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Abstract. Light-absorbing particles (LAPs) deposited on
snow can decrease snow albedo and affect climate through
snow-albedo radiative forcing. In this study, we use MODIS
observations combined with a snow-albedo model (SNICAR
– Snow, Ice, and Aerosol Radiative) and a radiative trans-
fer model (SBDART – Santa Barbara DISORT Atmospheric
Radiative Transfer) to retrieve the instantaneous spectrally
integrated radiative forcing at the surface by LAPs in snow
(RFLAPs

MODIS) under clear-sky conditions at the time of MODIS
Aqua overpass across northeastern China (NEC) in January–
February from 2003 to 2017. RFLAPs

MODIS presents distinct spa-
tial variability, with the minimum (22.3 W m−2) in western
NEC and the maximum (64.6 W m−2) near industrial areas
in central NEC. The regional mean RFLAPs

MODIS is ∼ 45.1±
6.8 W m−2 in NEC. The positive (negative) uncertainties of
retrieved RFLAPs

MODIS due to atmospheric correction range from
14 % to 57 % (−14 % to −47 %), and the uncertainty value
basically decreases with the increased RFLAPs

MODIS. We attribute
the variations of radiative forcing based on remote sensing
and find that the spatial variance of RFLAPs

MODIS in NEC is
74.6 % due to LAPs and 21.2 % and 4.2 % due to snow grain
size and solar zenith angle. Furthermore, based on multiple
linear regression, the BC dry and wet deposition and snow-
fall could explain 84 % of the spatial variance of LAP con-
tents, which confirms the reasonability of the spatial patterns
of retrieved RFLAPs

MODIS in NEC. We validate RFLAPs
MODIS using

in situ radiative forcing estimates. We find that the biases in
RFLAPs

MODIS are negatively correlated with LAP concentrations
and range from ∼ 5 % to ∼ 350 % in NEC.

1 Introduction

Pure snow is the most strongly reflective natural substance at
the surface of the Earth, and seasonal snow covers more than
30 % of the Earth’s land area (Painter et al., 1998). Therefore,
snow cover has an important impact on the radiation balance
of the Earth (Cohen and Rind, 1991). Light-absorbing par-
ticles (LAPs), such as black carbon (BC), organic carbon
(OC), and mineral dust, deposited on snow can effectively
reduce snow albedo (Hadley and Kirchstetter, 2012; He et
al., 2017, 2018; Li et al., 2016; Warren, 1982, 1984; War-
ren and Wiscombe, 1980) and enhance the absorption of so-
lar radiation (Dang et al., 2017; Kaspari et al., 2014; Liou
et al., 2011, 2014; Painter et al., 2012b). Warren and Wis-
combe (1980) determined that 10 ng g−1 of BC in old snow
could reduce the snow albedo by nearly 1 % at 400 nm with
a snow grain size of 1000 µm. Jacobson (2004) pointed out
that the snow-albedo reduction caused by BC in snow and
ice is 0.4 % on a global scale and 1 % in the Northern Hemi-
sphere based on model simulations. LAPs in snow further
contribute to alterations in snow morphology, accelerations
in snowmelt, and reductions in snow cover (Flanner et al.,
2007, 2009; Painter et al., 2013a; Xu et al., 2009). For ex-
ample, Qian et al. (2009) found that simulated BC-induced
snow-albedo perturbations lead to a significant decrease in
snow water equivalent by 2–50 mm over the mountains dur-
ing late winter to early spring in the western United States.
Ming at al. (2015) pointed out that widespread albedo de-
crease and the induced melting of Himalayan snow and ice
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in the early 21st century are partly caused by LAP deposition,
resulting in approximately 10.4 Gt yr−1 of mass loss equiv-
alent of the Hindu Kush, Karakoram, and Himalaya (HKH)
glaciers.

Several studies pointed out that the radiative forcing ef-
fects of LAPs in snow on local hydrological cycles (Painter
et al., 2010; Qian et al., 2009; Yasunari et al., 2010) and
regional and global climate (Bond et al., 2013; Hansen
and Nazarenko, 2004; He et al., 2014; Jacobson, 2002,
2004; McConnell et al., 2007; Ramanathan and Carmichael,
2008; Yasunari et al., 2015) are non-negligible based on
model simulations. In the Northern Hemisphere, Hansen and
Nazarenko (2004) illustrated that the radiative forcing of
BC on snow and ice albedo is +0.3 W m−2. In addition,
the IPCC AR5 (2013) indicated that the impact of BC in
snow and ice accounted for a global mean climate forcing
of +0.04 W m−2, but the confidence level is low. Bond et
al. (2013) estimated climate forcing consisting of radiative
forcing, rapid adjustments, and strong snow-albedo feed-
back due to BC-in-snow forcing and pointed out that the
best valuation of climate forcing by BC in snow and sea
ice is +0.13 W m−2, with the 90 % uncertainty bounds rang-
ing from +0.04 to +0.33 W m−2. Nevertheless, recent stud-
ies reported that ample factors confuse model simulations of
BC-in-snow-induced climate forcing, and the model-based
estimate of the regional and global radiative forcing caused
by BC in snow and ice is still a challenge (Hansen and
Nazarenko, 2004; Bond et al., 2013; Pu et al., 2017).

Much of northeastern China (NEC) is covered by contigu-
ous seasonal snow in the winter and early spring. Local pol-
lutant emissions in these regions are some of the most in-
tense in the world (Bond et al., 2004), leading to consider-
able amounts of LAPs deposited into snow via wet and dry
deposition (Bond et al., 2013). Therefore, several field cam-
paigns have been conducted to investigate the LAP concen-
trations in snow across NEC (Huang et al., 2011; X. Wang et
al., 2014, 2015). Wang et al. (2013) conducted a large field
campaign to measure LAPs in seasonal snow across northern
China from January to February 2010. They found that BC is
the dominant absorber compared with OC and dust in NEC,
and BC concentrations in seasonal snow range from 40 to
4000 ng g−1, which are much higher than those measured in
the Arctic, North America, and Europe (Doherty et al., 2010,
2014; Peltoniemi et al., 2015). Recently, Wang et al. (2017)
showed that LAPs can reduce the visible spectral albedo by
∼ 0.35 in NEC based on in situ measurements and model
simulations, which indicated a significant impact of LAPs on
snow-albedo reduction. Zhao et al. (2014) simulated radia-
tive forcing by LAPs in snow over northern China using a
coupled model, and they noted that the uncertainties of their
results are non-negligible due to limited observations.

Remote sensing is considered to be a powerful tool for es-
timating snow physical properties (e.g., Nolin and Dozier,
1993, 2000). Snow spectral albedo is highly dependent on
wavelength λ. The albedo of pure snow is extremely high at

visible (VIS) wavelengths (∼ 0.99 at λ= 500 nm) but drops
to a very low level in the near infrared (NIR; λ > 1000 nm),
where the imaginary part of the complex refractive index for
ice is orders of magnitude greater than that in the VIS wave-
lengths (Wiscombe and Warren, 1980). The NIR albedo is
sensitive to snow grain size; as grain size increases, the pho-
ton paths through ice get longer so there is a greater absorp-
tion probability. The NIR albedo is also sensitive to solar
zenith angle: at low sun a photon’s first scattering event oc-
curs closer to the surface so it is more likely to escape (Wis-
combe and Warren, 1980; Warren, 2013). Previous studies
have successfully retrieved snow grain size using satellite
NIR albedo data and radiative transfer models (e.g., Nolin
and Dozier, 2000). On the other hand, the VIS albedo of
snow is insensitive to grain size and solar zenith angle, which
means that natural aging-induced changes in snow grains
have little effect on VIS snow albedo. However, the VIS
snow albedo is instead sensitive to LAPs in a semi-infinite
snowpack. When LAPs such as BC or dust are present, snow
albedo decreases primarily in the VIS wavelengths (Ming et
al., 2012; Wang et al., 2017). This albedo reduction results
from the greater imaginary part of the complex refractive in-
dex for LAPs compared with that of the highly transparent
ice, which leads to more light absorption (Warren and Wis-
combe, 1980). Therefore, the snow spectral albedo derived
from satellite remote sensing in the VIS wavelengths can be
used to estimate the impact of LAPs on snow albedo, which
furthermore provides valuable information for modeling sim-
ulations to reduce relative uncertainties. To estimate the in-
fluence of mineral dust on snow albedo in the European Alps,
Di Mauro et al. (2015) defined a new spectral index, the snow
darkening index, based on in situ measured snow spectral re-
flectance and Landsat 8 Operational Land Imager (OLI) data;
they found that the snow darkening index could effectively
track the content of mineral dust in snow. In addition, Di
Mauro et al. (2017) characterized the impact of LAPs on ice
and snow albedo of the Morteratsch Glacier, a large-valley
glacier in the Swiss Alps, using satellite (EO-1 Hyperion)
hyperspectral data. The results showed that the spatial distri-
bution of both narrowband and broadband indices retrieved
from Hyperion was highly correlated with ice and snow im-
purities. In the Arctic, Dumont et al. (2014) developed an
impurity index based on satellite observations (MODIS C5
surface reflectance) to analyze the snow darkening caused
by the increased contents of LAPs in snow in Greenland.
Nevertheless, Polashenski et al. (2015) pointed out that the
apparent snow albedo declines in Greenland observed from
MODIS C5 surface reflectance (Dumont et al., 2014) have a
significant contribution from uncorrected Terra sensor degra-
dation. In this study, in order to prevent interference from
sensor degradation, we used the latest version (version 6, C6)
of MODIS data from the Aqua sensor, which does not suffer
from the influence of sensor degradation (Polashenski et al.,
2015). Even though these studies have confirmed the ability
of remote sensing to assess the role of LAPs in snow-albedo
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reduction, they did not quantitatively estimate the radiative
forcing due to LAPs in snow, which is extremely important
for inferring the impact of LAPs on regional and global cli-
mate. Recently, Ming et al. (2012) estimated the radiative
forcing in Himalayan glaciers based on the differences be-
tween the simulated pristine albedo and the satellite obser-
vation albedo, which could be partly attributed to BC and
dust. The results illustrated that the current surface radiation
absorption could lead to significant melting in Himalayan
glaciers, which could cause most of them to be in danger
of rapid mass loss. Furthermore, Painter et al. (2012a) suc-
cessfully used the MODIS Dust Radiative Forcing in Snow
(MODDRFS) model to retrieve surface radiative forcing by
LAPs in snow cover from Moderate Resolution Imaging
Spectroradiometer (MODIS) surface reflectance data. They
found that instantaneous at-surface radiative forcing can be
beyond 250 W m−2 in the Hindu Kush–Himalaya area and
falls in a range of 30–250 W m−2 in the upper Colorado River
Basin. Painter et al. (2013b) also provided and validated an
algorithm suite to quantitatively retrieve radiative forcing by
LAPs in snow from Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) data in the Senator Beck Basin Study
Area (SBBSA), SW Colorado, USA. The lowest radiative
forcing was found on the high north-facing slopes, while
the highest was on southeast-facing slopes at the lowest el-
evations. Seidel et al. (2016) analyzed the spatial and tem-
poral distribution of radiative forcing by LAPs in snow in
the Sierra Nevada and Rocky Mountains from imaging spec-
troscopy. Their results presented an increased radiative forc-
ing from 20 up to 200 W m−2 in the melting period. War-
ren (2013) also indicated that attempts to use satellite remote
sensing to estimate the radiative forcing by LAPs in polluted
regions are likely feasible. However, to date, no studies have
quantitatively investigated the contributions of each factor to
the variations of radiative forcing by LAPs in snow based on
remote sensing. Moreover, the radiative forcing by LAPs in
snow across NEC is far less studied by using satellite remote
sensing, even though the LAP contents in these regions are
much higher compared with those in the Arctic, Europe, and
the USA (Dang et al., 2017).

Estimating the radiative forcing by LAPs in snow by us-
ing surface measurements is more precise than using re-
mote sensing or model simulation. However, surface mea-
surements of snow albedo and LAP content in snow are very
limited on regional or global scales. Until now, the obser-
vational sample sites (< 50) have been sparse and only for
two individual measurements in 2010 and 2014 over a wide
NEC area of ∼ 1.5 million km2 (X. Wang et al., 2013, 2017;
Z. W. Wang et al., 2014; Ren et al., 2017). The very limited
number of measurement sites led to poor spatial–temporal
distribution of the estimated radiative forcing in NEC (Dang
et al., 2017). On the other hand, remote sensing technology
has the advantage of high spatial–temporal resolution and
has been successfully used to retrieve the radiative forcing
by in-snow light-absorbing particles in high-snow-cover ar-

eas (Painter et al., 2012a). In addition, a previous study indi-
cated that the uncertainty in estimating radiative forcing us-
ing model simulations is very high due to limited measure-
ment data (Zhao et al., 2014); however, this could possibly
be improved by combining remote-sensing-retrieved results.
Hence, estimating the radiative forcing by LAPs in snow by
using satellite remote sensing seems to be necessary.

In this study, we attempt to retrieve the radiative forcing by
LAPs in snow across NEC using MODIS datasets combined
with the Snow, Ice, and Aerosol Radiation (SNICAR) model
(Flanner et al., 2007, 2009) and the Santa Barbara DISORT
Atmospheric Radiative Transfer (SBDART) model (Ricchi-
azzi et al., 1998); we estimate the uncertainties of radiative
forcing from atmospheric correction and qualify the frac-
tional contribution of each factor to the spatial variance of
RFLAPs

MODIS. Then, we investigate the reasonability of the spa-
tial patterns of retrieved radiative forcing in NEC based on
BC deposition and snowfall data. Finally, we quantitatively
estimate the biases of MODIS-retrieved radiative forcing us-
ing in situ radiative forcing estimates, which are based on
snowfield measurements.

2 Datasets

2.1 Remote sensing datasets

The latest version (Collection 6) of MODIS surface re-
flectance data (MYD09GA), MODIS snow cover data
(MYD10A1), and MODIS aerosol optical depth (AOD) data
(MYD04) is used in this study from 2003 to 2017, which cov-
ers the months of January through February (https://modis.
gsfc.nasa.gov/, last access: 20 March 2018). The MOD09
product is divided into seven bands (band 1, 620–670 nm;
band 2, 841–876 nm; band 3, 459–479 nm; band 4, 545–
565 nm; band 5, 1230–1250 nm; band 6, 1628–1652 nm;
and band 7, 2105–2155 nm) and has a spatial resolution
of 500 m (Vermote, 2015). The MOD09 surface reflectance
is an estimate of the surface spectral reflectance for each
band, which corrects for the effects of atmospheric gases
and aerosols. The performance of the atmospheric correc-
tion algorithm suffers from the influence of view and so-
lar zenith angles and aerosol optical thickness; the accuracy
of the algorithm is also affected by the wavelengths of dif-
ferent bands. More details about the data products and a
band quality description of MOD09GA can be found in the
MODIS Surface Reflectance User Guide (https://modis.gsfc.
nasa.gov/data/dataprod/mod09.php, last access: 20 March
2018). MODIS satellite data have been widely accepted in re-
trievals of snow cover and its physical properties (e.g., Scam-
bos et al., 2007; Rittger et al., 2013). In addition, MODIS
has three visible bands (VIS) and the radiometric range in
the VIS over snow surface has no saturation phenomenon,
which provides the ability to detect changes in reflectance in
the VIS caused by LAPs in snow (Painter et al., 2012a).
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2.2 Surface measurement datasets

Wang et al. (2017) conducted a snow survey across NEC in
January 2014. They measured AOD using a Microtops II sun
photometer. The Microtops II sun photometer is a portable
instrument and measures solar radiance in five spectral wave
bands (340, 440, 675, 870, and 936 nm) from which it auto-
matically derives aerosol optical depth (AOD). When the Mi-
crotops II sun photometer is well cleaned and well calibrated,
its AOD retrievals can be comparable with those of CIMEL
sun photometers used in the AERONET network, with un-
certainties ranging from 0.01 to 0.02 (Ichoku et al., 2002).
The snow albedo and surface solar irradiance were measured
using an Analytical Spectral Devices (ASD) spectroradiome-
ter. The ASD spectroradiometer has 3 nm spectral resolu-
tion on the visible–near-infrared detector (350–1050 nm, sili-
con photodiode array) and 10–12 nm resolution on the short-
wave infrared detectors (900–2500 nm, InGaAs). Measure-
ments are made by standing “down-sun” of the receptor, tak-
ing consecutive scans of downwelling and upwelling radia-
tion. Wuttke et al. (2006) indicated that the ASD spectrora-
diometer is considered to be the most mobile, capable, and
rapid for measuring spectral albedo during short time peri-
ods, especially in very cold regions. The cosine error is less
than 5 % for solar zenith angles below 85◦ at a wavelength of
320 nm. We use these datasets to validate the snow grain size
retrievals and the simulated surface solar irradiance values.

Snow samples were collected at 46 sites in January and
February 2010 across northern China (Wang et al., 2013) and
at 13 sites in January 2014 across northeastern China (Wang
et al., 2017). A detailed description of the procedures of snow
collection and filtration has been presented by previous stud-
ies (Doherty et al., 2010, 2014; Wang et al., 2013). Briefly, in
order to ensure that the collected snow samples are regionally
representative and minimize the influence of local emission
sources, sample locations are usually chosen at least 1 km
upwind of the approach roads and railways and more than
50 km from cities and towns. In addition, efforts are made
to collect samples in open areas in order to prevent the con-
taminations from the detritus of bushes and trees. Generally,
snow samples are collected within a vertical resolution var-
ied from ∼ 2 to 10 cm and usually at typically vertical inter-
vals of 5 cm from the top to the bottom throughout the snow-
pack depth at each site. In the case of a visibly distinct layer-
ing, such as newly fallen snow at the surface layer or a melt
layer, the snow at that layer is gathered individually. Right
and left snow samples of two side-by-side vertical profiles
are collected within each layer to make a comparison and
average the snow sample pairs. All snow samples are main-
tained frozen to prevent the melting snow from influencing
the LAP content. Usually every 3 to 4 d, snow samples are
filtered at temporary laboratories set up in hotels. Simply,
snow samples are melted and filtered through Nuclepore fil-
ters of 0.4 µm pore size. The samples “before” and “after”

filtration are gathered and refrozen for the following chemi-
cal analysis, and the filters are used for optical analysis.

An integrating sphere–integrating sandwich spectropho-
tometer (ISSW) is applied to analyze the filters and quantify
the spectral light absorption by LAPs in snow. ISSW was
first described by Grenfell et al. (2011), modified by Wang
et al. (2013) and Doherty et al. (2014), and has been used
by some previous studies (Dang and Hegg, 2014; Pu et al.,
2017; Zhou et al., 2017). Schwarz et al. (2012) have con-
firmed the performance of ISSW in quantifying LAP con-
centrations in snow by comparing with a single-particle soot
photometer (SP2), although both SP2 and ISSW may suffer
from non-negligible uncertainties. Briefly, ISSW produces a
diffuse radiation field when white light illumination is trans-
mitted into an integrating sphere; then the diffuse radiation
passes through the filter from below and is measured by a
spectrometer. By measuring a sample filter and a blank filter,
ISSW acquires the light attenuation spectrum due to the load-
ings on the sample filter (Grenfell et al., 2011). Because the
design is such that the measured filter is sandwiched between
two integrating spheres, the light attenuation is nominally
due to the absorption of LAPs on the filter, and the influence
of light scattering is negligible (Doherty et al., 2014). ISSW
measures light attenuation from 400 to 700 nm by benefit-
ting from an optimal signal-to-noise ratio and then extends
the full spectrum to a range of 350 to 750 nm by extrapo-
lation (Pu et al., 2017). Calibration is done by measuring a
set of fullerene (synthetic BC; Alfa Aesar, Inc., Ward Hill,
MA, USA) filters with a range of known loadings. Then, the
light attenuation spectrum of the sample filter is transformed
into an equivalent BC mass loading by comparing against the
standard filters. With the loaded area on the filter and the vol-
ume of filtered snow water, equivalent BC mass is converted
to equivalent BC concentration (BCequiv). In this study, we
will use BCequiv for all LAPs to calculate the in situ radiative
forcing.

2.3 BC deposition and emission data

BC deposition has important effects on the radiative forcing
by LAPs in snow (Seidel et al., 2016). Higher BC deposi-
tion indicates that greater amounts of BC are deposited on
snow, reducing the snow albedo. To our knowledge, there
are no measurement data for the spatial distribution of BC
deposition in NEC. Therefore, we collected reanalysis data
on BC deposition from the Modern-Era Retrospective Anal-
ysis for Research and Applications version 2 (MERRA-2)
in January–February from 2003 to 2017 and modeling data
on BC deposition from the Coupled Model Intercomparison
Project Phase 6 (CMIP6, the latest CMIP phase), including
CESM2, CESM2-WACCM, and CNRM-ESM2-1 historical
experiments in January–February from 2003 to 2014 (Eyring
et al., 2016). So far, only the above three models in CMIP6
have provided BC deposition data. In our study, we prefer
to use MERRA-2 data because these data are the latest at-
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mospheric reanalysis data of the modern satellite era pro-
duced by NASA’s Global Modeling and Assimilation Office
(GMAO). They assimilate aerosol observations and other ob-
servation types to provide a viable ongoing climate analysis.
The provided observable parameters and aerosol diagnos-
tics have wide potential applications ranging from air quality
forecasting to aerosol–climate interactions (Bocquet et al.,
2015; Randles et al., 2016, 2017). In addition, the period
range of MERRA-2 BC deposition data satisfies our study
period of 2003–2017, but the CMIP6 data are only updated
to 2014. We note that the results and conclusions based on
different BC deposition data are similar (see Sect. 4.3).

Local BC emission density can also indicate the LAP con-
tents in snow. Among all available BC emission density data,
we use the data from the research group at Peking University
(http://inventory.pku.edu.cn/home.html, last access: 15 June
2018; R. Wang et al., 2014) after taking spatial and tem-
poral resolution, data period, data quality, and other factors
into account. The BC emission density data we used are for
January–February from 2003 to 2014 because they are only
updated to 2014.

2.4 Snowfall and snow parameter data

Seidel et al. (2016) pointed out that snowfall can affect
the radiative forcing by LAPs in snow. A higher frequency
of snowfall implies that greater amounts of fresh snow,
which has smaller snow grains than aged snow, are present
at the surface, increasing the snow albedo (Z. W. Wang
et al., 2014). In this study, we collected four types of
snowfall data in January–February from 2003 to 2017, in-
cluding surface observational data from the China Mete-
orological Administration (126 observation stations), the
ERA-Interim reanalysis (http://apps.ecmwf.int/datasets/data/
interim-full-daily/levtype=sfc/, last access: 25 April 2018),
the Modern-Era Retrospective Analysis for Research and
Applications version 2 (MERRA-2), and the National Cen-
ters for Environmental Prediction (NCEP) Climate Pre-
diction Center (CPC) (https://www.esrl.noaa.gov/psd/data/
gridded/data.cpc.globalprecip.html, last access: 12 April
2019). Figure S1 in the Supplement shows the spatial distri-
bution of the observational stations over northeastern China.
We note that the observation stations are limited in our study
areas. Compared with the observed snowfall data, we also
assessed snowfall data from the ERA-Interim reanalysis, the
MERRA-2 reanalysis, and CPC in NEC. We found that the
ERA-Interim reanalysis data are more consistent with sur-
face observations (Fig. S2). Therefore, we prefer to use ERA-
Interim for snowfall data in this study. But as with BC de-
position data, the results and conclusions based on different
snowfall data are similar (see Sect. 4.3).

To briefly describe the snow cover condition in NEC in
January–February, we collect multiple types of snow pa-
rameter data including snow cover data (MYD10CM and
MYD10C2) from MODIS products (https://modis.gsfc.nasa.

gov/data/dataprod/mod10.php, last access: 9 April 2019),
snow depth data from the Canadian Meteorological Cen-
tre (CMC) (https://nsidc.org/data/NSIDC-0447/versions/1,
last access: 9 April 2019), and snow water equivalent
data (GlobSnow-2) from European Space Agency (ESA)
Global Snow Monitoring for Climate Research (http://www.
globsnow.info/, last access: 9 April 2019).

3 Methods

3.1 Models

3.1.1 SNICAR model

Flanner et al. (2007) have presented a comprehensive de-
scription for the Snow, Ice, and Aerosol Radiative (SNICAR)
model, which is the most widely used multilayer snow-
albedo model in the field of atmospheric sciences. Here, we
just briefly give a summary of SNICAR. SNICAR simulates
radiative transfer in the snowpack based on the theory of Wis-
combe and Warren (1980) and the two-stream multilayer ra-
diative approximation of Toon et al. (1989). The input opti-
cal parameters (mass extinction coefficient, single-scattering
albedo, and asymmetry factors) of snow grains and LAPs are
offline calculated using Mie theory. In addition, the types of
surface spectral distribution (clear or cloudy sky) and inci-
dent radiation (direct or diffuse) can be chosen by users, and
users must specify the solar zenith angle if the incident flux is
direct. In general, users should input the parameters involv-
ing the type of surface spectral distribution and incident radi-
ation, number of snow layers, snow thickness, density, snow
grain radius, and the type and concentration of LAPs in each
snow layer, as well as the albedo of the underlying ground.
Following a previous study (Painter et al., 2012a), we assume
one-layer semi-infinite snow to drive the SNICAR model in
this study.

3.1.2 SBDART model

In this study, we use the Santa Barbara DISORT Atmo-
spheric Radiative Transfer (SBDART) model (Ricchiazzi et
al., 1998) to simulate the surface solar irradiance. SBDART
is one of the most widely used models to calculate the radia-
tive transfer at the Earth’s surface and within the atmosphere
in both clear and cloudy sky. SBDART is a combination of
the DISORT (Discrete Ordinate Radiative Transfer) radiative
transfer module (Stamnes et al., 1988), low-resolution atmo-
spheric transmission models, and Mie theory. The radiative
transfer equations for a plane-parallel, vertically inhomoge-
neous, non-isothermal atmosphere numerically integrated in
SBDART are based on DISORT, and light scattering by wa-
ter droplets and ice crystals is from Mie theory. SBDART
already considers all important processes that affect the ul-
traviolet, visible, and infrared radiation fields. The key com-
ponents of SBDART include standard atmospheric models,
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cloud models, extraterrestrial source spectra, gas absorption
models, standard aerosol models, and surface models. SB-
DART is well suited for widespread use in atmospheric ra-
diation and remote sensing studies. More details about the
SBDART model can be found in the paper of Ricchiazzi et
al. (1998).

3.2 Retrieval methods

In this study we use BC as a representative to describe the
effect of LAPs on snow albedo. Figure 1a shows the spec-
tral snow albedo from 300 to 1400 nm. Gray areas show
the typical spectral solar irradiance at the time of MODIS
Aqua overpass (local time of 13:30) in January–February in
NEC; the yellow column bars represent MODIS band passes.
We can see that when LAPs such as BC are deposited on
snow, they can effectively reduce snow albedo in the vis-
ible bands, which contain about half of the total solar ra-
diation. For a snowpack with a snow grain radius of 100–
300 µm, 100 ng g−1 of BC in snow (a typical BC concen-
tration in snow of the remote clean areas in NEC) can re-
duce snow albedo by ∼ 0.05–0.08 at 500 nm; 1000 ng g−1 of
BC in snow (a typical BC concentration in snow of the pol-
luted industrial areas in NEC) can reduce snow albedo by
∼ 0.12–0.2. On the other hand, the effects of BC decrease
at longer wavelengths in the near infrared (NIR). Moreover,
when wavelengths exceed 1150 nm, snow albedo is domi-
nated by the snow optical effective radius (Reff) and is inde-
pendent of LAPs. As shown in Fig. 1b, snow-albedo reduc-
tion is not only dependent on LAPs in snow, but also on snow
grain size and solar zenith angle (θ ). Generally, the reduction
in snow albedo caused by BC increases with BC concentra-
tion and Reff, whereas it decreases with the solar zenith angle
(θ ). Based on these characteristics, we retrieve Reff, the re-
duction in snow albedo, and the radiative forcing by LAPs in
this section.

3.2.1 Snow cover

Three methods have been widely used in mapping snow-
covered area using MODIS data. In the first method, “binary”
maps, pixels are classified as either “snow free” or “snow
covered” (Hall et al., 1995). However, significant errors ex-
ist in such maps, as pixels with a resolution of 500 m are
not always completely covered by snow. The second method,
the MODSCAG retrieval algorithm, is a fractional snow al-
gorithm that is based on spectral mixture analysis (Painter
et al., 2009). However, it cannot be applied in NEC due to
limited information on the spectral reflectances of the vege-
tation, soils, and rock in this region. Therefore, we use the
third method, which is based on the reflectances in the visi-
ble and NIR bands and the normalized difference snow index
(NDSI):

NDSI=
Rband4−Rband6

Rband4+Rband6
, (1)

Figure 1. (a) The spectral albedo of snow with different Reff values
and BC contents simulated using SNICAR. The column bars rep-
resent MODIS bands, and the gray areas represent the typical solar
irradiance in winter in NEC. (b) The reduction in the 300–1240 nm
spectral-weighted integrated snow albedo as a function of BC for
different Reff values and solar zenith angles (θ ) is simulated using
SNICAR. (c) The variations in the impurity index (ILAPs) with BC
content are simulated using SNICAR.

where Rband4 and Rband6 are the surface reflectances in bands
4 and 6. Following Negi and Kokhanovsky (2011), an area
is determined to be snow covered if the NDSI and the re-
flectance in band 4 both exceed 0.6. We note that the follow-
ing analyses are only done over the defined snow-covered
areas and periods.
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3.2.2 Retrieval of snow grain size

Many methods have been used to retrieve snow grain size
(e.g., Lyapustin et al., 2009; Nolin and Dozier, 1993). How-
ever, in NEC, the efficacy of most of these methods is lim-
ited, as the reflectances in bands 1–4 are seriously affected
by LAPs in polluted snow (Fig. 1a), and the reflectances in
bands 6–7 are not sensitive to Reff. Hence, Reff is retrieved at
a wavelength of 1240 nm (the central wavelength of band 5)
using SNICAR (Wang et al., 2017).

We validate the retrieved Reff values using in situ mea-
surements. The mean absolute error (MAE) is 71 µm, which
is slightly higher than that reported by Painter et al. (2009).
Nevertheless, the results are still credible because this study
investigates a larger spatial scale than the previous study.

3.2.3 Impurity index

To assess LAP contents in snow, we use the surface re-
flectances in bands 4–5 to derive an impurity index (ILAPs):

ILAPs =
ln(Rband4)

ln(Rband5)
. (2)

This quantity increases with the LAP content but is almost
independent of Reff and θ (Fig. 1c). Di Mauro et al. (2017)
have successfully used ILAPs to assess the variations of LAP
contents in the snow of the Morteratsch Glacier in the Swiss
Alps. In this study, we did not retrieve the concentrations of
LAPs because such a retrieval is constrained by many un-
known factors, such as size distribution, optical properties,
and the mixing state of LAPs (He et al., 2017, 2018; Painter
et al., 2013a; Pu et al., 2017). Therefore, the conversion from
satellite spectra to ground concentrations of LAPs will cause
significant errors.

3.2.4 Retrieval of radiative forcing by LAPs in snow

Instantaneous surface solar irradiance at the time of MODIS
overpass in January–February is simulated using the SB-
DART model (Ricchiazzi et al., 1998) with MODIS AOD
data as inputs. Wang et al. (2017) have validated the MODIS
AOD data using in situ measurements in NEC. For the other
inputs, the typical values for midlatitude winter provided by
SBDART are used. As a result, the normalized mean bias
(NMB) is less than 2 % (Fig. S3).

We estimate the instantaneous spectrally integrated radia-
tive forcing at the surface by LAPs in snow (RFLAPs

MODIS) under
clear-sky conditions at the time of MODIS Aqua overpass,
which is a function of solar irradiance and the difference
between the MODIS spectral reflectance and a simulated
clean-snow (Rclean-snow

λ ) reflectance (Miller et al., 2016).
Rclean-snow
λ is simulated using the SNICAR model based on

the retrieved Reff and MODIS-derived solar zenith angle (θ ).
On the other hand, for MODIS spectral reflectance, because
MODIS provides only discrete reflectances, we simulate a

continuous spectral reflectance by fitting SNICAR to the
MODIS data and derive the fitting parameters by minimiz-
ing the RMSE (Painter et al., 2009):

RMSE=

(
1
4

band4∑
λ=band1

(
Rmodel
λ −RMODIS

λ

)2
)1/2

, (3)

where RMSE is the root mean square error, and Rmodel
λ

and RMODIS
λ represent the simulated and MODIS-derived re-

flectances at a wavelength λ. Thus, RFLAPs
MODIS is expressed as

follows:

RFLAPs
MODIS =

1240 nm∑
λ=300 nm

Eλ ·Dλ ·1λ, (4)

where Eλ is the solar irradiance at a wavelength λ simulated
by the SBDART model; Dλ is the difference between the
clean-snow (Rclean-snow

λ ) and simulated reflectances (Rmodel
λ )

at a wavelength λ, and 1λ is 10 nm.

3.2.5 Uncertainties

The uncertainties in radiative forcing retrievals are primar-
ily due to terrain, liquid snow water, snow patchiness, pro-
trusion of vegetation, and atmospheric correction. The study
areas are located on smooth plains, and the content of liq-
uid snow water is limited in the study regions in January and
February (Wang et al., 2013). Moreover, both experimental
and theoretical evidence shows that the effect of liquid wa-
ter in snow on snow reflectance is small in the shortwave
part of the spectrum but obvious at wavelengths of 0.95 and
1.15 µm (O’Brien and Munis, 1975; O’Brien and Koh, 1981;
Wiscombe and Warren, 1980), which are not included in the
MODIS bands used in our study. As a result, the effect of
liquid water in snow on the calculations of snow grain size,
ILAPs, and radiative forcing is limited. Therefore, the effects
of terrain and liquid snow water on MODIS retrievals could
be negligible.

In our study, snow-covered area is determined if the NDSI
and the reflectance in band 4 both exceed 0.6, which means
that fractional snow cover (FSC) is larger than 0.86 accord-
ing to the FSC equation (FSC=−0.01+ 1.45 ·NDSI) from
the MODIS Snow Products Collection 6 User Guide (http:
//nsidc.org/data/MYD10A1, last access: 20 March 2018). In
January and February, snow depth is high and reaches its
maximum depth in NEC; snow patchiness in high-snow-
cover areas is mostly due to the protrusion of vegetation
according to the observations of field campaigns (X. Wang
et al., 2013, 2014). Thus, the MODIS-derived surface re-
flectance (RMODIS

λ ) in a pixel of our study areas is not snow
reflectance but a mixture of snow and vegetation reflectance.
Therefore, we need to correct the errors of snow reflectance
caused by the protrusion of vegetation. According to Painter
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et al. (2009), RMODIS
λ could be expressed as

RMODIS
λ =

Eλ ·FSC ·Rλsnow+Eλ · (1−FSC) ·Rλvegetation

Eλ

= FSC ·Rλsnow+ (1−FSC) ·Rλvegetation, (5)

where RMODIS
λ is MODIS-derived surface reflectance at a

wavelength λ, and Eλ is solar irradiance at a wavelength
λ. FSC is the fractional snow cover, which could be de-
rived according to the FSC equation. Rλsnow and Rλvegetation
represent snow and vegetation reflectance, respectively, at a
wavelength λ. Rλvegetation is from the study of Siegmund and
Menz (2005). Then Rλsnow could be expressed as

Rλsnow =
(RMODIS

λ − (1−FSC) ·Rλvegetation)

FSC
. (6)

Finally, the accuracy of MODIS surface reflectance
(MYD09GA) due to atmospheric correction is typically
calculated based on the MODIS Surface Reflectance
User Guide (Collection 6; https://modis.gsfc.nasa.gov/data/
dataprod/mod09.php, last access: 20 March 2018) as follows:

±(0.005+ 0.05 · reflectance),

which is suitable under conditions that AOD is less than
5.0 and θ is less than 75◦. Therefore, we also estimate
the uncertainty of MODIS retrievals from atmospheric
correction. Briefly, the MODIS-derived snow reflectance
(Rλsnow, uncertainty), which takes into account the accuracy of
the atmospheric correction, is expressed as

Rλsnow, uncertainty = R
λ
snow± (0.005+ 0.05 ·Rλsnow), (7)

and the fractional uncertainty of MODIS-retrieved snow
grain size (FUReff ) could be expressed as

FUReff =
Reff, uncertainty−Reff

Reff
, (8)

where Reff, uncertainty is the SNICAR-simulated snow grain
size using the snow reflectance of R1240

snow, uncertainty. Similar to
snow grain size, the fractional uncertainty of ILAPs (FUILAPs )
and RFLAPs

MODIS (FURF) is

FUILAPs =
ILAPs, uncertainty− ILAPs

ILAPs
, (9)

FURF =
RFLAPs

MODIS, uncertainty−RFLAPs
MODIS

RFLAPs
MODIS

. (10)

We note that the positive and negative uncertainty is asym-
metric due to the nonlinearity of the SNICAR model.

3.2.6 Attribution of the spatial variance of radiative
forcing by LAPs in snow

As discussed above, RFLAPs
MODIS is dependent on ILAPs (the in-

dicator of LAPs), Reff, and θ and could be expressed as

RFLAPs
MODIS = f (ILAPs,Reff,θ). (11)

As a result, the spatial patterns of ILAPs, Reff, and θ deter-
mine the spatial pattern of RFLAPs

MODIS. First, we keep Reff and
θ spatially constant with values of the spatial averages (Reff
and θ). The radiative forcing is only dependent on the distri-
bution of ILAPs:

RFLAPs
MODIS(ILAPs)= f (ILAPs,Reff,θ). (12)

Similarly, we could obtain two additional equations:

RFLAPs
MODIS(Reff)= f (ILAPs,Reff,θ), (13)

RFLAPs
MODIS(θ)= f (ILAPs,Reff,θ). (14)

Then RFLAPs
MODIS is fitted with RFLAPs

MODIS(ILAPs),
RFLAPs

MODIS(Reff), and RFLAPs
MODIS(θ) using multiple linear

regression, and the fitted radiative forcing (RFLAPs
Fit ) is

expressed as

RFLAPs
Fit = a+ b ·RFLAPs

MODIS(ILAPs)+ c ·RFLAPs
MODIS(Reff)

+ d ·RFLAPs
MODIS(θ), (15)

where a, b, c, and d are regression coefficients. In our study,
we find that RFLAPs

Fit could explained 99.9 % of the variance
of RFLAPs

MODIS (Fig. S4). Therefore, we can attribute the vari-
ance of RFLAPs

Fit instead of RFLAPs
MODIS to estimate the fractional

contribution of ILAPs, Reff, and θ to radiative forcing. Equa-
tion (15) can be written as

RFLAPs
Fit −RFLAPs

Fit =

b ·
(

RFLAPs
MODIS(ILAPs)−RFLAPs

MODIS (ILAPs)
)

+ c ·
(

RFLAPs
MODIS(Reff)−RFLAPs

MODIS(Reff)
)

+ d ·
(

RFLAPs
MODIS(θ)−RFLAPs

MODIS(θ)
)
, (16)

where RFLAPs
Fit −RFLAPs

Fit is the radiative forcing anomaly
(RFLAPs

Fit, anomaly). Then, Eq. (16) can be written as

RFLAPs
Fit, anomaly = b ·RFLAPs

MODIS, anomaly(ILAPs)

+ c ·RFLAPs
MODIS, anomaly(Reff)

+ d ·RFLAPs
MODIS, anomaly(θ). (17)

According to Huang et al. (2016) and Huang and Yi (1991),
the fractional contribution of ILAPs to the variance of radia-
tive forcing (FCILAPs ) can be expressed as

FCILAPs =

1
m

m∑
i=1

 (b ·RFLAPs
MODIS, anomaly(ILAPs)i)

2

(b·RFLAPs
MODIS, anomaly(ILAPs)i )

2
+(c·RFLAPs

MODIS, anomaly(Reff)i )
2

+(d·RFLAPs
MODIS, anomaly(θ)i )

2

 , (18)

where m is the length of the data series. Similarly, we can
obtain FCReff and FCθ .
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3.2.7 Calculation of in situ radiative forcing by LAPs
in snow

RFLAPs
MODIS should be validated with measurements. However,

due to the lack of radiative forcing measurements in NEC,
we estimate the in situ radiative forcing (RFestimated

in situ ) from
measured BCequiv values. Briefly, we use SNICAR to calcu-
late the in situ reduction in snow albedo from BCequiv and
MODIS-retrieved Reff. Then, the SBDART model is used to
estimate RFestimated

in situ .

4 Results

In January–February, seasonal snow widely covers northeast-
ern China. For example, the area with a snow cover frac-
tion of> 50 % and snow duration period of> 30 d is∼ 75 %
and ∼ 85 %, respectively (Fig. S5a and b), which is consis-
tent with previous studies based on meteorological station
data (Zhong et al., 2010) and satellite remote sensing data
(Che et al., 2008). In addition, the area with a snow depth
of > 5 cm and snow water equivalent of > 20 mm is ∼ 70 %
and ∼ 70 %, respectively (Fig. S5c and d).

4.1 The spatial distribution of AOD and BC emissions

Northeastern China usually suffers from heavy local pollu-
tant emissions, with high aerosol mass concentrations in win-
ter (Wiedensohler et al., 2009). Figure 2a shows the spatial
distribution of AOD at 550 nm derived from MODIS in NEC.
We can find that AOD in the study areas ranges from 0.08
to 0.65 and shows strong spatial inhomogeneity. The largest
AOD values are found in industrial areas in south-central
NEC, where the largest urban areas in NEC are located with
the major cities of Harbin, Changchun, and Shenyang. These
areas are associated with the largest pollution emissions and
anthropogenic activities in NEC (Wang et al., 2017). By com-
parison, the MODIS Aqua results show that the AOD in
the west of NEC along the border of China is the small-
est. Similar patterns of AOD were also found by Zhang et
al. (2013) and Zhao et al. (2014). Previous studies indicated
that BC represents the primary light-absorbing particles in
the atmosphere (Cao et al., 2006) and seasonal snow (Wang
et al., 2013). Figure 2b shows the spatial distribution of BC
emission density during 2003–2014 in NEC. The pattern of
BC emission density is very comparable to AOD, with the
highest values of> 5×104 g km−2 month−1 in south-central
NEC and the lowest values of < 5× 102 g km−2 month−1 in
the remote areas of northwestern China. Both the results of
AOD and BC emission density imply that the seasonal snow
in south-central NEC suffers from abundant BC deposition,
and the radiative forcing by LAPs in snow is likely to be
highest in NEC.

Figure 2. Spatial distribution of (a) MODIS AOD at 550 nm and
(b) BC emission density in January–February in NEC. AOD data
are from 2003 to 2017, and BC emission density data are from
the research group at Peking University (http://inventory.pku.edu.
cn/home.html, last access: 15 June 2018) from 2003 to 2014. The
major cities in NEC are also shown in this figure.

4.2 The spatial distribution of snowfall frequency and
land cover types

Snowfall is spatially varied in NEC and has a dominant ef-
fect on local fractional snow cover in the defined snow-
covered areas, where we retrieved the radiative forcing by
LAPs in snow in our study. Figure 3a shows the normalized
snowfall frequency in January–February from 2003 to 2017.
We can find that the highest snowfall frequency occurred in
northwestern and southeastern NEC, where there are forest-
covered areas (Fig. 3b). In contrast, the areas from central
to southwestern NEC present the lowest snowfall frequency,
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which means that the fractional snow cover in these areas is
likely to be lower than other areas and unable to reach the
critical value that we used to define the snow-covered areas.
On the other hand, land cover types will also affect the local
fractional snow cover. From Fig. 3b, we can find that NEC
presents spatially different land cover types; the mainland
cover types are grasslands, croplands, and evergreen needle-
leaf (forests). Grasslands and croplands are mainly located
in southwestern NEC and central NEC, respectively, while
forests are distributed in northern and southeastern NEC. In
our study periods, grasslands and croplands have limited in-
fluence on snow cover. However, in forest areas, even those
completely covered by deep snow, forest will affect the de-
rived surface reflectance from the MODIS Aqua satellite for
the determination of snow-covered areas (further discussion
in Sect. 5).

4.3 Radiative forcing by LAPs in snow

Figure 4 shows the identified snow-covered areas, which
are primarily concentrated between 40 and 50◦ N. Consis-
tent with our analysis above, the low-snow-frequency areas
of south-central and southwestern NEC and forest-covered
areas of northern and southeastern NEC are not identified
as snow-covered areas. According to the geographical dis-
tribution (Fig. 4a), we separated the studied area into three
regions: western NEC (WNEC), central NEC (CNEC), and
eastern NEC (ENEC).

The spatial distributions of ILAPs, Reff, and RFLAPs
MODIS are

displayed in Fig. 4, and their statistics are presented in Fig. 5.
On average, ILAPs is ∼ 0.27± 0.045, Reff is ∼ 261± 32 µm,
and RFLAPs

MODIS is ∼ 45.1± 6.8 W m−2 in NEC. Regionally,
RFLAPs

MODIS is the largest and shows an average of ∼ 50.9±
4.2 W m−2 in CNEC, where industrial areas are located close
to the largest urban areas in NEC; it therefore suffers from
the most serious pollutant emissions among these three re-
gions. ENEC displays the second largest radiative forcing
with an average RFLAPs

MODIS of ∼ 45.7± 4.5 W m−2. The low-
est value of ∼ 41.0± 5.9 W m−2 occurs in WNEC, where
both AOD and BC emission densities are the lowest com-
pared with the other two regions, which is not only due to
the low local pollutant emissions, but also because the re-
gional transport into this region in our study period is mostly
from the clean northwest and suffers from little influence of
human activities (Wang et al., 2015). For the individual re-
gions, RFLAPs

MODIS presents an increase from north to south in
CNEC that ranges from 40.4 to 64.6 W m−2. In ENEC an
east–west gradient of RFLAPs

MODIS is noted that ranges from 35.0
to 62.0 W m−2. The most distinct intra-regional difference is
in WNEC, where RFLAPs

MODIS ranges from 22.3 to 55.5 W m−2.
Generally, the patterns are consistent with those of AOD and
BC emission density in NEC. Moreover, the spatial pattern
of radiative forcing by LAPs in snow in this study is com-
parable with the results by Zhao et al. (2014), who first es-
timated the radiative forcing of LAPs in snow through the

Figure 3. Spatial distribution of (a) the normalized snowfall fre-
quency in January–February from 2003 to 2017 and (b) the differ-
ent land cover types based on MODIS data in NEC. Snowfall data
are from the ERA-Interim reanalysis. The major cities in NEC are
also shown in this figure.

Weather Research and Forecasting (WRF) model and found
that the radiative forcing in industrial source regions such
as southern CNEC is obviously much higher than in bor-
der regions such as WNEC, which primarily resulted from
the spatial differences of LAP dry and wet deposition. Com-
pared with the results from other studies, Seidel et al. (2016)
reported a radiative forcing of ∼ 20 W m−2 in the Sierra
Nevada in late February, which is lower than the result in
NEC, even though the surface solar irradiance in the Sierra
Nevada is higher. Painter et al. (2013b) reported an aver-
age radiative forcing of 215±63 W m−2 in the Senator Beck
Basin Study Area (SBBSA), SW Colorado, USA, which is
approximately 4 times our retrieved radiative forcing near
industrial areas in NEC. However, the snow grain size and
the surface solar irradiance in their study period are larger
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Figure 4. The spatial distributions of average (a) ILAPs, (b) Reff, and (c) RFLAPs
MODIS in NEC in January–February for 2003–2017. The

background shows the spatial distribution of MODIS AOD values. The dotted areas are covered by forests. The major cities in NEC are also
shown in this figure. According to the geographical distribution, we separate the study area into three regions: western NEC (WNEC), central
NEC (CNEC), and eastern NEC (ENEC).

Figure 5. Statistics of average RFLAPs
MODIS, ILAPs, and Reff in NEC

in January–February from 2003 to 2017.

than in our study by a factor of > 2.5 and > 4, respectively.
These results indicate an abundant LAP content in the snow
of CNEC. The regional and intra-regional patterns of vari-
ability in ILAPs are quite similar to those of RFLAPs

MODIS, which
indicates the significant role of LAP content in determining
the spatial distribution of radiative forcing; the average val-
ues of ILAPs are ∼ 0.311±0.024 in CNEC, ∼ 0.307±0.026
in ENEC, and ∼ 0.238± 0.031 in WNEC. In contrast to
ILAPs and RFLAPs

MODIS, Reff displays a smaller spatial variance
and presents average values of ∼ 285± 16, ∼ 281± 15, and
∼ 239± 29 µm in CNEC, ENCE, and WNEC, respectively.
Reff in WNEC is a little smaller compared with those in the
other two regions, which is probably due to the higher snow-
fall frequency because a higher snowfall frequency indicates
a longer duration of fresh finer snow at the surface (Wang et
al., 2013; Seidel et al., 2016).

Figure 6 shows the average uncertainties of ILAPs, Reff,
and RFLAPs

MODIS due to atmospheric correction in NEC in
January–February from 2003 to 2017. The positive (nega-
tive) uncertainties of retrieved ILAPs and RFLAPs

MODIS from at-
mospheric correction are comparable and range from 9 %

to 43 % (−10 % to −47 %) and 14 % to 57 % (−14 % to
−47 %), respectively. Both ILAPs and RFLAPs

MODIS show larger
uncertainties, as their values are smaller; the positive (neg-
ative) uncertainties of ILAPs and RFLAPs

MODIS are largest in
WNEC and show averages of 21 % (−24 %) and 30 %
(−28 %), while the lowest uncertainties of 13 % (−15 %) and
20 % (−20 %) for ILAPs and RFLAPs

MODIS are found in CNEC. It
is because the uncertainty of snow albedo from atmospheric
correction is almost similar in our study areas to that across
the whole NEC region, as discussed in Sect. 3.6; however, the
snow-albedo reduction is smaller in clean snow and larger in
polluted snow, which results in a larger relative uncertainty of
snow-albedo reduction in clean snow and a smaller relative
uncertainty in polluted snow according to Eqs. (7) and (8).
The positive (negative) uncertainties of Reff are smaller com-
pared with ILAPs and RFLAPs

MODIS, and they range from 14 %
to 18 % (−12 % to −16 %), which is comparable with the
errors between MODIS-retrieved and in situ measured snow
grain size discussed in Sect. 3.2.2. Moreover, the uncertain-
ties are spatially quite consistent for Reff, which is different
from ILAPs and RFLAPs

MODIS. We note that the positive and neg-
ative uncertainties of all ILAPs, Reff, and RFLAPs

MODIS are asym-
metric, which is primarily due to the nonlinear characteris-
tics of radiative transfer in the SNICAR model (Painter et
al., 2007).

As discussed in Sect. 3, the spatial distribution of RFLAPs
MODIS

depends on LAPs, Reff, and θ . Previous studies have at-
tempted to retrieve the radiative forcing by LAPs in snow
by using remote sensing (e.g., Painter et al., 2012a, 2013b);
however, attributions of the spatial variations of radiative
forcing by LAPs in snow are sparse and need to be further in-
vestigated. Therefore, we would like to qualify the contribu-
tion of each factor to the spatial variance of RFLAPs

MODIS. Comb-
ing sensitivity tests and the method of Huang and Yi (1991)
as discussed in Sect. 3.2.6, we estimate the fractional con-
tribution of ILAPs (the indicator of LAPs), Reff, and θ to

www.atmos-chem-phys.net/19/9949/2019/ Atmos. Chem. Phys., 19, 9949–9968, 2019



9960 W. Pu et al.: The remote sensing of radiative forcing by LAPs in snow

Figure 6. (a) Negative and (b) positive uncertainty of average ILAPs in NEC in January–February from 2003 to 2017. Panels (c) and (d) are
similar to (a) and (b), but forReff. Panels (e) and (f) are similar to (a) and (b), but for RFLAPs

MODIS. The background shows the spatial distribution
of MODIS AOD values. The dotted areas are covered by forests. The major cities in NEC are also shown in this figure.

the spatial variance of RFLAPs
MODIS in our study areas across

NEC (Fig. 7). We can find that the contribution from LAPs is
largest with a value of 74.6 %, while Reff and θ make contri-
butions of 21.2 % and 4.2 %, respectively, in NEC. The result
indicates that the LAP content in snow plays a dominant role
in determining the spatial distribution of RFLAPs

MODIS. Region-
ally, the contribution of LAPs in WNEC (62.1 %) is smaller
than those of 73.9 % and 83.4 % in CNEC and ENEC, while
Reff shows a higher contribution of 28.1 % in WNEC than
those of 19.6 % and 13.9 % in CNEC and ENEC. The results

point out a less important effect of LAPs but a more impor-
tant effect of Reff on the spatial distribution of RFLAPs

MODIS in
WNEC compared with those in CNEC and ENEC. In addi-
tion, the contribution of θ is smaller in ENCE (2.7 %) than
those of 9.8 % and 6.5 % in WNEC and CNEC, which is pri-
marily due to the smallest altitude range of ENEC among
those three regions.

Seidel et al. (2016) reported that the variations in LAP con-
tents in snow are dominated by LAP deposition and snowfall.
Previous studies have also reported that BC is the dominant
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Figure 7. Fractional contribution of average ILAPs (the indicator of
LAPs), Reff, and solar zenith angle (θ ) to the spatial variance of
RFLAPs

MODIS in January–February for 2003–2017.

LAP type in NEC (Wang et al., 2013). Zhao et al. (2014) sim-
ulated LAP contents and their radiative forcing in seasonal
snow using WRF-Chem coupled with the SNICAR model
and indicated that the radiative forcing by LAPs in snow
in NEC is primarily due to BC. Therefore, to examine the
spatial distributions of retrieved ILAPs and RFLAPs

MODIS, we dis-
play the distribution of snowfall (Fig. 3a) and BC dry and
wet deposition (Fig. 8). BC dry deposition is highest in the
largest urban areas of NEC with the major cities of Harbin,
Changchun, and Shenyang, then decreases sharply outwards
from the central urban areas to remote areas (Fig. 8a). Differ-
ent from BC dry deposition, which is dominated by BC con-
centrations in the atmosphere, BC wet deposition is affected
by both BC concentrations and precipitation and shows an
increase from northwest to southeast. Generally, the spatial
patterns of BC dry and wet deposition are similar to ILAPs
and RFLAPs

MODIS. For example, areas with higher BC dry and
wet deposition, such as industrial polluted NEC, show higher
ILAPs and RFLAPs

MODIS. Moreover, from Fig. 9a–c, we can find
that the correlations of ILAPs with BC dry and wet deposition
and snowfall (R2

= 0.81, 0.73, and 0.14) are all significant
at the 99 % confidence level. The correlations of ILAPs with
BC dry and wet deposition in WNEC are relatively lower
than those in CNCE and ENEC, which is partly due to the
effect of dust in this region (Wang et al., 2013; Zhao et al.,
2014). Furthermore, using the method of multiple linear re-
gression, we fitted ILAPs using BC dry and wet deposition
and snowfall data. Figure 9d shows the scatterplots of ILAPs
and fitted ILAPs_fit. We can find that ILAPs_fit is highly corre-
lated with ILAPs, and BC dry and wet deposition and snowfall
could explain 84 % of the spatial variance of ILAPs. The result
confirms the reasonability of the spatial patterns of retrieved
ILAPs and thus RFLAPs

MODIS in NEC. In addition to MERRA-2
BC deposition data and ERA-Interim snowfall data used in
Fig. 9, we also used other types of BC deposition and snow-
fall data to fit ILAPs. Table S1 in the Supplement shows the
R2 between MODIS-retrieved ILAPs and fitted ILAPs_fit based
on different datasets as discussed in Sect. 2.3 and 2.4. The

Figure 8. Spatial distribution of average (a) dry and (b) wet depo-
sition of BC in NEC in January–February from 2003 to 2017. BC
deposition data are from the MERRA-2 reanalysis.

values of R2 are very similar in a range of 0.81–0.84, which
further indicates that the spatial pattern of retrieved ILAPs is
reasonable and independent of the data types used for valida-
tion.

4.4 Comparisons of MODIS-retrieved and in situ
estimated radiative forcing by LAPs in snow

Figure 10 shows the distribution of the sample sites and
the measured BCequiv concentration in surface snow at each
site. Circles and squares represent the snow samples col-
lected in 2010 (Wang et al., 2013) and 2014 (Wang et al.,
2017), respectively. Generally, BCequiv concentration ranges
mostly from ∼ 0.1 to ∼ 3.0 µg g−1 and shows an increase
from northwest to southeast. The highest BCequiv concen-
tration is found in CNEC, while the lowest is in WNEC.
Figure 11a displays a comparison of MODIS-retrieved ra-
diative forcing (RFLAPs

MODIS) and in situ radiative forcing
(RFestimated

in situ ) estimated based on measured BCequiv concen-
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Figure 9. Scatterplots of ILAPs versus (a) BC dry deposition, (b) BC wet deposition, (c) normalized snowfall frequency, and (d) fitted ILAPs
(ILAPs_fit), which is fitted with BC dry and wet deposition and snowfall frequency using multiple linear regression. BC deposition data are
from the MERRA-2 reanalysis, and snowfall data are from the ERA-Interim reanalysis in January–February from 2003 to 2017.

tration. In general, the mean absolute error (MAE) for
RFLAPs

MODIS against RFestimated
in situ is 15.3 W m−2. The ratios of

RFLAPs
MODIS to RFestimated

in situ (RMODIS
in situ ) fall mainly in the range

of 1–2. The errors indicate larger positive biases at lower
RFestimated

in situ values, whereas smaller biases are noted at higher
RFestimated

in situ values. The results of this bias analysis are com-
parable with those reported by Painter et al. (2012a). Fig-
ure 11b shows a scatterplot of RMODIS

in situ versus BCequiv. We
can find that RMODIS

in situ and BCequiv display a good correlation;
the best-fitting equation is RMODIS

in situ = 1.690 ·BC−0.522
equiv , and

the R2 is 0.89 (99 % confidence level). This result indicates
that the biases in the RFLAPs

MODIS retrievals are negatively corre-
lated with the LAP concentrations in NEC. Considering that
the typical concentration of BCequiv in clean snow in NEC is
0.15 µg g−1, the bias in RFLAPs

MODIS can be as high as 350 % in
some areas, such as WNEC. In other areas with very polluted
snow, such as southern CNEC (where the BCequiv values are
typically 2.5 µg g−1), the bias is∼ 5 %. Thus, considering the
values reported by Wang et al. (2013, 2017), the biases in
RFLAPs

MODIS largely fall in the range of ∼ 5 % to ∼ 350 % in
NEC. Comparing Fig. 11 with Fig. 6, we find that the biases
in RFLAPs

MODIS in polluted snow are comparable with the uncer-
tainties of RFLAPs

MODIS due to atmospheric corrections. How-
ever, in clean snow, the uncertainties from atmospheric cor-
rections could not sufficiently explain the biases in retrieved

RFLAPs
MODIS. There are three probable reasons. (a) For clean

snow, retrieved radiative forcing is very sensitive to MODIS-
derived surface snow reflectance (Eq. 4); although we have
corrected the errors of snow reflectance from the protrusion
of vegetation in our study areas of high snow cover fractions,
the uncertainties from fractional snow cover (FSC) calcula-
tion and the vegetation reflectance will effectively influence
the corrections of snow reflectance (Eq. 5). (b) Painter et
al. (2012b) validated the retrieved radiative forcing by LAPs
in snow in the upper Colorado River Basin using in situ es-
timates based on radiation towers, and they also found that
the biases in the case of low radiative forcing could be up
to severalfold. They pointed out that MODIS cannot pro-
ceed with a continuous spectral measurement of a continu-
ous variable forcing like what LAPs afford to snow albedo
due to the variably spaced and discrete bands of MODIS,
which prevents a more quantitative retrieval and thus results
in a non-negligible uncertainty in radiative forcing retrieval.
(c) We use the average of MODIS-retrieved radiative forcing
in a pixel size of 0.05◦× 0.05◦ to compare with the in situ
radiative forcing calculated using the observed BCequiv con-
centration with the sample site located in the center of the
pixel. Such a comparison may not be true at some sites due
to the inhomogeneous spatial distribution of snow and LAP
contents, which will influence radiative forcing estimates, es-
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Figure 10. Spatial distribution of the measured BCequiv concentra-
tion in surface snow in NEC. Circles and squares represent the snow
samples collected in 2010 (Wang et al., 2013) and 2014 (Wang et
al., 2017), respectively.

pecially in clean snow (Zhao et al., 2014). Therefore, we note
that the number of sample sites is still limited and more field
campaigns are needed to validate the accuracy of MODIS re-
trievals and then correct the retrieved radiative forcing.

4.5 Limitations

The determination of snow-covered areas represents a limi-
tation of the method used in this study, which restricts our
study to areas with high snow cover fractions; thus, we can-
not estimate RFLAPs

MODIS across NEC as a whole. In the future,
we will attempt to apply other satellite data with higher spa-
tial resolution and use the spectral differences between dif-
ferent land cover types to distinguish the spectral reflectance
of snow in mixed pixels. These improvements will permit us
to expand our work to areas with limited snow cover. Another
limitation is that we retrieve only the instantaneous radiative
forcing at the surface under clear-sky conditions at the time
of MODIS overpass, and these measurements do not repre-
sent a time-integrated average over the studied period. How-
ever, the estimation of temporally resolved radiative forcing
is much more difficult given the significant effects of clouds,
atmospheric components, θ , and the time-varying snow re-
flectance.

5 Discussion

In our study, we did not retrieve the radiative forcing in the
northern and southeastern parts of NEC. In those regions,
snowfall is frequent, the percent of snow cover is very high,
and snow is also very deep. For example, in northern NEC,
the averaged snow depth is ∼ 20 cm, and in the areas near
the Changbai Mountains of southeastern NEC, snow depth
could be up to ∼ 40 cm (Wang et al., 2013). However, due
to the presence of forest cover, the reflected radiation re-

Figure 11. Scatterplots of (a) RFLAPs
MODIS versus RFestimated

in situ and
(b) RMODIS

in situ versus BCequiv.

ceived by sensors aboard satellites in those areas is mostly
due to trees. For example, Fig. 12 shows the true color map
of MODIS in NEC on 23 January 2010, and we can see that
in the northern and southeastern parts of NEC, the observed
objects from MODIS are almost all trees, not the snowpack
under trees, although snow is almost completely covering the
area (Wang et al., 2013). Therefore, in those forest areas, dis-
cussing the radiative forcing by LAPs in snow is extremely
difficult due to the influence of trees. Bond et al. (2006) also
indicated that LAPs in snow masked by forests contribute lit-
tle to radiative forcing. They further pointed out that model
representation of and forcing sensitivity to cover ranges of
forests have not been verified, and this is a boundless un-
certainty in modeling radiative forcing by LAPs in snow at
present. However, most modeling studies that have simulated
the radiative forcing by LAPs in snow did not take trees into
consideration and estimated the radiative forcing over entire
boreal forest areas in the Northern Hemisphere. For example,
Flanner et al. (2007) applied the SNICAR model coupled a
general circulation model to estimate the radiative forcing
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Figure 12. A true color map of MODIS in NEC on 23 January 2010.

and response from BC in snow-covered areas over the whole
Northern Hemisphere. Nevertheless, due to the presence of
trees in the extensive boreal forest areas, the simulated ra-
diative forcing is unreal as the incident radiation is reflected
by trees but not by the snowpack. Zhao et al. (2014) sim-
ulated BC and dust and their radiative forcing in seasonal
snow in northern China. They found that the radiative forc-
ing by BC and dust is very high in southeastern NEC, where
there are forest areas. But, in fact, in those areas the simu-
lated radiative forcing by LAPs is also unreal. Therefore, we
note that estimating the radiative forcing by LAPs in forest
areas should consider the influence of trees.

6 Conclusions

In this study, we retrieve ILAPs, Reff, and RFLAPs
MODIS across

NEC in January–February from 2003 to 2017 using MODIS
data, together with a snow-albedo model (SNICAR) and a
radiative transfer model (SBDART). On average, ILAPs is ∼
0.27±0.045,Reff is∼ 261±32 µm, and RFLAPs

MODIS is∼ 45.1±
6.8 W m−2 in NEC. The distribution of RFLAPs

MODIS presents
distinct spatial differences; the lowest value is 22.3 W m−2,
which occurs in remote western NEC, and the highest value
is 64.6 W m−2, which occurs near the industrial areas in cen-
tral NEC. Both ILAPs and RFLAPs

MODIS show larger uncertainties
from atmospheric correction, as their values are smaller. We
make a first attempt to attribute the variations of radiative
forcing based on remote sensing. The results point out that
ILAPs, Reff, and θ make fractional contributions of 74.6 %,
21.2 %, and 4.2 % to the spatial variance of RFLAPs

MODIS in our
study areas across NEC. The result confirms that the LAP
content in snow plays a dominant role in determining the
spatial distribution of RFLAPs

MODIS. We also analyze the distri-
bution of BC dry and wet deposition and snowfall, and we
find that they could explain 84 % of the spatial variance of
ILAPs, which indicates the reasonability of the spatial pat-
terns of ILAPs and thus RFLAPs

MODIS in NEC. Finally, we vali-

date the retrieved RFLAPs
MODIS values using in situ estimated ra-

diative forcing (RFestimated
in situ ). The mean absolute error (MAE)

of RFLAPs
MODIS against RFestimated

in situ is 15.3 W m−2. The biases in
the RFLAPs

MODIS retrievals display a negative correlation with the
LAP concentrations in NEC. Considering typical concentra-
tions of BCequiv, which range from ∼ 0.15 to ∼ 2.5 µg g−1,
the biases in RFLAPs

MODIS fall primarily within the range of
∼ 5 % to ∼ 350 % in NEC.
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