 10−3 4.42× 10−3 2.87× 10−2 7.13× 10−3

Factor M4/L4 < 10−3 < 10−3 1.54× 10−3 < 10−3

Factor M5/L5 < 10−3 < 10−3 < 10−3 < 10−3

Factor D1a 7.68× 10−1 69.35 130.03 1.04× 10−1

Factor D1b < 10−3 < 10−3 < 10−3 < 10−3

We calculated the 25th and 75th percentiles of the des-
orption temperatures of each factor and converted them to
effective saturation concentrations, as described in Sect. 2.4
(see diamond markers in Fig. 1). We show the resulting C∗

ranges in Fig. 2 as solid horizontal lines, where the line color
matches the color of the factors in Fig. 1. We then ran the
MCGA optimization by setting the number of compounds
equal to the number of PMF factors, the molar fraction for
each compound at the FIGAERO–CIMS sampling time fixed
to the molar fraction of the corresponding factor and the C∗

as the optimized variables restricted to the range correspond-
ing to the 25th and 75th percentile desorption temperature.
In the optimization, the goodness-of-fit statistic was calcu-
lated as a mean squared error, similar to the determination of
VDevap.

As the fresh samples were collected between 0 and 30 min
from the start of the evaporation, we sought a fitting set of C∗

values for evaporation starting at 0, 15 and 30 min. Again,
we show the results for the mean sample evaporation time
(15 min) in the main text and the results for the other evapora-
tion times in the Supplement. Due to scarcity of particle size
measurements at the collection time of the RTC sample, we
will apply this analysis only to the VDPMF of the RTC sam-
ple at its minimum evaporation time. In each optimization,
we set the initial particle diameter to be the same as what is
simulated with VDevap. We derived 50 C∗ estimates for both
samples. From these 50 estimates, we chose the best-fit evap-
ogram. We refer to these optimized volatility distributions as
VDPMF,opt to separate them from the VDPMF where we used
Tmax to characterize C∗ of a PMF factor.

We show the optimized C∗ values forming VDPMF,opt
in Table 2 (see Table S2 in the Supplement for results
with minimum and maximum sample evaporation times).
Figure 5 shows the best-fit evaporation simulations calcu-
lated with VDPMF,opt. The other sample evaporation times
are displayed in the Supplement (Fig. S8). For both oxida-
tion conditions, the simulations resemble the experimental
evapogram and the evapogram calculated with VDevap, al-

though the simulation of the medium-O : C condition shows
a 5 times larger goodness-of-fit value compared to the sim-
ulation calculated with VDevap. The evapograms determined
with the VDPMF,opt of the RTC samples agree with the mea-
sured evaporation as well.

Figure 5. Evapograms of high-RH experiments showing the evapo-
ration factors (circles), their uncertainty in time (black whiskers),
the best-fit simulated evapogram calculated with VDevap (solid
black line) and the best-fit simulated evapograms calculated with
the volatility distribution, where the effective saturation concen-
tration (C∗) of each of the PMF factors is fitted to the measure-
ments (VDPMF,opt). (a) Medium-O : C SOA. (b) Low-O : C SOA.
The solid colored lines are for the fresh SOA, and the dashed lines
are for the residual particles collected from the RTC after 173–259
and 168–254 min of evaporation for medium- and low-O : C SOAs,
respectively. For fitting, the C∗ of each PMF factor was allowed val-
ues from their respective 25th and 75th percentile desorption tem-
peratures, as shown in Fig. 1. All the evapograms calculated with
the VDPMF,opt match the measured evaporation, highlighting that
the volatility distribution determined from the FIGAERO–CIMS
data with the PMF method can describe the dynamics of evapo-
rating SOA particles when uncertainties in the C∗ of the factors are
considered.

Overall, the results demonstrate that the information de-
rived from the fresh and RTC FIGAERO–CIMS samples can
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describe the volatility of the evaporating particles when un-
certainties in the desorption temperature are considered.

3.4 Comparison of the volatility distribution of the
fresh and RTC sample in high-RH conditions

In this section, we compare VDPMF,opt of the fresh sam-
ples to VDPMF of the RTC sample to study if the two VD
are similar. We compare the two VD at the mean evapora-
tion time of the RTC sample. We calculated the evapograms
with the VDPMF,opt of the fresh sample as the initial particle
composition and recorded the mole fraction of each factor at
the mean evaporation time of the RTC sample (216 min for
medium-O : C particles and 211 min for low-O : C particles).
Figure 6a and c show this comparison for both medium- and
low-O : C particles. The factors are grouped into the three
volatility classes described in Sect. 3.2. In Fig. 6, we show
the results from the analysis where VDPMF,opt was optimized
by assigning the fresh sample composition at the mean sam-
ple evaporation time. Similar comparisons using the mini-
mum and maximum evaporation time of the fresh sample are
shown in Fig. S9 in the Supplement. To ensure that the fac-
tors are grouped to the same volatility classes for each stud-
ied VD, we used the C∗ values of the VDPMF,opt at the mean
sample evaporation time as a basis for the grouping.

The compositions simulated, based on the VDPMF,opt of
the fresh samples, are comparable to the corresponding
VDPMF of the RTC sample in both oxidation conditions
(Fig. 6). The agreement is good, especially for the low-O : C
case for which the VDPMF,opt showed a slightly smaller con-
tribution in volatility class 1 and a corresponding higher
contribution in volatility class 2 compared to the VDPMF
of the RTC sample (Fig. 6c). For the medium-O : C case,
the VDPMF,opt predicted a higher contribution of volatility
class 1 and a lower contribution of volatility class 2 com-
pared to VDPMF (Fig. 6a).

These results show that the particle composition measured
after a few hours of evaporation is consistent with the com-
position predicted, based on the composition observed at the
start of evaporation, while considering the uncertainties of
the interpreted C∗ values.

3.5 Volatility distribution comparison in dry conditions

Next, we analyzed the evaporation experiments in dry con-
ditions where the evaporation rate was reduced compared to
the high-RH conditions. We interpreted this difference as an
indication of particle-phase diffusion limitations in dry con-
ditions (Yli-Juuti et al., 2017). Using the initial particle com-
position information obtained from the high-RH experiments
and the FIGAERO–CIMS data, we explored the effect of par-
ticle viscosity on the evaporation process. Our aim is to test
if the slower evaporation, presumably due to higher viscos-
ity of the SOAs, can be captured with a recently developed
viscosity parametrization based on glass transition tempera-

tures of various organic compounds (DeRieux et al., 2018).
We also compare the results, using the viscosity parametriza-
tion, to an approach where we fit both the viscosity and VD
to the evapogram.

First, we investigated the range of particle viscosities that
are required to explain the observed slower evaporation in
dry conditions. For this, we simulated the particle evapo-
ration in dry conditions based only on the evapogram data.
We used the VDevap (i.e., the initial particle composition ob-
tained by optimizing mole fractions of VD bins with respect
to the observed evapogram in high-RH conditions) as the ini-
tial particle composition estimate for the simulations and op-
timized the bi values (Eq. 3) for each VD bin. The best-fit
simulation from this optimization agrees well with the ob-
served size decrease in the dry experiments for both low-
and medium-O : C particles (Fig. 8; black line). Based on
these simulations, the viscosity of the particles needs to in-
crease from below 105 Pas to approximately 108 Pas during
the evaporation in order to explain the evaporation rate ob-
served for the dry particles.

Second, we tested the performance of the composition-
dependent viscosity parameterization by DeRiuex
et al. (2018) together with the PMF results. For this,
we calculated the volatility distribution, VDPMF,dry, based
on the Tmax values of the factors from the fresh sample of
the evaporation experiment at dry conditions (in the same
way as for VDPMF for the high-RH case). The mole fraction
of each factor was calculated from the mass loading profile
to give the initial mole fraction of each VD bin for the
simulations. We assigned this VDPMF,dry as the particle
composition at the mean evaporation time of the fresh
sample, i.e., 15 min, and simulated the particle evaporation
from there onwards. The particle size at the beginning of
the simulation (i.e., at 15 min of evaporation) was taken
from the above simulations and optimized based only on the
evapogram data, which fitted well to the measurements. We
calculated the viscosity parameter bi value for each VD bin,
as described in Sect. 2.5, based on the mass spectra of the
factor and the parameterization by DeRieux et al. (2018). In
practice, this resulted in too high a viscosity for the particles
to evaporate at all during the length of the experiment for
both low- and medium-O : C particles (dashed gray line in
Fig. 8). Therefore, we also conducted a simulation where the
viscosity parameter bi value for each factor was calculated
based on the viscosity parameterization by setting the Tg
values of all compounds 30 K lower than the parametrization
predicted, which is in line with the uncertainties reported by
DeRiuex et al. (2018). In this case, the simulated evaporation
was faster than observed for the medium-O : C conditions
(solid gray line in Fig. 8a) and similar to the evapogram cal-
culated with the VDevap for low-O : C conditions (solid gray
line in Fig. 8b). This suggests that the observed evaporation
rate at dry conditions and the viscosity parametrization by
DeRieux et al. (2018) may be consistent with each other
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Figure 6. Comparison of the simulated particle composition (VDPMF,opt; VDPMF,opt,dry) to the particle composition determined from the
residual particles collected from the RTC (VDPMF/VDPMF,dry) after 173–259 and 168–254 min of evaporation for medium- and low-O : C
SOAs, respectively. The comparison is done at the mean evaporation time of the residual particles. The simulated compositions (VDPMF,opt
– a and c; VDPMF,opt,dry – b and d) are taken from the best-fit simulated evapogram obtained from the optimization of the C∗ values of the
fresh sample’s PMF factors to the measured evapogram. The volatility of the individual volatility distribution (VD) bins are grouped into three
volatility classes, similar to Fig. 3. The limits for each volatility class are shown at the top and are the same for each subfigure. The C∗ values
from VDPMF,opt/VDPMF,opt,dry were used for corresponding VDPMF/VDPMF,dry when the volatility grouping was calculated in order to
ensure the comparability. (a) Medium-O : C SOA in the high-RH experiment. (b) Medium-O : C SOA in the dry-condition experiment.
(c) Low-O : C SOA in the high-RH experiment. (d) Low-O : C SOA in the dry-condition experiment. In the high-RH cases (a) and (c), the
volatility distributions simulated, based on VDPMF,opt of the fresh SOAs, are similar to the measured VDPMF, while for the dry-condition
cases (b) and (d), the volatility distributions simulated, based on VDPMF,opt,dry, show higher volatility than the measured VDPMF.

within the uncertainty range of the viscosity parametrization
and the uncertainty range of the C∗ of PMF factors.

Similar to Fig. 3, we show in Fig. 7 the comparison of
VDPMF,dry (C∗ from Tmax) to the VDevap in dry conditions
and at the mean sample evaporation time, with the VD bins
grouped into the three volatility classes. We show the mass
loading profiles and the volatility distributions of the ex-
periments in dry conditions in Figs. S10 and S11 in the
Supplement. Figure S12 in the Supplement shows the same
comparison as Fig. 7 for other sample evaporation times.
For medium-O : C particles, VDPMF,dry calculated from the
fresh sample has more contributions from volatility classes 1
and 3 and less from volatility class 2, compared to the corre-
sponding VDevap. For the low-O : C particles, the VDPMF,dry
of the fresh sample has more contribution from volatility
class 3 and less from volatility classes 1 and 2, compared
to the VDevap. For medium-O : C particles, the differences
between the VDPMF,dry and VDevap leave open the possibil-
ity that the underestimated evaporation rate calculated using
VDPMF,dry is partly a result of inaccuracy in the volatility de-
scription and not solely due to the high estimated viscosity.
For the low-O : C particles, the underestimated evaporation
most likely stems from the high estimated viscosity since
VDPMF,dry is shifted towards higher volatility compounds
than VDevap.

As a third investigation of the viscosity, we again used the
PMF results of the fresh sample in dry conditions to initialize
the particle composition in the model at the mean fresh sam-
ple evaporation time. The mole fraction of each factor was
calculated from the mass loading profile, giving the initial
mole fraction of each VD bin for the simulations a similar
one to the high-RH analysis. Then, using the MCGA algo-
rithm together with the KM-GAP model, we estimated the bi
coefficient and C∗ of each VD bin by optimizing the KM-
GAP-simulated evapogram to the measured evapogram in
dry conditions. This way, we obtained both the initial volatil-
ity distribution (VDPMF,dry,opt) and viscosity parameters bi
simultaneously. For this optimization, we restricted the C∗

values of the factors based on the 25th and 75th percentile
of the desorption temperature of the factors (similar to what
was done above for VDPMF,opt) and the viscosity parameter
bi values, based on the DeRieux et al. (2018) parameteriza-
tion. The bi values calculated with the original parametriza-
tion by DeRieux et al. (2018) were set as the upper limit for
the bi values. The lower limit for the bi values was calculated
by setting the glass transition temperature of each compound
30 K lower than the parametrization predicted. As above, in
these simulations the initial particle size was also taken from
the simulations where the optimization was based only on the
evapogram data. For both medium- and low-O : C particles,
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Figure 7. Comparison of VDPMF,dry (volatility distribution with C∗ calculated from the peak desorption temperature, Tmax, of each PMF
factor) and VDevap (volatility distribution determined by fitting the LLEVAP model to the measured evapogram) at the mean evaporation
time of the SOA samples in dry-condition experiments. The VD bins are grouped into three volatility classes, similar to Fig. 3. The limits for
each volatility class are shown at the top and are the same for each subfigure. (a) Fresh sample of medium-O : C SOA. (b) Residual particles
of medium-O : C SOA after 170–256 min of evaporation (the RTC sample). (c) Fresh sample of low-O : C SOA. (d) Residual particles of
low-O : C SOA after 152–238 min of evaporation (the RTC sample). The VDPMF,dry shows lower overall volatility than the VDevap for
medium-O : C SOA. For low-O : C SOA, the VDPMF,dry shows higher volatility for the fresh sample and similar volatility compared to the
VDevap after 152–238 min of evaporation.

Figure 8. Evapograms showing the measured isothermal evaporation of (a) medium-O : C SOA and (b) low-O : C SOA in dry-condition
experiments (markers and black whiskers) together with the simulated evapograms. The best-fit simulated evapogram calculated with VDevap
(obtained from high-RH experiments) and optimizing bi is shown with a solid black line. Gray lines show the minimum and maximum
possible evaporation calculated, with the VDPMF,dry (C∗ of PMF factors calculated from Tmax) at the highest (the original parametrization
of DeRieux et al., 2018; dashed gray lines) or the lowest (30 K subtracted from the Tg of every ion; solid gray line) studied viscosity. Solid
purple and yellow lines show the best-fit simulated evapograms calculated with the optimized VDPMF,opt,dry (based on the assumption that
the FIGAERO sample represents particles at the mean of the sample collection interval) and bi restricted (based on the DeRieux et al., 2018,
parameterization). The figure shows, similar to Fig. 5, that the volatility distribution determined from the FIGAERO–CIMS data with the
PMF method is consistent with the measured evaporation of the SOA particles once the uncertainty in the effective saturation concentration
and the glass transition temperature parametrization of DeRieux et al. (2018) are considered.
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it was possible to find a set of C∗ and bi values that produced
an equally good match to the experimental data as the VDevap
(purple and yellow lines in Fig. 8).

Figure 6b and d show the comparison of the measured
and simulated particle composition, grouped into the three
volatility classes, at the RTC sample collection time for the
dry experiments for low- and medium-O : C particles. The
measured composition is the VD calculated from the PMF
results of the RTC samples in dry conditions. The optimized
C∗ values of the factors from the corresponding dry ex-
periment were used for these VD. The simulated particle
composition is taken from the optimized model run (opti-
mized VDPMF,opt,dry and bi) at the mean RTC sample collec-
tion time, similar to the high-RH cases presented in Fig. 6a
and c. For low-O : C particles, there is a clear discrepancy
as the VDPMF,dry,opt implies a much larger relative contri-
bution from volatility classes 2 and 3 and a smaller contri-
bution from volatility class 1 when compared to the mea-
surements. This inconsistency may be related to the rather
high viscosities in the simulations. The viscosity of the low-
O : C particles in this optimized simulation was rather high,
at η> 108 Pas throughout the evaporation, slowing the evap-
oration of the higher volatility compounds. A similar evapo-
ration curve could be obtained with lower viscosity and lower
volatilities of the VD bins.

4 Discussion

Qualitatively, VDPMF and VDPMF,dry capture the evaporation
dynamics well in all studied cases; quantitatively, there were
discrepancies. For the VDPMF of the fresh samples, the first
and second factor desorb at low heating temperatures (below
100 ◦C), indicating that these factors represent high-volatility
organic compounds that evaporate almost completely from
the particles in the experimental timescale of our isothermal
evaporation experiments. In the RTC samples, these factors
show significantly lower or nonexisting signal strength rela-
tive to the other factors. The factors that desorb at high tem-
peratures show an increase in the relative signal strength in
the RTC samples compared to the fresh samples, which is
consistent with the expected increase in the relative contribu-
tion of lower volatility compounds along evaporation. These
findings indicate that the FIGAERO–CIMS measurements of
α-pinene SOAs and the applied PMF method give a good
overall picture of the evolution of the volatility distribution
during evaporation.

In addition to the PMF method used here, other ways
of characterizing SOA compound volatilities or VBS from
FIGAERO–CIMS thermograms have also been suggested
(e.g., Stark et al., 2017). These include, for example, the
more straightforward method of calculating the C∗ of each
detected ion based on their Tmax, using Eq. (3) and lumping
them into a traditional VBS. While such other methods may
capture the volatility distributions sufficiently, the benefit of

PMF method is that it offers a new way to understand what
happens inside the particles, e.g., during the heating in FI-
GAERO. Here we have evaluated this method with respect
to its ability to capture the volatilities of SOAs.

At high RH, the VDPMF that was derived from the Tmax
of each factor’s mass loading profile did not produce an eva-
pogram similar to the measured ones when the VDPMF was
used as an input for the LLEVAP model. This reflects the
sensitivity of the particle evaporation to the C∗ values and
suggests that the VDPMF is not directly applicable as a par-
ticle composition estimate for a detailed particle dynamics
study. When we allowed uncertainty in the C∗ values of each
factor, we were able to explain most of the discrepancies be-
tween the simulated and measured evapograms. Our results
also demonstrate the need for careful investigation of the rep-
resentative time of the sample when filter-collected samples
are applied for dynamic processes such as evaporation.

In this study we assumed a quite large uncertainty range
for the desorption temperature of each PMF factor, and it
is not certain that the determination of VDPMF,opt would be
successful if the allowed ranges for C∗ of PMF factors were
lower. Thus, work remains to be done in studying what the to-
tal uncertainty is that arises from combining the FIGAERO–
CIMS measurements with the PMF method and to what ex-
tent the PMF factors can be thought to represent surrogate
organic compounds for the purpose of detailed SOA dynam-
ics studies.

We note that care has to be taken when PMF results are
transferred to volatility distributions, especially with regard
to separating the contribution of instrument background and
contamination from the true sample. When the sample mass
was low (in the low-O : C RTC sample), we noticed that the
first half of the bimodal (factor LD1a) resulted in a high mole
fraction even though the absolute signal strength of the fac-
tor did not change between the fresh and the RTC sample,
which is usually an indication that this signal is caused by
instrument background. However, the signal strength of this
factor was low enough in all cases to not affect the overall
VD estimation. More details on the interpretation of B- and
D-type factors and potential factor blending can be found in
Buchholz et al (2020).

In dry conditions, VDPMF,dry of the fresh sample in the
low-O : C case showed a noticeably higher amount of high-
volatility matter than VDevap. This discrepancy between the
volatility distributions is not expected and raises a need for
further studies on the role of viscosity and possible particle-
phase chemistry in SOA particle dynamics. Future studies
should investigate the possibility of chemical reactions that
modify the volatility of organic compounds and how viscos-
ity is described in process models.
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5 Conclusions

We compared volatility distributions derived from
FIGAERO–CIMS measurements with PMF analysis to
volatility distributions derived from fitting a process model
to match the measured size change in particles during
isothermal evaporation. We compared the two methods for
obtaining the volatility-distribution data for two different
particle compositions and two evaporation conditions. The
results are promising and suggest that the methods provide
volatility distributions that are in agreement. We note that the
data set available here is limited and additional investigations
on comparing the methods are desirable in the future.

In all studied experimental data sets, we were able to
capture the measured evaporation with the fitting method.
In high-RH experiments, VDPMF deviated from VDevap,
especially when the FIGAERO samples were collected at
the early stages of the evaporation. However, qualitatively,
both types of VD evolved similarly, i.e., the fraction of
lower volatility compounds increased, and the fraction of
higher volatility compounds decreased during the evapora-
tion of the particles. These results suggest that the changes
in FIGAERO–CIMS-derived volatility distributions over the
isothermal evaporation are consistent with the observed
isothermal evaporation, and the detailed SOA dynamics are
sensitive to the uncertainties in the C∗ values.

The volatility distribution derived with the PMF method
at high RH agreed with the observed isothermal evapora-
tion better when we interpreted the volatility of each factor
as a range of possible C∗ values and optimized the C∗ val-
ues within these ranges with respect to the measurements.
These results suggest that the FIGAERO–CIMS measure-
ments combined with PMF method not only provide quali-
tative information of the volatilities of the SOA constituents
but they also have the potential for quantitative investigations
of the volatility distributions. However, more work is needed
to constrain the uncertainties rising from the conversion of
the FIGAERO–CIMS desorption temperatures to C∗ values,
and it should be noted that deriving the volatilities based on
only the Tmax of PMF factors may not be sufficient for repre-
senting detailed SOA dynamics.

In dry conditions, we were able to simulate the evap-
ograms based on the PMF results, using the VTF equation
and the glass transition temperature parametrization of De-
Rieux et al. (2018), if both C∗ and viscosity parameters were
optimized and allowed to contain reasonable uncertainties.
For both oxidation conditions, the measured composition at
the later stages of the evaporation suggested considerably
lower volatility than the simulations. These results suggest
that the tested viscosity parameterization is not in disagree-
ment with the observed SOA evaporation; however, the un-
certainties related to the method are significant from the point
of view of simulating SOA dynamics.

Based on our analysis, we conclude that using the PMF
method with FIGAERO–CIMS thermogram data is good for

estimating the volatility distribution of organic aerosols when
the organic compounds present in the particle phase have low
volatilities with respect to the sample collection and anal-
ysis timescale. Specifically, VDPMF is useful for extracting
information about organic compounds that do not evaporate
during the evaporation measurements at room temperature.
VDPMF is applicable for detailed particle dynamics stud-
ies when the desorption temperature of the factor is char-
acterized with a range around the Tmax value. Furthermore,
combining VDPMF,opt with detailed process modeling and
input optimization could allow the quantification of other
physical or chemical properties of organic aerosols since
the FIGAERO–CIMS data constrain the particle composi-
tion and effectively decrease the search space that needs to
be explored with global optimization methods.
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