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S1 Additional details from global simulations

Tables S1-S3 provide additional details from global simulations of RCIM. Tables S1-S2 show the percent
changes in global annual average tropospheric burdens of compounds of interest between a standard global
simulation and a perturbed simulation. Perturbations include removing isoprene chemistry altogether, using
the GEOS-Chem v11-02c¢ mechanism, and using the RCIM with different ISOPOO isomer branchings.
Table S1 also shows changes due to the removal of specific isoprene and ISOPOO reaction pathways (e.g.
isoprene + Os or ISOPOO + RO-), which gives a sense of the specific contributions of these pathways to
the overall tropospheric effects of isoprene oxidation. Table S2 shows similar perturbations but with specific
oxidation products (e.g. MVK, IEPOX) removed, which gives a sense of those products’ contributions to
isoprene’s tropospheric effects, as well as perturbations to isoprene nitrate chemistry. Table S3 provides
global annual average molar yields of VOCs from isoprene, using both RCIM and GEOS-Chem v11-02c, as
well regional molar yields in the southeastern United States, the Amazon, and eastern China using RCIM.
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Table S3: Molar yields of VOCs and SOA precursors of interest from isoprene®

Molar yield from isoprene, %, RCIM (GEOS-Chem v11-02c¢)

Species Global SE USA Amazon E China
co 190 (180) 150 (121) 138 (101) 213 (197)
Formaldehyde 111 (107) 97.7 (77.0) 79.4 (44.3) 148 (141)
Formic acid 5.76 (6.33) 5.28 (4.53) 4.12 (4.05) 7.59 (7.05)
Acetic acid 5.49 (4.18) 2.93 (2.04) 3.34 (2.59) 459 (3.11)
Hydroxymethyl hydroperoxide 3.94 (-) 4.55 (-) 4.71 (-) 2.53 (-)
Glycolaldehyde 115 (16.2)  11.1 (13.41) 5.00 (12.1) 23.7 (20.1)
Glyoxal 1.63 (5.47) 1.06 (3.85) 1.08 (2.17) 2.06 (6.51)
Hydroxyacetone 12.3 (11.1) 10.6 (10.0) 7.72 (5.00) 15.2 (17.2)
Methylglyoxal 20.1 (24.5) 16.1 (18.2) 13.4 (15.3) 95.3 (29.3)
Methyl vinyl ketone 27.9 (21.5) 31.1 (25.7) 22.0 (15.5) 42.2 (35.8)
Methacrolein 15.9 (17.3) 17.9 (20.6) 15.1 (14.2) 21.3 (26.5)
C, dihydroxycarbonyls 6.32 (3.67) 4.99 (2.31) 3.59 (1.86) 4.58 (2.85)
C4 hydroxydicarbonyls 10.6 (-) 7.60 (-) 6.49 (-) 8.43 (-)
Oy nitrates 5.99 (6.96) 9.08 (9.95) 1.30 (1.09) 15.1 (19.1)
Cs nitrates® 4.82 (4.79) 7.55 (7.16) 1.02 (0.848) 11.8 (11.9)
Cs hydroxynitrates 3.60 (2.61) 5.31 (3.82) 0.782 (0.488) 9.25 (6.68)
C4 nitrates® 0.878 (1.70)  1.10 (2.03)  0.234 (0.185) 2.42 (5.85)
Propanone nitrate 0.188 (0.412)  0.304 (0.675)  0.0277 (0.0483) 0.627 (1.20)
Ca hydroperoxides® 52.3 (42.6) 43.9 (33.1) 58.7 (47.2) 24.9 (18.1)
ISOPOOH 35.3 (33.8) 29.7 (29.7) 41.2 (37.1) 14.0 (13.8)
Cs hydroperoxy aldehydes 6.77 (5.80) 4.93 (3.56) 8.49 (7.89) 3.42 (2.08)
Epoxides® 95.7 (25.8) 23.3 (21.4) 20.9 (18.1) 15.3 (20.9)
IEPOX 20.1 (19.9) 18.3 (16.8) 17.1 (15.7) 9.84 (10.5)
HMML 0.732 (5.85)  0.937 (4.62)  0.154 (2.40) 2.42 (10.3)
Tetrafunctionals® 4.07 (4.11) 3.73 (3.32) 3.26 (3.80) 2.63 (3.62)
IDHPE® 2.20 (-) 1.86 (-) 2.12 (-) 0.847 ()
IDHDP/ 0.530 (0.0092) 0.438 (0.0808)  0.486 (0.0830)  0.159 (0.0480)
ICPDHY 0.458 (0.584) 0.346 (0.341) 0.380 (0.719) 0.185 (0.149)
IDCHP" 0.384 (-) 0.349 (-) 0.190 (-) 0.359 (-)
ICHNP' 0.232 (-) 0.319 (-) 0.0353 () 0.479 (-)
IDHPN 0.218 (0.466)  0.348 (0.538)  0.0386 (0.0890)  0.411 (0.596)

%Results from 2° X 2.5° horizontal resolution global simulations using RCIM. Yields of species with additional non-
isoprene precursors are calculated by taking the difference in production between a simulation with isoprene and one
without isoprene emissions. Yields of CO and formaldehyde calculated with this method are then corrected for differences
in total methane oxidation between the simulations. ®Using the GEOS-Chem v11-02c mechanism instead of RCIM.
“Yields of lumped species may include multiple generations of a single oxidation pathway (e.g., separately counting
both IEPOX and its oxidation product, isoprene hydroxycarbonyl epoxides). dIncludes only non-PAN organonitrates.
€Cj dihydroxy-hydroperoxy-epoxides. fCps dihydroxy-dihydroperoxides. 9Cs dihydroxy-carbonyl-hydroperoxides. "Cjs
dicarbonyl-hydroxy-hydroperoxides. “Cs carbonyl-hydroxy-hydroperoxy-nitrates. 4 Cs dihydroxy-hydroperoxy-nitrates.
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S2 Light & temperature sensitivities in fixed-radical box models

Figures S1-S5 show the effects of varying light and temperature on HO,, ozone, oxidation pathways, and
VOC yields in fixed-radical box models. In addition to the simulations described in the main text, the model
was run with every permutation of (a) temperature set to 283.15 K, 298.15 K, and 313.15 K, and (b) solar
radiation for photolysis set to clear-sky equatorial midday with an ozone column of 350 DU, 0.1 xequatorial
midday, and 0. The primary effect of temperature is to increase the rates of H-shift reactions, which
substantially increases their relative contribution to the fate of the ISOPOO radicals (Figure S1). This leads
to an increase in overall net HO,, recycling from isoprene oxidation (Figure S2). Increased photolysis rates
from higher photon fluxes also lead to increased net HO, recycling (Figure S2) and net potential ozone
production (Figure S3) from isoprene oxidation.

The effects of temperature on VOC yields (Figure S4) are largely mediated by the temperature dependence
of H-shift reactions (Peeters and Nguyen, 2012; Peeters et al., 2014; Crounse et al., 2011; Praske et al., 2018)
and of nitrate formation branching ratios in reactions of peroxy radicals with NO (Arey et al., 2001; Carter
and Atkinson, 1985, 1989). Thus, overall yields from isoprene of ISOPOO H-shift products (e.g. C3-Cs
hydroperoxyaldehydes) increase with temperature, while those of organonitrates decrease. The effects of
light on VOC yields (Figure S5) are generally smaller than those of temperature, but among the most
pronounced are a decrease in formaldehyde yields and an increase in methylglyoxal yields under low-light

conditions.
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Figure S1: Temperature dependence of the percent of isoprene hydroxy peroxy radicals reacting via each
pathway as a function of NO and HO,, from fixed-radical box modeling of RCIM.
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Figure S2: Net effects of isoprene oxidation on HO, under various temperature and light conditions as a
function of NO and HO,, from fixed-radical box modeling of RCIM.
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and HO; (times the fraction of HOy that would go on to react with NO) produced over the course of its

oxidation — under various temperature and light conditions as a function of NO and HO,, from fixed-radical
box modeling of RCIM.
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Figure S4: Absolute changes in percent yields of compounds of interest from isoprene when switching from
fixed-radical box models run at 10 °C to simulations run at 40 °C. All box models are run with full photolytic
sunlight flux (equatorial midday) and using RCIM.
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S3 Emission sensitivities in global models

Sensitivity simulations were performed with 10% increases and decreases to both isoprene and NO,, emissions
worldwide, to examine the effects of these perturbations on the results reported herein. Changes in isoprene
oxidation pathways due to emission changes can be found in Table S4, while changes in tropospheric average
mixing ratios of species of interest can be found in Table S5. The contributions of isoprene oxidation
pathways — including the initial oxidants, the ISOPOO fate, and the ISOPOO isomer reactivity — are largely
insensitive to 10% perturbations in either NO, or isoprene emissions, with the largest relative changes in
the fraction of isoprene reacting with NOj.

Table S4: Global contributions of isoprene oxidation pathways with changed isoprene and NO, emissions.®

isoprene isoprene NO, NO, no anthro- no anthrop.

Pathway +10% -10% +10% -10% pogenic NO, or BB NO,
OH 87 88 88 88 89 90
isop + (O 11 10 10 10 10 10
NOg4 1.7 1.8 1.8 1.7 0.9 0.5
HO, 42 41 41 41 45 47
NO 27 29 29 27 18 13

b

RO,™ + RO, 8.8 8.2 85 86 11 13
H-shift 22 22 22 23 26 28
E/Z-1-OH-6 6.5 6.5 6.4 6.5 7.5 8.0
somer 1-OH-5 59 59 59 59 58 58
E/Z-4-OH-¢ 14 14 14 14 16 16
4-OH-5 21 21 21 21 19 18

“Reported percentages are global tropospheric annual averages, from 4° X 5° horizontal resolution GEOS-
Chem simulations using RCIM; numbers may not add to 100% due to rounding; Referring only to the RO,
radicals formed in the reaction of isoprene with OH and O,.
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Table S5: Changes in tropospheric burdens due to perturbations to isoprene and NO, emissions (%)®

isoprene isoprene NO, NO, no anthro- no anthrop.
Species +10% -10% +10%® -10%° pogenic NO,.®* or BB NO,*
OH -0.42 0.82 1.6 (1.0) -1.3 (-1.8) -4.5 (-4.0) -0.12 (0.86)
HO, 0.32 -0.40 0.18 (0.50) -0.27 (0.06) -10 (-9.3) -15 (-14)
NO -0.27 0.41 2.8 (3.2) -2.5 (-2.2) -17 (-17) -20 (-20)
NO, -0.21 0.13 51(54)  -5.0 (-4.8) -44 (-44) -50 (-50)
NO, -0.42 0.38 3.8 (3.9) -3.9 (-3.9) -34 (-31) -39 (-31)
Og4 0.21 -0.17 1.0 (0.63) -1.0 (-1.3) -16 (-15) -20 (-19)
CcO 1.2 -1.6 -1.1 (0.60)  0.84 (2.3) -28 (-26) -47 (-43)
Formaldehyde 1.0 -1.2 0.86 (0.68) -1.1 (-1.2) -14 (-13) -15 (-13)
PANs® 1.0 2.5 15(20)  -3.0 (-1.9) -54 (-53) -62 (-61)
C,, nitrates® 0.81 -2.4 1.4 (1.8) -3.1 (-2.0) -67 (-59) -75 (-64)
Epoxides® 11 -11 -0.86 1.6 -22 -33
Tetrafunctionals® 4.4 -12 -5.0 -2.7 29 53
Isoprene SOA 15 -8 2.9 3.9 48 74
CH, lifetime 0.82 059  -15(-1.1)  1.9(1.9) 9.8 (7.8) 6.3 (4.22)

®Percent differences are annual averages from 4° x 5° horizontal resolution GEOS-Chem simulations using RCIM;
bfor simulations with changed NO, emissions, numbers in parentheses are the percent change that results from the
same change in NO, emissions between two simulations with no isoprene emissions; “percent differences in lumped
classes of compounds are calculated by mole, not mass.

S4 Isoprene oxidation at night

Figures S6-S10 show the results of diurnal-steady-state and fixed-radical simulations of nighttime isoprene
chemistry, which was also updated substantially in Wennberg et al. (2018) following the recommendations of
Schwantes et al. (2015). For diurnal-steady-state simulations, figures S6 and S7 show average mixing ratios
of isoprene oxidation products over the period 20:00-04:00 on the seventh simulated night; in general, due
to the persistence of isoprene + OH oxidation products, these exhibit on minimal differences from daytime
averages. Notably, the diurnal-steady-state simulations do not include nighttime changes to the mixed layer
height or depositional and aerosol-phase losses, which may cause substantial biases.

In fixed-radical simulations, a series of simulations investigating NOj-initiated isoprene oxidation were
performed alongside those investigating OH-initiated oxidation. They were run similarly to those described
in Section 2.2 of the main text, but instead of initializing with 1 ppbv isoprene, they were initialized with
1 total ppbv of isoprene + NO; + O, peroxy radicals, distributed across the peroxy radical isomers as
in Wennberg et al. (2018). RCIM does not include many reactions of NO5 with stable isoprene oxidation
products, because the rates and products of these reactions are poorly constrained. Instead, the mechanism
emphasizes reactions of first-generation isoprene + NO;3 products with OH, which are expected to occur in
the morning. The fixed-radical simulations were there run with 0.1 pptv OH and 10% of Equatorial midday
light flux to target these morning conditions.

Figure S8 shows the yields of major products of isoprene + NOjs oxidation as simulated in fixed-radical
box models with RCIM, including functionalized nitrates and the epoxides produced in their reactions with
OH (Jacobs et al., 2014; Schwantes et al., 2015). Figure S9 compares these yields to those of fixed-radical
simulations using the MCM v3.3.1 isoprene oxidation mechanism, which exhibits much higher formation
of carbonyl nitrates and much lower production of C4 nitrates, ethanal nitrate, and epoxides. Figure S10
compares RCIM to the GEOS-Chem v11-02c mechanism in fixed-radical nighttime simulations. The GEOS-
Chem mechanism includes a smaller pool of functional products from isoprene + NOgs oxidation, with high
yields of Cs hydroxy- and hydroperoxy-nitrates and only minor yields of the other products shown in RCIM.
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Figure S9: Absolute changes in percent yields of compounds of interest from isoprene + NO; oxidation when
switching from fixed-radical box models with the MCM v3.3.1 mechanism (Jenkin et al., 2015) to RCIM.
All box models are run at 25 °C and 10% of equatorial midday photolytic light flux.

S5 Comparisons to other mechanisms

Figures S11-S24 and Tables S3 and S6 show detailed comparisons between RCIM, MCM v3.3.1, and the
GEOS-Chem v11-02c isoprene oxidation mechanisms in box models, and between RCIM and v11-02c in global
simulations. Many differences between the mechanisms stem from variability in the initial reactive pathway
branching of isoprene, shown in Section S5.1, and from differences between the OH-recycling tendencies of
the mechanisms under low-NO conditions (Section S5.2). These differences then carry over into variability
in the yields of organic products (Section S5.3).
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Figure S10: Absolute changes in percent yields of compounds of interest from isoprene + NO, oxidation
when switching from fixed-radical box models with the GEOS-Chem v11-02¢ mechanism to RCIM. All box
models are run at 25 °C and 10% of equatorial midday photolytic light flux.

S5.1 Isoprene reaction pathways

Figure S11 shows the contributions of specific reactive pathways to the overall fate of isoprene in diurnal-
steady-state box models with the three isoprene oxidation mechanisms. Lower OH recycling under low-NO
conditions in the MCM and GEOS-Chem mechanisms relative to RCIM means that less OH is available
to react with isoprene, and leads to a higher reactivity with ozone, by up to a factor of 2 in the MCM
mechanism and over a factor of 3 in the GEOS-Chem v11-02¢ mechanism. This effect is also visible in
global chemical transport simulations with RCIM and v11-02¢ (Figure S12). The increased OH recycling
in RCIM also sustains higher HO, mixing ratios, which leads to a larger fraction of ISOPOO reacting with
HO- than in the other mechanisms. Fixed-radical simulations (Figure S13 and S14) show that when NO
and HOq are held constant, RCIM results in a larger proportion of ISOPOQO reacting via H-shifts than the
other two mechanisms, and only deviates substantially from MCM in the fraction reacting via each isomer
under extremely high-NO conditions.

S5.2 HO,, NO,, and ozone

Figures S15 and S16 show the differences in net production of HO,, NO, and ozone due to isoprene oxidation
by the three different mechanisms in fixed-radical box models. As described in the main manuscript, the
main difference between the mechanisms is the higher HO,, recycling in RCIM under conditions where H-shift
chemistry dominates. This can also be seen in global simulations comparing GEOS-Chem v11-02¢ and RCIM
(Figure S17 and Table S6), which show that RCIM sustains OH concentrations up to three times those of
the GEOS-Chem v11-02¢ mechanism in remote regions of high isoprene emission such as the Amazon, and
that the reduced MPAN formation rate in RCIM leads to much lower NO,, titration over the Amazon.
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modeling of all three mechanisms at 298 K and full photolytic sunlight flux (equatorial midday).
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Table S6: Differences (%) in annual average mixing ratios between GEOS-Chem simulations using RCIM
and the GEOS-Chem v11-02¢ mechanism®

species troposphere 0-1 km 5-10 km SE USA® Amazon® E China®
OH 1.2¢ -0.57 -0.70 -12 -63 -3.3
HO, 2.0 0.75 1.9 -0.41 -24 -0.26
NO -2.4 0.27 -3.9 2.2 0.2 -0.45
NO, 0.69 0.97 -2.8 1.7 -16 0.44
NO, 6.6 4.3 -1.5 -1.5 -26 2.7
Oy 2.5 2.7 1.8 1.5 14 1.0
CcO -1.1 -14 -0.90 -1.7 -8.2 -0.22
HCHO -0.99 -7.0 3.8 -11 -44 -1.4
Formicacid 9.3 -14 59 -23 -48 -9.8
Aceticacid -14 -23 3.6 -30 -42 -24
Glycolaldehyde 60 42 130 27 100 -6.3
Glyoxal 130 87 430 310 47 26
Hydroxyacetone 1.3 -11 43 -0.40 -47 12
Methylglyoxal 8.9 -5.6 83 7.4 -43 6.5
Methyl vinyl ketone -5.5 -17 52 -7.9 -34 -12
Methacrolein 33 19 105 26 -1.8 20
C4 dihydroxycarbonyls -34 -47 30 -48 -65 -36
PANs? 50 34 52 39 400 7.8
Co, nitrates®® 160 240 68 220 1100 86
Cs nitrates? 490 360 420 270 700 230
Cs hydroxynitrates 640 530 440 450 870 470
C, nitrates? 860 700 1300 410 1500 300
Propanone nitrate 120 100 87 100 100 71
Cay hydroperoxides? 65 33 360 29 11 31
ISOPOOH 25 0.035 370 16 -25 13
Cs hydroperoxy aldehydes 400 290 1100 140 330 62
Epoxides? 96 34 420 38 -30 120
IEPOX 29 -1.0 190 5.2 -41 24
HMML 900 630 1600 430 780 360
Tetrafunctionals? 2500 1800 2900 980 2600 2300
SOA -39 -61 48 -75 -81 -33

%Results from 2° x 2.5° horizontal resolution global simulations. Positive percentages indicate higher mixing ratios in
GEOS-Chem v11-02c than RCIM. ®Average mixing ratios from 0-1 km altitude. °Causing a 1.16% decrease in the
tropospheric methane lifetime. ¢Yields of lumped species may include multiple generations of a single oxidation pathway
(e.g., separately counting both IEPOX and its oxidation product, isoprene hydroxycarbonyl epoxides). ©Includes only
non-PAN organonitrates.
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function of NO and HO, in RCIM (top), MCM v3.3.1 (middle) and GEOS-Chem v11-02¢ (bottom), from
fixed-radical box modeling of all three mechanisms at 298 K and full photolytic sunlight flux (equatorial
midday).
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520



0 - 1 km altitude , 5 -/10 km altitude

. S, ==
R L ﬁ%ﬁ”ﬁ*@" s

% A OH
t
1

=i
+250%

‘‘‘‘‘ e e o e - e o e ey

]

o ?f'f h

% A HO,

e |

[

+50% | -

o o o o

% A NO,

+50%

g
b

absolute A O,

=
&

2o o o - B = oo

> pp o wmm pE) by

-3 ppbv +3 pgbv
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S5.3 Organic products

Figures S18 and S19 show the differences in yields of organic products between RCIM, MCM v3.3.1, and
GEOS-Chem v11-02c¢ in fixed-radical box model simulations. Figures S20-S23 show differences in daytime
mixing ratios of organic products between the mechanisms in diurnal-steady-state simulations. Table S3
shows differences in mean annual yields of organic isoprene oxidation products between GEOS-Chem v11-02¢
and RCIM in global chemical transport simulations, while Figure S24 and Table S6 show differences in mean
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annual mixing ratios of organic isoprene oxidation products from the same simulations. The maps in Figure
S24 show the higher formaldehyde production from local isoprene oxidation over remote forests as well as the
strong effects of the decreased MPAN formation rate in RCIM, along with smaller corresponding decreases
in PAN formation and in the lifetimes of tertiary nitrates due to rapid hydrolysis. The major differences
between product yields are noted in the main manuscript; these figures are provided as a reference for those
seeking a more detailed accounting of individual products.
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S6 Mechanism simplification

Table S7 provides the differences in tropospheric and regional production and mixing ratios of species between
annual GEOS-Chem simulations using RCIM and Mini-CIM. As described in the main text, the changes
between the two mechanisms are minimal (~ 0.1 %), particularly for HO,, NO,, O3, CO, and HCHO.
Larger reductions in Ca4 organonitrate (2.8 %) and Cs tetrafunctional (12 %) production are largely due to
the removal of multigenerational steps (e.g. the conversion of one tetrafunctional species into another), and
therefore do not carry over substantially to changes in mixing ratios. Further, the moderate percent reduction
(4.4 %) in mixing ratios of organonitrates over the Amazon represents only a tiny absolute difference, since
the region experiences very little nitrate formation.

Table S7: Differences (%) in annual production and mixing ratios between GEOS-Chem simulations using
RCIM and Mini-CIM

tropospheric  tropospheric loading, loading, loading, loading,
species production loading 0-1 km Amazon SE USA E China
OH - -0.14 -0.12 -0.17 -0.03 -0.01
HO, - -3.2E-3 -0.022 -0.020 0.079 0.025
NO, - -0.17 -0.02 -0.22 0.020 0.016
Og4 - -0.11 -0.097 -0.42 -0.074 -0.028
CO -0.11 -0.078 0.054 0.038 0.014 5.1E-3
HCHO -0.13 -0.096 -0.11 -0.12 -0.13 -0.047
GLYC -0.66 -0.53 -0.67 -0.63 -0.68 -0.30
GLYX 0.43 0.58 0.47 -1.2 2.1 0.076
HAC 0.14 0.089 0.33 0.55 -0.24 -0.42
MGLY -0.35 -0.17 -0.077 -0.11 0.22 0.084
PANSs - -0.34 -0.18 -0.50 -0.28 -0.067
Cy  nitrates® -2.8 -0.68 0.77 44 24 0.02
Cy  hydroperoxides -0.65 0.43 0.44 0.14 1.4 2.9
epoxides 1.7E-3 0.32 0.21 0.11 0.28 0.38
SOA 0.17 0.23 0.082 -0.10 0.17 0.023
Cstetrafunctionals -12 -0.048 -0.21 -0.074 -0.64 2.2

“Includes only non-PAN organonitrates

Table S8 shows the annual global and regional molar product yields from isoprene of species removed from
RCIM to create Mini-CIM. We also provide a complete list of the simplifications made to create Mini-CIM
below. Naming conventions follow those laid out in Wennberg et al. (2018) and used in RCIM. More details,
along with a complete listing of the reactions and species in both RCIM and Mini-CIM, can be found online
in the mechanism repository (DOI 10.22002/D1.247)

The following simplifications apply to species that meet the simplification criteria of < 0.1% yield from
isoprene globally and < 1% yield from isoprene regionally in the Amazon, the southeastern United States,
and eastern China:

e ISOP3CO40H is replaced with ISOP10H2003C0O40H; because ISOP3CO40H + OH = ISOP10H-
2003C0O40H + OH is the only loss process of ISOP3CO40H, this replacement is OH-neutral.

e The acylperoxy radical of hydroxyethane (HOCH2C(O)OOe) is replaced with the peroxyacetyl radical
(CH3C(0)0O0e), and the products of its reactions with HO and NOy (HOCH>C(O)OOH, HOCH,C(O)OH,
and HOCH;C(O)OONOQy) are removed.

e The acylperoxy radical of nitrooxyethane (OosNOCH2C(0O)OQe) is replaced with the peroxyacetyl radi-
cal (CH3C(0O)OOe) plus NOg, and the products of its reactions with HO5 and NO3 (O NOCH;C(O)OOH,
02NOCH,C(O)OH, and O2NOCH;C(O)OONO3) are removed.
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The three isoprene carbonyl nitrate isomers are lumped into a single species (ICN) representing 70%
ISOP1N4CO, 30% ISOP1CO4N, and 0% ISOP3CO4N, the proportion in which they are produced in
GEOS-Chem simulations; the subsequent reaction rates and products of the single ICN species are
scaled according to these proportions.

ICN30O (ISOP10H2003CO0O4N) is removed, as it is no longer produced from IC3N.

ICN10O (ISOP1IN20H3004CO) and ICN200O (ISOP1CO20030H4N) are found to undergo rapid
H-shifts under almost all ambient conditions (Méller et al., 2019), and are therefore replaced with the
H-shift products.

The acylperoxy radical products of ICN + OH are lumped into a single species (ICNOO) representing
70% ICN400O (ISOP1IN4CO400) and 30% ICN500 (ISOP1CO1004N), the proportions in which
they are produced in GEOS-Chem simulations; the subsequent reaction rates and products of the
single ICNOO species are scaled according to these proportions.

MVK-derived nitrates are lumped into a single species (MVKN) representing 69% MVK3N4OH, 29%
MVK30H4N, 1% MVK30OOH4N, and 1% MVK3CO4N, the proportions in which they are produced
in GEOS-Chem simulations; the subsequent reaction rates and products of the single MVKN species
are scaled according to these proportions.

MACR1OOH2N3OH is replaced with MACR2N3OH, which has nearly identical subsequent reactions.

Minor isomers of methacrolein-derived nitrates are lumped into a single species (MACRN) representing
75% MACR20H3N, 25% MACR200H3N, and 0% MACR10H2N3O0OH, the proportions in which they
are produced in GEOS-Chem simulations; the subsequent reaction rates and products of the single
MACRN species are scaled according to these proportions.

All dinitrates are lumped into a single species (IDN) representing 50% dihydroxy-dinitrates (IDHDN),
50% dinitrates retaining a double bond (IDN), 0% isoprene-hydroxy-hydroperoxy-dinitrates (IHPDN),
and 0% isoprene-carbonyl-hydroxy-dinitrates (ICHDN), the proportions in which they are produced
in GEOS-Chem simulations; the subsequent reaction rates and products of the single IDN species are
scaled according to these proportions.

All tri- and tetra-functionalized Cj hydroxynitrates are lumped into a single species (ITHN) represent-
ing 90% isoprene-dihydroxy-hydroperoxy-nitrate (IDHPN), 10% isoprene-hydroxy-nitrooxy- epoxide
(IHNE), 0% isoprene-hydroxy-dihydroperoxy-nitrates (IHNDP), and 0% isoprene-hydroxy-hydroperoxy-
nitrooxy-epoxides (IHNPE), the proportions in which they are produced in GEOS-Chem simulations;
the subsequent reaction rates and products of the single ITHN species are scaled according to these
proportions. Because the hydroxy-nitrates have similar photolytic and OH loss pathways, this combi-
nation minimizes changes to the species’ lifetimes.

Isoprene-carbonyl-nitrooxy-epoxides (ICNE) and isoprene-dihydroxy-carbonyl-nitrates (IDHCN) are
replaced with isoprene-carbonyl-hydroxy-hydroperoxy-nitrates (ICHNP), which is renamed as ITCN
to reflect the lumped isoprene tri- and tetra-functionalized carbonyl nitrates. Because the carbonyl-
nitrates have similar photolytic and OH loss pathways, this combination minimizes changes to the
species’ lifetimes.

THNEOO, the peroxy radical from isoprene-hydroxy-nitrooxy-epoxides (IHNE) + OH, is replaced with
the peroxy radical from NO3-derived beta-hydroxy nitrates + OH (IDHNBOO), which reacts similarly.

The lumped S-hydroxynitrates from isoprene + NO3 oxidation (IHNB) are combined with the lumped
beta-hydroperoxynitrates from isoprene + NOjs oxidation (INPB); the subsequent reaction rates and
products of the single INPB species are scaled (33% IHNB, 67% INPB) according to the proportions
in which they are produced in GEOS-Chem simulations.

Hydroxy-nitrooxy-methacryloylperoxynitrate (MPANHN) is replaced with methacryloylperoxynitrate
(MPAN) + NO2.
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The acid (MACR10OH) and peracid (MACR10OOH) from the methacryloylperoxy radical reaction
with HO2 are lumped into a single species (MACR1OOH) representing 75% MACR100H and 25%
MACRI1OH, the proportions in which they are produced in GEOS-Chem simulations; the subsequent
reaction rates and products of the single ITHN species are scaled according to these proportions.

SOA from methylglyoxal (SOAMG) and from HMML (SOAME) are combined, respectively, with SOA
from glyoxal (SOAGX) and IEPOX (SOAIE). This simplification applies only to GEOS-Chem, not the
gas-phase mechanism found in the online repository.

The following simplifications apply to species that do not meet the yield criteria described above, but
are isobaric and have the same loss rates, such that combining them does not affect the species’ atmospheric
lifetime:

ISOP1CO40H and ISOP10OH4CO are lumped into a single Cs-0-hydroxy-carbonyl species (HC5) rep-
resenting 65% ISOP1CO40H and 35% ISOP10H4CO, the proportions in which they are produced in
GEOS-Chem simulations; the subsequent reaction rates and products of the single HC5 species are
scaled according to these proportions.

MVKENOL and MCRENOL are lumped into a single C4-enol species (MCRENOL) representing 75%
MCRENOL and 25% MVKENOL, the proportions in which they are produced in GEOS-Chem sim-
ulations; the subsequent reaction rates and products of the single enol species are scaled according to
these proportions.

MACR20H3CO and MVK30H4CO have identical reaction pathways, and are therefore lumped into
a single Cy-hydroxy-dicarbonyl species (MVKHCB).

MACR200OH30H and MACR20H30OH are lumped into a single hydroxy-hydroperoxy-methacrolein
species (MACRHP) representing 77% MACR200H30H and 23% MACR20H30O0H, the proportions
in which they are produced in GEOS-Chem simulations; the subsequent reaction rates and products
of the single MACRHP species are scaled according to these proportions.

MVK30OOH40H and MVK30OH40OH are lumped into a single hydroxy-hydroperoxy-MVK species
(MVKHP) representing 53% MVK30OH40H and 47% MVK30OH40OOH, the proportions in which
they are produced in GEOS-Chem simulations; the subsequent reaction rates and products of the
single MVKHP species are scaled according to these proportions.
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Table S8: Annual mean molar yields (%) from isoprene of species removed from the simplified mechanism®

species global Amazon SE USA E China
HOCH,;COsH 1.7E-4 1.9E-6 1.8E-5 1.2E-5
HOCH,CO3sH 3.3E-4  2.4E-6 3.1E-5 2.1E-5
02,NOCH2COH 5.8E-4  2.0E-5 3.7E-4 5.6E-4
02NOCH,CO3H 9.3E-4  2.5E-5 6.2E-4 9.3E-4
02NOCH3CO3NO4 0.012 2.6E-4 0.017 0.080
HOCH3;CO3NO9 8.7E-4 1.1E-5 6.7E-4 9.9E-4
MPANHN 0.018 1.5E-3 0.037 0.049
MVK30OH4N 6.9E-3  5.6E-4 0.013 0.023
MVK3CO4N 52E-3 1.7EA4 7.6E-3 0.011
MACR200H3N 0.023 1.3E-3 0.045 0.059
MACR10OH2N30H 2.2E-3  7.3E-4 1.5E-3 7.3E-4
MACR100OH2N30H 2.5E-3 6.8E-4 2.1E-3 1.2E-3
ISOP3CO40H 0.069 0.037 0.059 0.036
ISOP1CO4N 0.088 8.2E-3 0.21 0.32
ISOP3CO4N 9.1E-3  T7.8E4 0.024 0.024
dinitrooxy-isoprene 0.035 4.0E-3 0.092 0.20
nighttime S-hydroxynitrates 0.053 4.9E-3 0.13 0.13
Cs dihydroxy-dinitrates 0.035 2.1E-3 0.068 0.17
Cs hydroxy-hydroperoxy-dinitrates 2.1E-3  6.8E-5 2.9E-3 1.3E-3
Cs carbonyl-hydroxy-dinitrates 1.3E-3 3.7E-6 3.9E-4 8.0E-4
Cs hydroxy-nitrooxy-epoxides 0.027 2.1E-3 0.037 0.013

Cs hydroxy-nitrooxy-dihydroperoxides 5.4E-3 3.9E-4 4.7E-3 1.0E-3
Cs hydroxy-nitrooxy-hydroperoxy-epoxides 2.0-E-3  2.5E-4 3.3E-3 8.0E-4

Cs carbonyl-nitrooxy-epoxides 1.4E-3 2.5E-5 6.1E-4 2.6E-4

Cs carbonyl-dihydroxy-nitrates 0.011 1.5E-4 3.9E-3 7.6E-3
MVK30H4N® 0.17 0.015 0.21 0.48
ISOP10H4CQ? 0.31 0.24 0.38 0.57
MVK30H400H" 2.5 1.1 1.3 1.1
MVKENOL® 0.37 0.65 0.22 0.12
MACR20H3CO? 0.25 0.026 0.12 0.13
MACR20H300H? 0.24 0.13 0.20 0.24
MACR10H? 0.36 0.25 0.14 0.064

SOA from HMML/MAE® 0.023 2.6E-3 7.9E-3 0.030
SOA from methylglyoxal® 2.1E-3 2.0E-3 2.1E-3 0.015

%Species names are derived from Wennberg et al. (2018) and the mechanism posted in the online
repository; ®While these species’ yields exceed the threshold set for exclusion, their lifetimes and loss
pathways are sufficiently similar to those of other species in the mechanism to facilitate their com-
bination (see text); “These simplification applies only to GEOS-Chem, not the gas-phase mechanism
found in the online repository.
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