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Abstract. The regional concentrations of airborne ultrafine
particulate matter mass (Dp < 0.1 µm; PM0.1) were predicted
in 39 cities across the United States (US) during summer-
time air pollution episodes. Calculations were performed
using a regional source-oriented chemical transport model
with 4 km spatial resolution operating on the National Emis-
sions Inventory created by the U.S. Environmental Protection
Agency (EPA). Measured source profiles for particle size and
composition between 0.01 and 10 µm were used to translate
PM total mass to PM0.1. Predicted PM0.1 concentrations ex-
ceeded 2 µgm−3 during summer pollution episodes in ma-
jor urban regions across the US including Los Angeles, the
San Francisco Bay Area, Houston, Miami, and New York.
PM0.1 spatial gradients were sharper than PM2.5 spatial gra-
dients due to the dominance of primary aerosol in PM0.1.
Artificial source tags were used to track contributions to pri-
mary PM0.1 and PM2.5 from 15 source categories. On-road
gasoline and diesel vehicles made significant contributions
to regional PM0.1 in all 39 cities even though peak contribu-
tions within 0.3 km of the roadway were not resolved by the
4 km grid cells. Cooking also made significant contributions
to PM0.1 in all cities but biomass combustion was only im-
portant in locations impacted by summer wildfires. Aviation
was a significant source of PM0.1 in cities that had airports
within their urban footprints. Industrial sources, including
cement manufacturing, process heating, steel foundries, and
paper and pulp processing, impacted their immediate vicin-
ity but did not significantly contribute to PM0.1 concentra-
tions in any of the target 39 cities. Natural gas combustion
made significant contributions to PM0.1 concentrations due
to the widespread use of this fuel for electricity generation,
industrial applications, residential use, and commercial use.

The major sources of primary PM0.1 and PM2.5 were no-
tably different in many cities. Future epidemiological studies
may be able to differentiate PM0.1 and PM2.5 health effects
by contrasting cities with different ratios of PM0.1/PM2.5.
In the current study, cities with higher PM0.1/PM2.5 ratios
(ratio greater than 0.10) include Houston, TX, Los Ange-
les, CA, Bakersfield, CA, Salt Lake City, UT, and Cleveland,
OH. Cities with lower PM0.1 to PM2.5 ratios (ratio lower than
0.05) include Lake Charles, LA, Baton Rouge, LA, St. Louis,
MO, Baltimore, MD, and Washington, D.C.

1 Introduction

Airborne particulate matter (PM) has been linked with pre-
mature mortality and numerous other health risks in cities
across the world (see, for example, references Dominici et
al., 2006; Franklin et al., 2007; Pope et al., 2002, 2009; Os-
tro et al., 2006; Laden et al., 2000; Kheirbek et al., 2013;
Aneja et al., 2017). Despite years of progress (EPA, 2017a),
PM concentrations in many urban regions in the US still
exceed health-based standards, resulting in an increase in
non-accidental mortality (Franklin et al., 2007; Baxter et
al., 2013). Toxicology testing suggests that ultrafine parti-
cles with a diameter < 0.1 µm may be the most harmful size
fraction within PM2.5 (Li et al., 2003; Oberdorster, 2000;
Ostro et al., 2015; Oberdorseter et al., 1995; Pekkanen et
al., 1997). Initial attempts to analyze ultrafine particles in
epidemiology studies have used particle number concentra-
tion as a surrogate for ultrafine particle exposure, but this
approach has not found consistent relationships with health
effects (HEI, 2013). In contrast, a recent epidemiology study
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based on ultrafine particle mass (PM0.1) found significant as-
sociations with premature mortality (Ostro et al., 2015). In
addition, ultrafine (UF) mass concentrations are highly cor-
related with particle surface area and can be a good metric for
potential exposure to UF particles (Kuwayama et al., 2013;
Ostro et al., 2015). Follow-up studies have also found sig-
nificant associations between PM0.1 and reproductive out-
comes, including low birth weight and preterm birth (Lau-
rent et al., 2016; Bergin et al., 1996). These findings have bi-
ological plausibility, since ultrafine particles may cross cell
membranes and interfere with internal cell function (Sioutas
et al., 2005). Ultrafine particles have greater surface area per
volume due to the small particle diameter, making them more
available for chemical reaction. Ultrafine particles can there-
fore have a larger impact when deposited deep into the lung
cavity, from which they are not easily removed (Nel et al.,
2006; Li et al., 2003).

A monitoring network for PM10 and PM2.5 has been op-
erating throughout the continental US for almost 20 years.
Multiple studies have performed source apportionment cal-
culations for coarse and fine PM using these measurements
(see, for example, Reff et al., 2009; Zhang et al., 2014; Zheng
et al., 2002; Ham and Kleeman, 2011). In contrast, measure-
ments of PM0.1 are limited to focused field campaigns last-
ing for short time periods with even fewer studies attempting
source apportionment calculations (Kleeman et al., 2009).
Multiple barriers have prevented the widespread deployment
of PM0.1 monitoring networks including (i) the low concen-
tration of PM0.1 mass, which challenges the detection limits
of analytical methods, (ii) the artifacts associated with col-
lecting PM0.1 samples, (iii) the additional workload involved
in operating the collection devices, and (iv) the sharp spatial
gradients of PM0.1 concentrations. Expensive investments in
PM0.1 monitoring are unlikely to be purchased without com-
pelling evidence linking PM0.1 to public health. Early epi-
demiological studies for PM0.1 must therefore use techniques
other than direct measurements to calculate population expo-
sure.

Various methods, such as the source-resolved PMCAMx
chemical transport model, the chemical mass balance (CMB)
model, photochemical box models, and land use regression
(LUR) models, have been used to track source contribu-
tions to primary organic matter, elemental carbon, and in
some cases particle number concentration (Nx) over areas in
the Eastern US and parts of Europe and Asia (Lane et al.,
2007; Posner and Pandis, 2015; Wang et al., 2011; Cattani
et al., 2017; Wolf et al., 2017; Simon et al., 2018; Gaydos
et al., 2005; Zhong et al., 2018). However, these methods
are limited in one or more aspects of their ability to predict
population exposure to ultrafine particles over large analysis
domains. Source-resolved models, such as PMCAMx, have
been used to resolve composition for Nx in the Eastern US
but not for PM0.1 (Posner and Pandis, 2015). CMB models
need measurements of specific molecular markers at numer-
ous sites to resolve the sharp spatial gradients of ultrafine

particle source contributions. LUR models need comprehen-
sive measurements that act as training data sets in order to
extend throughout a modeling domain (Lane et al., 2007).

Hu et al. (2014) calculated population exposure to PM0.1
in California using a regional source-oriented chemical trans-
port model supported by measured profiles for the size and
composition of particles emitted by dominant sources. Pre-
dictions were compared to all available fine and ultrafine
particle measurements over the period 2000–2010 with good
agreement observed for the dominant chemical components
of PM0.1 mass including organic aerosol, elemental carbon,
and numerous trace metals (Hu et al., 2014). The 4 km spatial
resolution used in these calculations supported multiple epi-
demiological studies based on spatial gradients of exposure
(Ostro et al., 2015; Laurent et al., 2016). These encouraging
results motivate the expansion of the PM0.1 exposure tech-
nique to other locations.

Here we use the Eulerian source-oriented UCD–CIT
chemical transport model to predict the concentration of
PM0.1 in 39 urban regions throughout the US during sum-
mer pollution events in 2010. The calculation tracks contri-
butions from 15 primary particle sources through a simula-
tion of all major atmospheric processes while retaining in-
formation about particle size, composition, and source ori-
gin (Hu et al., 2014). The results of this calculation reveal
US national trends in PM0.1 concentrations for the first time
and suggest locations where the differential health effects of
PM0.1 and PM2.5 can best be studied.

2 Methods

2.1 Simulation dates

A total of 39 of the largest cities in the continental US were
selected as the primary target locations in the current study
(Fig. 1). These cities have been used to characterize atmo-
spheric reactivity across the US in previous air pollution
studies (Carter, 1994, 2010; Venecek et al., 2018a, b). Sim-
ulations within each target city were carried out during peak
summer air pollution events in 2010. Dates were selected
based on an initial investigation of measured 1 h ozone (O3)
across all monitors in a core-based statistical area (CBSA). A
CBSA is defined as a US geographical area that consists of
one or more counties anchored by an urban center of at least
10 000 people plus adjacent counties that have a high degree
of social and economic integration with the core as measured
by commuting (United States Census Bureau, 2018).

The selected air pollution events within each CBSA typi-
cally had measured 1 h maximum O3 concentrations greater
than 70 ppb. Regional pollution events caused by atmo-
spheric stagnation were selected whenever possible as op-
posed to special events caused by unusual occurrences such
as wildfires that affected only one city at a time. The simula-
tion dates in each city are listed in Table 1. Figure 2 illustrates
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Figure 1. Map of 39 cities used for the prediction of PM2.5 and PM0.1 source contributions across the continental United States during
summertime air pollution events.

the average 1 h maximum O3 concentration across all mon-
itors within each CBSA during the selected regional events.
Simulation periods are organized in chronological order for
the year 2010, and cities within the same geographical re-
gion are grouped together. Measured 24 h PM2.5 concentra-
tions during peak summer pollution events ranged between
3.2 and 30 µgm−3 depending on the location. The aggrega-
tion of these events across the US enables a comparison of
typical summertime air pollution episodes within different
cities.

2.2 Model description

The UCD–CIT model predicts the evolution of gas- and
particle-phase pollutants in the atmosphere in the presence
of emissions, transport, deposition, chemical reaction, and
phase change (Held et al., 2005) as represented by Eq. (1):

∂Ci

∂t
+∇ ·uCi =∇K∇Ci +Ei − Si +R

gas
i (C)

+R
part
i (C)+R

phase
i (C), (1)

where Ci is the concentration of gas- or particle-phase
species i at a particular location as a function of time t , u

is the wind vector, K is the turbulent eddy diffusivity, Ei is
the emissions rate, Si is the loss rate, R

gas
i is the change in

concentration due to gas-phase reactions, R
part
i is the change

in concentration due to particle-phase reactions, and R
phase
i is

the change in concentration due to phase change (Held et al.,
2005). Loss rates include both dry and wet deposition. Phase

change for inorganic species occurs using a kinetic treatment
for gas–particle conversion (Hu et al., 2008) driven towards
the point of thermodynamic equilibrium (Nenes et al., 1998).
Phase change for organic species is also treated as a kinetic
process with vapor pressures of semi-volatile organics cal-
culated using the two-product model (Carlton et al., 2010).
More sophisticated approaches for secondary organic aerosol
(SOA) formation (Cappa et al., 2016) were also tested in the
current study but these required a larger number of assump-
tions and they did not produce higher SOA concentrations in
the PM0.1 size fraction.

Nucleation was included in the model using the ternary nu-
cleation (TN) mechanism involving H2SO4–H2O–NH3 (Na-
pari et al., 2002). A tunable nucleation parameter equal to
10−5 was used based on results from previous studies across
California for the year 2012 (Yu et al., 2019). Yu et al. (2019)
found good agreement between predicted and measured con-
centrations of daily-averaged PM0.1 and N7 source contri-
butions in California. The current study expands these nu-
cleation calculations to investigate new particle formation
across all major US cities, but the data needed to evaluate
the accuracy of these calculations are generally not available
outside California, and particle number concentrations will
not be a focal point of this work. The model spatial resolu-
tion was 4 km over the 4.2 million km2 of simulated urban
areas, so near-roadway concentrations of ultrafine particles
on spatial scales of ∼ 0.1 km will not be presented.

A total of 50 particle-phase chemical species are included
in each of 15 discrete particle size bins that range from 0.01
and 10 µm in particle diameter (Held et al., 2005). Artifi-
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Figure 2. Average 1 h maximum O3 across all monitors in each domain. Cities are grouped by corresponding extreme O3 dates (that averaged
> 70 ppb) and US geographical region.

cial source tags are used to quantify source contributions to
the primary particle mass and the secondary organic aerosol
(SOA) mass for a specific bin size, thereby allowing the di-
rect contribution of each source of PM2.5 and PM0.1 mass to
be determined. Gas-phase concentrations of oxides of nitro-
gen (NOx), volatile organic compounds (VOCs), oxidants,
O3, and semi-volatile reaction products were predicted using
the SAPRC-11 chemical mechanism (Carter and Heo, 2013).

2.3 Model inputs

Anthropogenic emissions were generated using the Sparse
Matrix Operator Kernel Emissions (SMOKEv3.7) modeling
system applied to the 2011 National Emissions Inventory.
The NEI reports county-wide emission totals from all 50
states that are then mapped using spatial surrogates. Tem-
poral profiles are also used to account for variation by time
of month, week, and day; however, the NEI does not ac-
count for “no-burn” days that would impact residential wood
combustion or precipitation events that would impact paved–
unpaved road dust. These default profiles may result in larger
model performance bias when comparing predictions to mea-
sured values. Emissions from each of the four major source
sectors (area, mobile, non-road, and point) were tagged to
create 15 different emissions groups: on-road diesel, on-road
gasoline, off-road diesel, off-road gasoline, biomass, cook-
ing, natural gas, process heaters, distillate (oil), aviation, ce-
ment, coal, steel foundries, paper products, and all other
emissions. Size- and composition-resolved source profiles
were then assigned to the PM emissions within each of these
groups using the UCD–CIT emissions processor based on the
most recent measurements available in the literature (Robert
et al., 2007a, b; Kleeman et al., 2008). Some of the 15 source
categories were represented using weighted-average source
profiles from multiple sources as described in Table S1 in the
Supplement.

Daily values for 2010 wildfire emissions were generated
using the Global Fire Emissions Database (GFED) (Giglio
et al., 2013). Biogenic emission rates were generated using
the Model of Emissions of Gases and Aerosols from Nature

(MEGANv2.1). The gridded geo-referenced emission factors
and land cover variables required for MEGAN calculations
were created using the MEGANv2.1 preprocessor tool and
the ESRI_GRID leaf area index and plant functional type
files available at the Community Data Portal (Guenther et al.,
2012).

Meteorology parameters used to drive the UCD–CIT
chemical transport model (CTM) and the MEGANv2.1 bio-
genic emissions were generated using the Weather Research
and Forecasting model (WRFv3.6) and WRF preprocess-
ing system (WPSv3.6). Meteorological fields were created
within three nested domains with horizontal resolutions of
36, 12, and 4 km. Each domain had 31 telescoping verti-
cal levels up to a top height of 12 km. Four-dimensional
data assimilation (FDDA) or “FDDA nudging” was used to
anchor meteorological predictions to measured values (Hu
et al., 2010). Meteorological data and gridded map projec-
tions needed for 2010 emissions modeling were taken from
the corresponding WRF simulations using the meteorology–
chemistry interface processor (MCIP).

2.4 Supporting measurements

Ambient hourly O3 measurements and daily PM2.5 mea-
surements were obtained from the Environmental Protec-
tion Agency (EPA) AQS API/Query AirData (EPA, 2017b).
Model predictions are compared to these measurements to
build confidence in the accuracy of the overall modeling sys-
tem since PM0.1 measurements are not available during any
of the peak summer pollution events studied here.

3 Results

Predicted maximum 1 h O3, NO2, SO2, and CO concentra-
tions were compared to measurements at all available mon-
itors within each study CBSA to indirectly evaluate the ac-
curacy of the emissions inventories and meteorology fields.
Many of the sources that emit O3 precursors also emit ultra-
fine particles. Likewise, meteorological parameters like wind
speed and mixing depth influence the concentrations of all
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Table 1. City, city code, simulation date, 2010 population, and geographical region.

City City 2010 simulation 2010 US geographical
code date population region

Atlanta ATLGA 29 March–1 April 422 765 Southeast
Austin AUSTX 23–26 August 815 260 South
Bakersfield BAKCA 23–26 August 348 938 West
Baltimore BALMD 7–10 August 621 210 East Coast
Baton Rouge BATLA 6–9 October 229 584 South
Birmingham BIRAL 6–9 October 212 107 Southeast
Boston BOSMA 29 August–1 September 620 451 East Coast
Charlotte CHANC 30 March–2 April 738 710 Southeast
Cincinnati CINOH 25–28 August 296 904 Midwest
Cleveland CLEOH 25–28 August 396 009 Midwest
Dallas DALTX 23–26 August 1 201 000 South
Denver DENCO 13–16 July 603 421 West
Detroit DETMI 25–28 August 711 299 Midwest
El Paso ELPTX 11–14 July 651 665 West
Fresno FRECA 23–26 August 497 090 West
Hartford HARCT 29 August–1 September 125 312 East Coast
Houston HOUTX 6–9 October 2 103 000 South
Indianapolis INDIN 25–28 August 830 952 Midwest
Jacksonville JACFL 29 March–1 April 823 291 Southeast
Kansas City KANMO 25–28 August 460 639 Midwest
Lake Charles LAKLA 6–9 October 72 268 South
Los Angeles LOSCA 23–26 September 3 796 000 West
Louisville LOUKY 7–10 August 300 000 Midwest
Memphis MEMTN 6–9 October 647 609 Midwest
Miami MIAFL 30 March–2 April 400 769 Southeast
Nashville NASTN 7–10 October 1 800 000 Midwest
New York City NYCNY 29 August–1 September 8 190 000 East Coast
Philadelphia PHIPA 27–30 August 1 529 000 East Coast
Phoenix PHOAZ 19–22 June 1 449 000 West
Portland POROR 23–26 August 585 286 West
Richmond RICVA 7–10 August 204 351 East Coast
Sacramento SACCA 22–25 August 466 488 West
Salt Lake City SLCUT 18–21 August 186 505 West
San Antonio SANTX 23–26 August 1 334 000 South
San Diego SDOCA 23–26 September 1 306 000 West
San Francisco SFOCA 22–25 August 805 704 West
St. Louis STLMO 25–28 August 319 257 Midwest
Tulsa TULOK 25–28 August 392 443 Midwest
Washington D.C. WASDC 7–10 August 604 453 East Coast

pollutants, including ultrafine particles. Successful predic-
tion of gas-phase species is therefore a necessary step in the
accurate prediction of ultrafine particle concentrations dur-
ing summer photochemical smog episodes. Predicted 24 h
PM2.5 concentrations were also compared to measurements
at all available monitors within each study CBSA. Many of
the combustion sources that emit primary particles within the
PM2.5 size fraction also emit primary PM0.1 and/or precur-
sor gases that can condense into the PM0.1 size range. The
Chemical Speciation Monitoring Network (CSN) operated
by the U.S. Environmental Protection Agency (EPA) mea-
sures PM2.5 mass and chemical composition at more than

260 sites throughout the US, including many of the 39 cities
studied in the current analysis (Solomon et al., 2014). Full
monitor information including latitude, longitude, and total
number of available measurements for comparison within the
simulation period are show in Tables S2–S6.

Figure 3 illustrates the normalized mean bias (NMB) and
normalized mean error (NME) for predicted 1 h maximum
O3 against measured 1 h maximum values for each monitor
within a specific modeling domain. Figure S1 in the Supple-
ment illustrates the fractional bias (FB) and fractional error
(FE) for predicted 1 h maximum CO, NO2, and SO2 against
measured 1 h maximum values. Figure 4 illustrates the NMB
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Figure 3. Model performance statistics for predicted maximum 1 h
O3 against measured values. The red line represents performance
criteria of 0.15 for NMB and 0.25 for NME. NMB and NME were
calculated for available measurements against predictions at every
monitor in the CBSA based on the U.S. EPA AQ Data Mart. Moni-
tor number (horizontal axis), latitude and longitude, name, MO, MP,
NMB, NME, FB, and FE values are available for all monitors in the
Supplement.

Table 2. Percent of monitors throughout the entire US domain that
met performance criteria for normalized mean error (NME).

Species Total number Percent that
of monitors met NME

performance
criteria

Max 1 h O3 344 95 %
Average 24 h PM2.5 234 85 %

and NME for 24 h average predicted PM2.5 concentrations
against measured 24 h average PM2.5 concentrations at each
available monitor over the specific simulation period. A time
series of predicted vs. measured O3 concentrations is dis-
played in Fig. S2.

Table 2 summarizes the total number of available moni-
tors for a comparison of measured values vs. predicted val-
ues for O3 and PM2.5. Emery et al. (2017) recommend model
performance criteria for 1 h O3 NMB less than or equal to

Figure 4. Model performance statistics for predicted 24 h aver-
age PM2.5 against measured values. The red line represents perfor-
mance criteria of ±0.30 for NMB and 0.50 for NME. Normalized
mean bias and normalized mean error were calculated for available
measurements against predictions at every monitor in the CBSA
based on the U.S. EPA AQ Data Mart. Monitor number (horizontal
axis), latitude and longitude, name, MO, MP, NMB, NME, FB, and
FE values are available for all species in the Supplement.

±0.15 and NME less than or equal to 0.30. The 24 h PM2.5
model performance recommendations, also based on Emery
et al. (2017), are NMB less than or equal to ±0.30 and NME
less than or equal to 0.50 (Emery et al., 2017). Table 2 dis-
plays the percentage of measured vs. predicted comparisons
that met the performance criteria for NME over the entire
US modeling domain. In summary, 95 % of all locations met
NME performance criteria for O3 predictions, and 85 % of
all locations met NME performance criteria for PM2.5 pre-
dictions.

Elemental carbon (EC) and organic carbon (OC) are the
chemical components most relevant for both the PM2.5
and the PM0.1 size fractions. Figure 5 illustrates predicted
vs. measured 24 h PM2.5 EC and OC concentrations for all
39 cities. Primary organic matter tracked by model calcula-
tions is converted to OC by dividing by a factor of 1.2 (Rus-
sell, 2003). Secondary organic aerosol tracked by model cal-
culations is converted to OC by dividing by a factor of 1.5.
In general, the model slightly underpredicts PM2.5 EC, OC,
and mass with regression slopes ranging from 0.62 for EC
to 0.71 for OC. The negative bias in model predictions may
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Figure 5. Predicted average 24 h vs. measured 24 h average (a) or-
ganic carbon and (b) elemental carbon (µgm3). Predicted OC was
converted from predicted organic matter (OM) and secondary or-
ganic aerosol components using a ratio of 1.2 and 1.5, respectively
(Russell, 2003).

stem from the 4 km spatial averaging inherent in the calcu-
lations vs. the influence of sources closer than 4 km to the
measurement site in urban environments, such as highways
and restaurants. Model performance statistics for PM2.5 pre-
dictions are summarized in Table S6.

PM0.1 measurements are not available for model evalua-
tion in the 39 cities across the US in 2010 at the core of the
current study, but measurements are available in California in
the years 2015 and 2016 that can be used to evaluate similar
modeling procedures. Yu et al. (2019) compared PM0.1 con-
centrations in Los Angeles, Fresno, East Oakland, and San
Pablo, California, predicted using the UCD–CIT air quality
model to receptor-based source apportionment calculations
based on measured concentrations of molecular markers in
the ultrafine particle size fraction (Xue et al., 2018). Good
agreement was found between predictions for PM0.1 con-
centrations associated with gasoline engines, diesel engines,
cooking, wood burning, and “other sources” from these two
independent techniques. Further details on this comparison
are provided by Yu et al. (2019). This evaluation of the mod-
eling procedures builds confidence in the PM0.1 source pre-
dictions across the US in the current study, but new measure-
ments would be helpful to fully evaluate model predictions
in the future.

Figure 6 illustrates a composite representation of PM2.5
and PM0.1 mass across the US during the summer pollution

Figure 6. (a) PM2.5 and (b) PM0.1 24 h average mass (µgm−3)
during summer air pollution event. Scale drawn to highlight all areas
of the US. Actual maxima: (a) 94.25 µgm−3; (b) 9.43 µgm−3.

episodes listed in Table 1. The spatial plot in Fig. 6 is con-
structed using the intermediate 12 km simulation results from
multiple simulations stitched together to cover a broader geo-
graphical area. Regional PM0.1 concentrations reach a maxi-
mum value of 5 µgm−3 in a few isolated grid cells with wild-
fires, but concentrations generally exceed 2 µgm−3 in ma-
jor urban regions across the US, including Los Angeles, the
San Francisco Bay Area, Houston, Miami, and New York.
The comparison between PM2.5 mass (Fig. 6a) and PM0.1
mass (Fig. 6b) shows that predicted PM0.1 spatial gradients
are sharper, with fewer regional contributions between “hot
spots”. Locations in the Midwestern and Eastern US outside
cities with high PM2.5 concentrations due to secondary for-
mation (sulfate and secondary organic aerosol) did not have
corresponding high concentrations of PM0.1. Most major ur-
ban centers had noticeable peaks of both PM2.5 and PM0.1.
This pattern presents a challenge for epidemiological stud-
ies seeking to differentiate the effects of PM2.5 and PM0.1
because the locations with differential exposure (high PM2.5
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Figure 7. PM0.1 source contribution for 39 cities across the conti-
nental US.

but low PM0.1) have a low population density, which will re-
duce the power of the analysis.

The UCD–CIT model explicitly tracks source contribu-
tions to particle mass in each size bin using artificial source
tags. Pie charts of PM2.5 and PM0.1 source contributions are
illustrated in Fig. 6 for selected major cities. Pie charts for
PM0.1 source contributions in all 39 US cities are shown
in Fig. 7. The detailed source profiles within each city are
based on the nested 4 km simulation results during the pol-
lution events listed in Table 1. Source contribution spatial
plots for the entire US are shown in Figs. S3 through S5,
and pie charts for PM2.5 source contributions in all 39 US
cities are shown in Fig. S6. On-road gasoline and diesel ve-
hicles made significant contributions to regional PM0.1 in
all 39 cities even though peak contributions within 0.3 km

of the roadway were not resolved by the 4 km grid cells.
Cooking also made significant contributions to PM0.1 in all
cities, but biomass combustion was only important in loca-
tions impacted by summer wildfires. Residential wood com-
bustion is not typically a strong source in the summer due
to warmer temperatures; however, in the wintertime biomass
would most likely be a dominant source. Aviation was a sig-
nificant source of PM0.1 in cities that have airports within
their urban footprints. Industrial sources including cement
manufacturing, process heating, steel foundries, and paper
and pulp processing impacted their immediate vicinity but
did not significantly contribute to PM0.1 concentrations in
any of the target 39 cities. Natural gas combustion made
significant contributions to PM0.1 concentrations due to the
widespread use of this fuel for residential, commercial, and
industrial applications. Natural gas contributions were espe-
cially significant in locations with high levels of industrial
use, such as chemical refineries, and in locations with signif-
icant levels of natural-gas-fired power plants.

The major sources of primary PM0.1 and PM2.5 were no-
tably different in many cities (compare Fig. 6a and b). The
sources that contribute most strongly to PM2.5 are on-road
diesel, gasoline, cooking, coal, and “other”, which includes
brake and tire wear from mobile sources and dust. Natural
gas combustion makes minor contributions to primary PM2.5
mass since particles from this source have a mass distribu-
tion peaking at ∼ 0.05 µm in particle diameter (Chang et al.,
2004), with all of the emitted mass in the PM0.1 size frac-
tion. In contrast, other combustion sources using more com-
plex fuels, such as on-road vehicles, have a mass distribution
peaking at ∼ 0.1 µm, with at least half the emitted mass out-
side the PM0.1 size fraction (Robert et al., 2007a, b). Like-
wise, cooking contributes strongly to PM2.5 concentrations,
but the emitted particle mass distribution peaks at 0.2 µm,
with the majority of the mass outside the PM0.1 size fraction.

The fraction of PM that is primary within each CBSA
is listed in Tables S7–S16. Averaged across the US, PM2.5
was found to be approximately 62 % primary material, while
PM0.1 was found to be approximately 87 % primary material.

4 Discussion

Figure 8 illustrates the population-weighted average PM0.1
source contributions across all 39 study cities shown in Ta-
ble 1. These predictions are based on source profile mea-
surements for wood burning, cooking, mobile sources, and
nonresidential natural gas combustion reported in multiple
peer-reviewed studies (Taback et al., 1979; Cooper, 1989;
Houck et al., 1989; Hildemann et al., 1991a, b; Harley et al.,
1992; Schauer et al., 1999a, b, 2001, 2002a, b; Kleeman et
al., 2008, 2000; Robert et al., 2007a, b). In addition, new
measurements made by Xue et al. (2019) were conducted to
confirm previous measurements of the particle size distribu-
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Figure 8. Population-weighted average source contribution across
the 39 major cities in the continental US for (a) PM2.5 and
(b) PM0.1.

tion associated with natural gas and biomethane combustion
particles.

The results summarized in Fig. 8 highlight the importance
of natural gas combustion particles in the PM0.1 size fraction
and the minor role that these natural gas combustion particles
play in the PM2.5 size fraction. Natural gas typically con-
sists of +93 % methane, with the balance of the fuel made
up by higher-molecular-weight alkanes and trace impurities.
In addition to background sulfur compounds in the natural
gas, sulfur-containing odorants such as mercaptans are com-
monly added to aid in leak detection. Natural gas combustion
does not emit high amounts of particulate matter per joule
of energy in the fuel, but the widespread use of natural gas
suggests that it could still contribute significantly to ambi-
ent PM0.1 concentrations. Natural gas combustion accounted
for 29 % of total US energy consumption in 2016 (U.S. De-
partment of Energy, 2017). In contrast, gasoline combustion
accounted for 17 % of US energy consumption, and diesel
fuel combustion accounted for approximately 6 % of US en-
ergy consumption in 2016. Less than half of the PM emitted
by gasoline and diesel fuel combustion is in the PM0.1 size
fraction (Robert et al., 2007a, b), whereas all of the PM emit-
ted by natural gas combustion is in the PM0.1 size fraction
(Chang et al., 2004). Taken together, these facts support the

Figure 9. (a) Natural gas compressor stations and pipelines across
the US and (b) PM0.1 natural gas combustion concentrations
(µgm−3).

Figure 10. Scatter plot showing correlation between 24 h average
PM2.5 and PM0.1 for the 39 cities.

potential importance of natural gas combustion for ambient
PM0.1 concentrations.

The five states with the highest consumption of natural gas
in 2016 were Texas (14.7 %), California (7.9 %), Louisiana
(5.7 %), New York (5 %), and Florida (4.8 %). These con-
sumption patterns are reflected in the natural gas distribution
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Figure 11. PM0.1/PM2.5 ratio for each city.

Figure 12. PM0.1/PM2.5 ratio across the US.

system (Fig. 9a) and the predicted PM0.1 concentration field
associated with natural gas combustion (Fig. 9b). Natural gas
end use included electric power generation (36 %), industrial
applications (34 %), residential use (16 %), commercial use
(11 %), and transportation (3 %).

Lane et al. (2007) used a source-resolved version of PM-
CAMx and individual emission inventories to determine
source contributions of primary organic material (POM2.5)
(Lane et al., 2007). Lane et al. (2007) note that POM2.5
associated with natural gas sources ranged from 0.1 to
0.8 µgm−3. Chang et al. (2004) measured emitted particle
size distributions for gas-fired stationary combustion that
fell between 10 and 100 nm. The combination of these two
results indicates that the natural gas mass component of
POM2.5 predicted by Lane et al. (2007) is consistent with
the magnitude of the PM0.1 mass associated with natural gas
combustion found in the current study. Lane et al. (2007)
were not studying PM0.1, so the major role of natural gas
in this size fraction was not identified.

Posner and Pandis (2015) utilized PMCAMx with the
LADCO 2001 BaseE source-resolved mass emissions inven-

tory for a July 2001 prediction of Nx over the Eastern US
with 36 km resolution (Posner and Pandis, 2015). Posner and
Pandis used a “zero-out” method in combination with source-
specific size distribution to study the percent contribution
of six major sources (on-road gasoline, industrial, non-road
diesel, on-road diesel, biomass, and dust) of Nx . They found
that Nx was made up of 36 % on-road gasoline, 31 % indus-
trial, 18 % non-road diesel, 10 % on-road diesel, 1 % biomass
burning, and 4 % long-range transport (Posner and Pandis,
2015). The emissions particle number inventory was nor-
malized based on PM10 mass from each source and particle
emissions from natural gas sources were assumed negligible,
which effectively removed natural gas sources from the sim-
ulation. This has minor effects on PM2.5 and PM10 predic-
tions, but the results of the current study suggest that natural
gas combustion significantly contributes to ultrafine particle
concentrations.

Future epidemiological studies may be able to differentiate
PM0.1 and PM2.5 health effects by contrasting cities with dif-
ferent predicted ratios of PM0.1/PM2.5. Although the current
study does not calculate the annual average concentrations
that would be needed for such an analysis, the results for the
peak photochemical episodes may provide some useful in-
sights to guide future studies. Figure 10 illustrates the corre-
lation between predicted PM2.5 and PM0.1 concentrations in
the 39 cities considered in the current analysis, Fig. 11 illus-
trates the ratio of PM0.1/PM2.5 for each city, and Fig. 12 il-
lustrates a field plot showing the ratio of PM0.1/PM2.5 across
the continental US. Cities with higher PM0.1/PM2.5 ratios
include Houston, TX, Los Angeles, CA, Salt Lake City, UT,
Cleveland, OH, and Bakersfield, CA. Cities with lower PM0.1
to PM2.5 ratios include Lake Charles, LA, Baton Rouge, LA,
St. Louis, MO, Baltimore, MD, and Washington, D.C. Mea-
surements should be conducted in these locations to verify
the contrast in PM0.1/PM2.5 concentrations in preparation
for future exposure analysis.
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5 Conclusion

The UCD–CIT regional chemical transport model was used
to predict source contributions to PM0.1 across the conti-
nental US during peak photochemical smog periods in the
year 2010. Performance for PM2.5 and O3 predictions met or
exceeded the criteria typically used for regional air quality
model applications, building confidence in the emissions in-
puts and meteorological fields used to drive the calculations.
Similar model exercises carried out for episodes in Califor-
nia in 2015 and 2016 find good agreement between predicted
PM0.1 source contributions and receptor-based PM0.1 source
contributions calculated using measured concentrations of
molecular markers (Yu et al., 2019). In the current study, pre-
dicted regional PM0.1 concentrations exceeded 2 µgm−3 dur-
ing summer pollution episodes in major urban regions across
the US including Los Angeles, the San Francisco Bay Area,
Houston, Miami, and New York. Predicted PM0.1 spatial gra-
dients were sharper than predicted PM2.5 spatial gradients
due to the dominance of primary aerosol in PM0.1. This find-
ing suggests that the PM0.1 measurement networks needed to
support epidemiology must be denser than comparable PM2.5
measurement networks. Nonresidential natural gas combus-
tion was identified as a major source of PM0.1 across all ma-
jor cities in the US. On-road gasoline and diesel vehicles con-
tributed on average 14 % to regional PM0.1 even though peak
contributions within 0.3 km of the roadway were not resolved
by the 4 km grid cells. This is consistent with other studies
that have found an exponential decrease in ultrafine particle
concentrations downwind of major roadways (Wang et al.,
2011) due to the sharp gradient of PM0.1. Cooking also made
significant contributions to PM0.1 in all cities, but biomass
combustion was only important in locations impacted by
summer wildfires. Aviation was a significant source of PM0.1
in cities that have airports within their urban footprints. The
major sources of primary PM0.1 and PM2.5 were notably dif-
ferent in many cities. Future epidemiological studies may be
able to differentiate PM0.1 and PM2.5 health effects by con-
trasting cities with different ratios of PM0.1/PM2.5 sources.
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