

Supplement of

Liquid–liquid phase separation in secondary organic aerosol particles produced from α -pinene ozonolysis and α -pinene photooxidation with/without ammonia

Suhan Ham et al.

Correspondence to: Mijung Song (mijung.song@jbnu.ac.kr)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

1 Supplementary Material of

- 2
- 3 Table S1. The O:C ratio and experimental conditions of SOA particles produced from β -
- 4 caryophyllene ozonolysis, limonene ozonolysis, toluene photo-oxidation, and isoprene photo-
- 5 oxidation for study on liquid-liquid phase separation studied from Song et al. (2017).

SOA	VOC	O_3 conc.	SOA	Residence	0:C
	conc.	(ppb)	generation	time	
	(ppb)			(hr)	
β-caryophyllene	30 - 700	1.2×10^4 –	Flow tube	0.01	$0.36^{a} - 0.38^{a}$
O ₃		3.0×10^{4}	reactor		
Limonene O ₃	70 - 2000	1.3×10^4 –	Flow tube	0.01	$0.34^{b} - 0.40^{b}$
		3.0×10^{4}	reactor		
Toluene OH	200 - 1000	3.0×10^{4}	Oxidation	0.03	$1.14^{\circ} - 1.30^{\circ}$
			flow reactor		
Isoprene OH	700 - 7000	$1.0 \times 10^4 -$	Oxidation	0.03	$0.52^{d} - 0.89^{a}$
		3.0×10^{4}	flow reactor		

6 ^a Li et al. (2015); ^b Heaton et al. (2007); ^a Song et al. (2017); ^d Lambe et al. (2015)

7

8 Table S2. The O:C ratio and experimental conditions of SOA particles produced from α -pinene

9 ozonolysis and photo-oxidation investigated in this study and previous studies. '*NA*' indicates

10 no data available.

SOA	VOC	O ₃ conc.	SOA	Residence	0:C	Reference
	conc.	(ppb)	generation	time		
	(ppb)			(hr)		

α-pinene O ₃	1000	1.0×10^{4}	Flow tube	0.06	NA	This study
			reactor			
	100	1.5×10^4	Oxidation	0 01 - 1 70	0.42 - 0.44	Li et al (2015)
	100	1.0 10	flow reactor	0.01 1.70	0.12 0.11	
	0.9-91.1	3.0×10^{2}	Harvard	3.4	0.3 – 0.45	Shilling et al.
			environment			(2009)
			al chamber			
	500 -	$1.3 \times 10^{1} -$	Flow tube	0.01 - 0.09	0.42 - 0.45	Zhang et al.
	1000	3.0×10^1	reactor			(2015a)
	~600	$\sim 7.0 \times 10^{2}$	Environmen	NA	0.23 - 0.29	Järvinen et al.
			tal chamber			(2016)
	150	$\sim 2.0 \times 10^{2}$	Environmen	NA	0.45 - 0.55	Zhang et al.
			tal chamber			(2015b)
	50	1.8×10^{2}	Caltech	NA	0.3 - 0.56	Chhabra et al.
			chamber			(2010)
α-pinene OH	1000	$2.0 \times 10^{3} -$	Flow tube	0.06	NA	This study
		6.0×10^{3}	reactor			
	41 - 100	$1.5 \times 10^4 -$	Potential	0.03	0.40 - 0.90	Lambe et al.
		$3.0 imes 10^4$	aerosol			(2015)
			mass reactor			
			(PAM)			
	4 - 150	$8.0 \times 10^3 -$	PAM	NA	0.6 - 0.9	Chen et al.
		2.0×10^{4}				(2013)
	7-50	$1.2 \times 10^2 -$	PSI	0.3 - 0.5	0.45 - 0.65	Pfaffenberger et
		1.3×10^{2}	chamber			al. (2013)
	1	1	1	1	1	

	50	1.8×10^{2}	Caltech	NA	0.35	Chhabra et al.
			Chamber			(2011)

1

Fig. S1. An image of collected SOA particles derived from α-pinene ozonolysis (α-pinene O₃
#1 in Table 1) on a hydrophobic substrate at the outlet of the flow tube reactor. The size of the
scale bar is 20 µm.

5

6 **References**

- 7 Chen, S., Brune, W. H., Lambe, A. T., Davidovits, P., and Onasch, T. B.: Modeling organic
- 8 aerosol from the oxidation of α -pinene in a Potential aerosol mass (PAM) chamber, Atmos.
- 9 Chem. Phys., 13, 5017-5031, 10.5194/acp-13-5017-2013, 2013.
- 10 Chhabra, P. S., Flagan, R. C. and Seinfeld, J. H.: Elemental analysis of chamber organic aerosol
- 11 using an aerodyne high-resolution aerosol mass spectrometer, Atmos. Chem. Phys., 10(9),
- 12 4111–4131, doi:10.5194/acp-10-4111-2010, 2010.
- 13 Chhabra, P. S., Ng, N. L., Canagaratna, M. R., Corrigan, A. L., Russell, L. M., Worsnop, D.
- 14 R., Flagan, R. C., and Seinfeld, J. H.: Elemental composition and oxidation of chamber organic

- 1 aerosol, Atmos. Chem. Phys., 11, 8827–8845, doi:10.5194/acp-11-8827-2011, 2011.
- 2 Heaton, K. J., Dreyfus, M. A., Wang, S., and Johnston, M. V.: Oligomers in the early stage of
- 3 biogenic secondary organic aerosol formation and growth, Environ. Sci. Technol., 41, 6129-
- 4 6136, doi:10.1021/es070314n, 2007.
- 5 Järvinen, E., Ignatius, K., Nichman, L., Kristensen, T. B., Fuchs, C., Hoyle, C. R., Höppel, N.,
- 6 Corbin, J. C., Craven, J., Duplissy, J., Ehrhart, S., El Haddad, I., Frege, C., Gordon, H., Jokinen,
- 7 T., Kallinger, P., Kirkby, J., Kiselev, A., Naumann, K. H., Petäjä, T., Pinterich, T., Prevot, A.
- 8 S. H., Saathoff, H., Schiebel, T., Sengupta, K., Simon, M., Slowik, J. G., Tröstl, J., Virtanen,
- 9 A., Vochezer, P., Vogt, S., Wagner, A. C., Wagner, R., Williamson, C., Winkler, P. M., Yan,
- 10 C., Baltensperger, U., Donahue, N. M., Flagan, R. C., Gallagher, M., Hansel, A., Kulmala, M.,
- 11 Stratmann, F., Worsnop, D. R., Möhler, O., Leisner, T. and Schnaiter, M.: Observation of
- 12 viscosity transition in α -pinene secondary organic aerosol, Atmos. Chem. Phys., 16(7), 4423–
- 13 4438, doi:10.5194/acp-16-4423-2016, 2016.
- 14 Lambe, A. T., Chhabra, P. S., Onasch, T. B., Brune, W. H., Hunter, J. F., Kroll, J. H., Cummings,
- 15 M. J., Brogan, J. F., Parmar, Y., Worsnop, D. R., Kolb, C. E., and Davidovits, P.: Effect of
- 16 oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical
- 17 composition and yield, Atmos. Chem. Phys., 15, 3063-3075, 10.5194/acp-15-3063-2015, 2015.
- 18 Li, Y. J., Liu, P., Gong, Z., Wang, Y., Bateman, A. P., Bergoend, C., Bertram, A. K., and Martin,
- 19 S. T.: Chemical Reactivity and Liquid/Nonliquid States of Secondary Organic Material,
- 20 Environ. Sci. Technol., 49, 13264-13274, 10.1021/acs.est.5b03392, 2015.
- Pfaffenberger, L., Barmet, P., Slowik, J. G., Praplan, A. P., Dommen, J., Prévôt, A. S. H., and
 Baltensperger, U.: The link between organic aerosol mass loading and degree of oxygenation:
 an α- pinene photooxidation study, Atmos. Chem. Phys., 13, 6493–6506, doi:10.5194/acp-13-
- 24 6493-2013, 2013.
- 25 Shilling, J. E., Chen, Q., King, S. M., Rosenoern, T., Kroll, J. H., Worsnop, D. R., DeCarlo, P.
- 26 F., Aiken, A. C., Sueper, D., Jimenez, J. L., Martin, S. T.: Loading-dependent elemental
- composition of α-pinene SOA particles, Atmos. Chem. Phys., 9, 771-782, 10.5194/acp-9-7712009, 2009.
- 29 Song, M., Liu, P. F., Martin, S. T., and Bertram, A. K.: Liquid-liquid phase separation in

- 1 particles containing secondary organic material free of inorganic salts, Atmos. Chem. Phys.,
- 2 17, 11261-11271, 2017.
- 3 Zhang, X., McVay, R. C., Huang, D. D., Dalleska, N. F., Aumont, B., Flagan, R. C. and Seinfeld,
- 4 J. H.: Formation and evolution of molecular products in α-pinene secondary organic aerosol, P.
- 5 Natl. Acad. Sci., 112(46), 14168–14173, doi:10.1073/pnas.1517742112, 2015b.
- 6 Zhang, Y., Sanchez, M. S., Douet, C., Wang, Y., Bateman, A. P., Gong, Z., Kuwata, M.,
- 7 Renbaum-Wolff, L., Sato, B. B., Liu, P. F., Bertram, A. K., Geiger, F. M., and Martin S. T.:
- 8 Changing shapes and implied viscosities of suspended submicron particles, Atmos. Chem.
- 9 Phys., 15, 7819-7829, 10.5194/acp-15-7819-2015, 2015a.