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Abstract. Vegetation fires emit large quantities of aerosol
into the atmosphere, impacting regional air quality and cli-
mate. Previous work has used comparisons of simulated and
observed aerosol optical depth (AOD) in regions heavily im-
pacted by fires to suggest that emissions of aerosol particles
from fires may be underestimated by a factor of 2–5. Here
we use surface, aircraft and satellite observations made over
the Amazon during September 2012, along with a global
aerosol model to improve understanding of aerosol emis-
sions from vegetation fires. We apply three different satellite-
derived fire emission datasets (FINN, GFED, GFAS) in the
model. Daily mean aerosol emissions in these datasets vary
by up to a factor of 3.7 over the Amazon during this pe-
riod, highlighting the considerable uncertainty in emissions.
We find variable agreement between the model and observed
aerosol mass concentrations. The model reproduces observed
aerosol concentrations over deforestation fires well in the
western Amazon during dry season conditions with FINN or
GFED emissions and during dry–wet transition season con-
ditions with GFAS emissions. In contrast, the model underes-
timates aerosol concentrations over savanna fires in the Cer-
rado environment east of the Amazon Basin with all three
fire emission datasets. The model generally underestimates
AOD compared to satellite and ground stations, even when
the model reproduces the observed vertical profile of aerosol
mass concentration. We suggest it is likely caused by un-
certainties in the calculation of AOD, which are as large as
∼ 90 %, with the largest sensitivities due to uncertainties in
water uptake and relative humidity. Overall, we do not find

evidence that particulate emissions from fires are systemat-
ically underestimated in the Amazon region and we caution
against using comparison with AOD to constrain particulate
emissions from fires.

1 Introduction

Vegetation and peat fires (open biomass burning) are a ma-
jor source of particulate matter (aerosol) for the atmosphere
(van der Werf et al., 2010; Langmann et al., 2009), dominat-
ing the aerosol burden in many tropical regions (Lelieveld
et al., 2015). There is considerable uncertainty in the mag-
nitude of aerosol emissions from tropical fires (Reddington
et al., 2016), hindering estimates of the impact of fire on
weather (Kolusu et al., 2015; Archer-Nicholls et al., 2016),
climate (Rap et al., 2013; Thornhill et al., 2018) and human
health (Johnston et al., 2012; Marlier et al., 2013; Redding-
ton et al., 2015; Reid et al., 2016). Here we evaluate the
Global Model of Aerosol Processes (GLOMAP; Spracklen et
al., 2005) against a comprehensive set of measurement data
(including surface, aircraft and satellite observations) col-
lected during the South American Biomass Burning Analysis
(SAMBBA) field campaign in September and October 2012
over the Amazon basin. Our aims are to (1) quantify the ef-
fects of biomass burning emissions on the aerosol distribu-
tion over the Amazon and (2) explore how different fire emis-
sion datasets affect simulated aerosol concentrations over
this region.
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Models systematically underestimate aerosol optical depth
(AOD) in regions impacted by tropical biomass burning,
potentially suggesting that emission datasets underestimate
aerosol emissions (Reddington et al., 2016). Fire emission
datasets are typically created through combining information
on fire location and extent from satellite remote sensing with
estimates of biomass consumption and species-specific emis-
sion factors (Langmann et al., 2009). Emissions could be un-
derestimated due to missing fire detections or uncertainties
in burned area (Randerson et al., 2012), fuel consumption
(van Leeuwen et al., 2014; Andela et al., 2016) or emission
factors (van Leeuwen et al., 2013; Stockwell et al., 2016).
Agreement between bottom-up and top-down approaches for
carbon emissions from fires is typically better than for par-
ticulate matter (PM) (Yin et al., 2016), suggesting that un-
certainties in burned area or fuel loads do not dominate.

Estimating emissions of PM from fires is further compli-
cated by the emission of a range of semi-volatile and inter-
mediate volatility organic compounds that can contribute to
aerosol formation (Grieshop et al., 2009; Jathar et al., 2014).
These processes are poorly understood and are not treated in
many models. Observational studies report varying amounts
of secondary organic aerosol (SOA) formation in different
biomass burning plumes. Analysis of Siberian biomass burn-
ing plumes (Konovalov et al., 2017) and southern African sa-
vanna and grassland fire plumes (Vakkari et al., 2018) show
substantial in-plume SOA formation, whereas other stud-
ies report little SOA formation in tropical biomass burning
plumes (Jolleys et al., 2012). At the global scale, a recent
modelling study (Tsimpidi et al., 2016) estimates that 30 %
of organic aerosol (OA) in biomass burning aerosol origi-
nates from direct particulate emissions, with the remainder
being formed in the atmosphere. Analysis of OA : CO ratios
in biomass burning plumes during the SAMBBA campaign
suggests limited SOA formation from Amazon fires (Brito et
al., 2014).

Top-down studies typically use AOD, available from satel-
lite remote sensing, to help constrain aerosol emissions from
fires. In addition to particle mass concentration, simulated
AOD is sensitive to assumptions about particle size, chem-
ical composition, vertical profile of aerosol, optical proper-
ties and water uptake, as well as meteorology and model res-
olution (Brock et al., 2016). Reddington et al. (2016) found
that a global aerosol model showed better agreement with ob-
served PM mass concentration compared to AOD, potentially
suggesting that some of the discrepancy between top-down
and bottom-up studies may be connected to the calculation
of AOD.

To help explore these issues we analyse observations from
the SAMBBA field campaign over the southern Amazon dur-
ing the end of the dry season and transition to wet season.
The Amazon exhibits a very strong seasonal cycle in aerosol
concentrations (Martin et al., 2010). In the wet season (∼De-
cember to ∼May), PM2.5 (particulate matter with diameters
smaller than 2.5 µm) concentrations in the central Amazon

are ∼ 1.5 µgm−3 and has aerosol number concentrations of
220 cm−3 (Pöschl et al., 2010; Artaxo et al., 2013), some of
the lowest concentrations observed in a terrestrial environ-
ment. In the dry season (∼ June to ∼ November), fires occur
across the southern Amazon, resulting in aerosol concentra-
tions that are an order of magnitude higher (PM2.5 concen-
trations of > 30 µgm−3 and aerosol number concentrations
of > 20 000 cm−3 (Artaxo et al., 2013).

Fires in the Amazon are a consequence of both climate
and human activity (van Marle et al., 2017). There was rela-
tively little fire activity in the Amazon before the mid-1980s
(van Marle et al., 2017), when large-scale clearance of the
Amazon forests began. Fire is used to clear forest and veg-
etation, resulting in positive relationships between the rate
of deforestation and fire activity in the Amazon (Aragao et
al., 2008; Reddington et al., 2015; van Marle et al., 2017).
A reduction in the rate of deforestation across the Brazilian
Amazon between 2002 and 2012 (Hansen et al., 2013) has
led to reductions in deforestation-related fires (Reddington et
al., 2015) and observed reductions in CO (Jiang et al., 2017)
and AOD (Reddington et al., 2015). Fires are also used to
maintain agricultural and pastoral land and may escape into
surrounding forest leading to forest degradation (Chen et al.,
2013a) and resulting in a disconnection between fire and de-
forestation (Aragao and Shimabukuro, 2010; Cano-Crespo et
al., 2015). There has been reduction in area burned by fires in
the southwestern Amazon and increase in area burned further
east during the last decade (Andela et al., 2017). Droughts
enhance the occurrence of fire (Chen et al., 2013b) with
seasons of increased large fire occurrence coinciding with
the Amazon droughts of 2005, 2007 and 2010 (Chen et al.,
2013a).

Aerosol from fires degrades air quality, with negative im-
pacts on human health (Marlier et al., 2013; Reddington et
al., 2015; Koplitz et al., 2016; Crippa et al., 2016). Inhala-
tion of smoke from fires in the Amazon causes DNA dam-
age and death of human lung cells (de Oliveira Alves et al.,
2017), impacts lung function (Jacobson et al., 2014), causes
increased hospitalisations for respiratory diseases (Smith et
al., 2014), and is estimated to result in thousands of mortal-
ities each year (Reddington et al., 2015). Estimates on the
health impacts of degraded air quality from fires require ac-
curate information on the magnitude of particulate emissions
from fire. A range of policy interventions will be necessary
to reduce Amazonian fire (Morello et al., 2017).

Here we combine detailed observations of aerosol vertical
profiles made over the Brazilian Amazon during the dry sea-
son of 2012 with surface observations, remote sensing and an
aerosol model to better understand model representations of
the magnitude and spatial distributions of particulate emis-
sions from biomass burning.
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2 Method

2.1 GLOMAP global aerosol model

We used the TOMCAT chemical transport model (Chip-
perfield, 2006), coupled to the GLOMAP global aerosol
model (Spracklen et al., 2005), to simulate aerosol during
the SAMBBA campaign. Below we describe the features of
the model relevant for this study; see Spracklen et al. (2005)
and Mann et al. (2010) for more detailed descriptions of the
model and Reddington et al. (2016) for further details of the
model set-up used here.

Large-scale atmospheric transport and meteorology in
TOMCAT are specified from European Centre for Medium-
Range Weather Forecasting (ECMWF) ERA-Interim reanal-
yses, updated every 6 h and linearly interpolated onto the
model time step. The model has a horizontal resolution of
2.8◦× 2.8◦, with 31 vertical model levels between the sur-
face and 10 hPa. The vertical resolution in the boundary layer
ranges from ∼ 60 m near the surface to ∼ 400 m at ∼ 2 km
above the surface.

The aerosol size distribution is represented by a two-
moment modal aerosol scheme (Mann et al., 2010).
GLOMAP includes black carbon (BC), particulate organic
matter (POM), sulfate (SO4), sea spray and mineral dust.
Concentrations of oxidants are specified using monthly mean
3-D fields at 6-hourly intervals from a TOMCAT simulation
with detailed tropospheric chemistry (Arnold et al., 2005)
linearly interpolated onto the model time step.

Wet removal of aerosol in GLOMAP occurs via two pro-
cesses: (1) in-cloud nucleation scavenging, calculated for
both large-scale and convective-scale precipitation based on
rain-rates diagnosed from successive ECMWF ERA-Interim
reanalysis fields and (2) below-cloud impaction scaveng-
ing via collection by falling raindrops. For dry deposition
of aerosol, GLOMAP calculates the wind speed and size-
dependent deposition velocity due to Brownian diffusion, im-
paction and interception. Detailed descriptions of the dry and
wet aerosol removal process are in Mann et al. (2010).

Anthropogenic emissions of sulfur dioxide (SO2), BC and
organic carbon (OC) were specified using the MACCity
emissions inventory for 2010 (Lamarque et al., 2010). Open
biomass burning emissions of SO2, BC and OC are described
in Sect. 2.2. Primary carbonaceous aerosol particles are as-
sumed to be non-volatile and are emitted into the model with
a fixed log-normal size distribution, assuming a number me-
dian diameter (NMD) of 150 nm for biomass burning emis-
sions and 60 nm for fossil fuel emissions and a modal width
(σ ) of 1.59. We convert primary OC to POM using a pre-
scribed POM : OC ratio of 1.4, which is at the lower end of
the range prescribed in other global models (1.4 to 2.6) (Tsi-
garidis et al., 2014). Monthly mean emissions of biogenic
monoterpenes are taken from the Global Emissions InitiAtive
(GEIA) database (Guenther et al., 1995). Monoterpenes are
oxidised to form a product that condenses irreversibly in the

particle phase (Scott et al., 2014). Size-resolved emissions
of mineral dust are prescribed from daily varying emissions
fluxes provided for AEROCOM (Dentener et al., 2006).

2.1.1 Description of model simulations

We performed four main model simulations with GLOMAP:
one simulation excluding open biomass burning emissions
(“noBBA”) and three simulations including open biomass
burning emissions (using three different open biomass burn-
ing emission datasets: “FINN”, “GFED” and “GFAS”; see
Sect. 2.2). Simulations were run from 1 January 2003 to
31 December 2012, using ECMWF ERA-Interim reanalyses
that correspond to the simulation date and time. The model
aerosol fields were generated from an initially aerosol-free
atmosphere initialised on 1 October 2002 and spun up for
92 d to produce a realistic aerosol distribution (Spracklen et
al., 2005). The model was set up to output 3-D monthly mean
global fields and 1-D daily mean vertical profiles at the loca-
tions of ground and AERONET stations (Sect. 2.3). In this
study, we show results from the model simulations for the
year 2012. Specifically for this study, the model was set up
to output additional 3-D fields every hour between July and
November 2012 over a South American domain.

2.1.2 Calculation of aerosol optical depth

AOD was calculated from the simulated aerosol size distri-
bution as in Reddington et al. (2016), using Mie theory as-
suming spherical particles (Grainger et al., 2004) that are in-
ternally mixed within each log-normal mode. Modelled AOD
was calculated at specific wavelengths to match observations
(500 and 550 nm), using component-specific refractive in-
dices at the closest wavelength available from Bellouin et
al. (2011).

The aerosol hygroscopicity in the AOD calculation was
obtained directly from GLOMAP using the aerosol water
uptake calculated online in the model using Zdanovskii–
Stokes–Robinson (ZSR) theory (Stokes and Robinson, 1966)
(described in Sect. S1.1 in the Supplement). We explore the
sensitivity of simulated AOD to the calculation of aerosol
water uptake in Sect. 3.5, by also using the κ-Köhler scheme
(Petters and Kreidenweis, 2007) to calculate an offline esti-
mate of water uptake (described in Sect. S1.2). The ZSR and
κ-Köhler methods used in this study represent high and low
aerosol water uptake cases, respectively (Reddington et al.,
2016). In Sect. 3.5 we also explore the sensitivity of simu-
lated AOD to assumed refractive indices and aerosol mixing
state.

2.2 Biomass burning emissions

2.2.1 Biomass burning emissions in GLOMAP

We used three different emission datasets of aerosol from
open biomass burning: the National Centre for Atmospheric
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Research Fire Inventory (FINN) (Wiedinmyer et al., 2011),
the Global Fire Emissions Dataset (GFED) (van der Werf et
al., 2010) and the Global Fire Assimilation System (GFAS)
(Kaiser et al., 2012). We use daily mean fire emissions from
FINN version 1.5, GFED version 4.1s (Mu et al., 2011; van
der Werf et al., 2017) and GFAS version 1.2 (hereafter re-
ferred to as GFAS, FINN and GFED, respectively).

Brito et al. (2014) analysed OA : CO ratios and found lit-
tle enhancement of OA in fire plumes during the SAMBBA
campaign, suggesting that SOA formation is limited or bal-
anced by loss of OA through volatilisation. A recent study
analysed airborne in situ observations of biomass burning
carbonaceous aerosol during SAMBBA and found find lim-
ited evidence for net increases in aerosol mass through at-
mospheric ageing (Morgan et al., 2019). These observations
suggest that SOA formation in plumes may be occurring on
short timescales (Morgan et al., 2019), but since a net in-
crease in OA mass was not observed in the regional-scale
analyses of Brito et al. (2014) and Morgan et al. (2019), we
do not include any SOA formation associated with biomass
burning emissions.

Fires can inject emissions above the surface due the buoy-
ancy of the fire plume. Marenco et al. (2016) analysed li-
dar data during the SAMBBA campaign and found that the
mean height of aerosol layers was 2.0± 0.4 km, suggesting
that the majority of the aerosol is injected into the boundary
layer. Fire emissions in GLOMAP are distributed vertically
over six ecosystem-dependent altitudes between the surface
and 6 km according to Dentener et al. (2006). Over Brazil
∼ 53 % of emissions were injected below 500 m elevation,
∼ 30 % between 500 and 1000 m elevation, and ∼ 17 % be-
tween 1000 and 3000 m elevation. We also performed a sen-
sitivity simulation where fire emissions were injected into the
model surface layer. We evaluate the vertical profile of simu-
lated aerosol in Sect. 3.2.

2.2.2 Description of biomass burning emission datasets

FINN, GFED and GFAS provide daily fire emissions of
aerosol and gas-phase species. FINN emissions (Wiedinmyer
et al., 2011) are available from 2002 to 2018 on a 1 km2 grid.
GFAS emissions (Kaiser et al., 2012) are available from 2003
to present on a 0.1◦× 0.1◦ grid. GFED emissions (van der
Werf et al., 2017) are available from 2003 to 2018 (monthly
emissions are available from 1997) on a 0.25◦× 0.25◦ grid.
Reddington et al. (2016) include a detailed a description of
the FINN version 1.0, GFED version 3 and GFAS version 1.0
datasets. A brief description of the updated datasets is given
below.

FINN emissions are based on the location and timing
of active fire detections from the MODIS Fire and Ther-
mal Anomalies Product (Giglio et al., 2003), using MODIS
Land Cover Type and Vegetation Continuous Fields prod-
ucts to specify land cover classes and identify fractions of
tree and non-tree vegetation and bare ground. A burned

area is assigned to each fire count (0.75 km2 fires detected
on grassland and savanna land cover classes and 1 km2 for
all other fire detections), with adjustments made to the as-
sumed burned area if the fire pixel extends partially over bare
ground. Estimates of biomass loading are taken from Hoelze-
mann et al. (2004) and emission factors for each species
are taken from Akagi et al. (2011). The version 1.5 dataset
used here (acquired in 2014) includes emission factors up-
dated to incorporate measurements published in Yokelson et
al. (2013) and Akagi et al. (2013) (for more information, see
updates described here: http://bai.acom.ucar.edu/Data/fire/,
last access: 30 March 2019).

GFAS uses the observed geolocation of active fires (like
FINN) combined with fire radiative power (FRP) derived
from the MODIS instrument. The FRP fields are corrected
for observation gaps due to partial cloud cover and/or spu-
rious signals (e.g. from volcanoes, gas flares, etc.). FRP is
converted to the combustion rate of dry matter using land-
cover-specific conversion factors based on data from GFED
(Heil et al., 2010; Kaiser et al., 2012). Trace gas and aerosol
emission rates are calculated using updated emission factors
based on Andreae and Merlet (2001). The version 1.2 dataset
is at a higher spatial resolution than previous versions, with
improvements made to the processing and assimilation of
satellite observations.

GFED emissions are based on estimates of burned area
(Giglio et al., 2013), active fire detections and plant produc-
tivity from the MODIS instrument. To derive total carbon
emissions, the satellite datasets are combined with estimates
of fuel loads and combustion completeness for each monthly
time step from the Carnegie-Ames-Stanford approach bio-
geochemical model. Carbon emission fluxes are converted
to trace gas and aerosol emissions using species-specific
emission factors based on Akagi et al. (2011) and Andreae
and Merlet (2001), with updates provided in 2013 by Mein-
rat O. Andreae. Significant updates in the version 4.1s dataset
relevant for this study include (i) higher spatial resolution,
(ii) new burned area estimates (Giglio et al., 2013) with addi-
tional contributions from small fires (Randerson et al., 2012)
and (iii) improved representation of fuel consumption (see
van der Werf et al., 2017, for more detail on updates from
version 3 to version 4).

2.2.3 Comparison of biomass burning emission
datasets

Figure 1 compares total annual OC emissions from GFAS,
FINN and GFED. The figure shows long-term (2002–2012)
mean annual total emissions as well as annual total emissions
in 2012, the year of the SAMBBA field campaign (total emis-
sions for the SAMBBA field campaign are shown in Fig. S1
in the Supplement). For the long-term mean, all datasets
show broadly similar spatial patterns with greatest OC emis-
sions across the arc of deforestation (roughly 8–14◦ S, 65–
50◦W). Total annual BC emissions show very similar spatial
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Figure 1. Maps of estimated total annual organic carbon (OC) aerosol emissions from fire, shown as (a)–(c) an average for the period 2002 to
2012 and (d)–(f) for 2012. The difference in OC emissions between 2012 and 2002 to 2012 (2012 emissions minus the 2002–2012 average)
is shown in (g)–(i). Blue colours show where emissions in 2012 were lower than in 2002 to 2012, while red colours show where emissions
were greater. Emissions are shown for GFAS version 1.0 (2002–2011) and version 1.2 (2012) (a, d), FINN version 1.5 (b, e), and GFED
version 4 (c, f). The GFAS, FINN and GFED OC emissions were re-gridded onto a common grid of 0.5◦× 0.5◦ resolution for comparison.
The black boxes show the eastern (4.5–15◦ S, 43–50◦W) and western (6–12◦ S, 54–68.5◦W) domains (see Fig. 2).

patterns to the OC emissions shown in Figs. 1 and S1. Table 1
compares total annual BC and OC emissions from the three
datasets and Figs. S2, S3 and S4 compare the total daily OC
emissions for the 2012 dry season and the SAMBBA cam-
paign period.

For annual total emissions averaged over the 2002–2012
period, FINN emissions are greater than GFED and GFAS
across regions of deforestation in the western Amazon but
lower than GFED and GFAS in the eastern Amazon (4–
15◦ S, 50–40◦W). Annual total aerosol (OC+BC) emissions

averaged over 2002–2012 differ by up to a factor of 2.4
(FINN : GFAS) in the western region and by up to a factor
of 1.9 (GFAS : FINN) in the eastern region. Matching 2002–
2012 comparisons, FINN emissions in 2012 (and during the
SAMBBA period) were also greater than GFED and GFAS
over deforestation regions of the western Amazon and lower
than GFED and GFAS in the eastern Amazon. Annual total
OC+BC emissions in 2012 vary by up to a factor of 3.5 in
the west (FINN : GFAS) and up to a factor of 2.1 in the east
(GFAS : FINN). Pereira et al. (2016) also reported that FINN
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Table 1. Comparison of organic carbon (OC) and black carbon (BC) emissions from biomass burning in the GFASv1.2, FINNv1.5 and
GFED4.1s emissions inventories. Emissions are summed separately for the western (6–12◦ S, 54–68.5◦W) and eastern (4.5–15◦ S, 43–
50◦W) Amazon, as shown in Fig. 2. The table reports long-term (2002–2012) mean annual total emissions, the ratio of annual total emissions
in 2012 to the 2002–2012 mean and total emissions for the SAMBBA campaign period (13 September–3 October 2012). All values are given
to at least three significant figures. The ratios (FINN : GFAS and GFED:GFAS) of total annual emissions during the 2002–2012 period and
mean daily emissions during the SAMBBA campaign are given in parentheses. For the western Amazon, daily emissions are also shown for
the two phases of the campaign: P1 (13–22 September) and P2 (23 September–3 October).

Annual emission (2002–2012 mean) (Gg a−1) 2012/(2002–2012) SAMBBA emission (Gg d−1)

OC BC OC : BC OC+BC OC BC

Western Amazon (6–12◦ S, 54–68.5◦W)

GFAS 429 56.4 7.6 0.53 2.32; P1: 3.32; P2: 1.42 0.305; P1: 0.436; P2: 0.187
FINN 1060 (2.5) 118 (2.1) 9.1 0.77 8.69 (3.7); P1: 11.9; P2: 5.81 0.958 (3.1); P1: 1.31; P2: 0.637
GFED 546 (1.3) 63.3 (1.1) 8.6 0.96 5.02 (2.2); P1: 8.21; P2: 2.11 0.580 (1.9); P1: 0.944; P2: 0.249

Eastern Amazon (4.5–15◦ S, 43–50◦W)

GFAS 336 46.6 7.2 1.46 5.64 0.796
FINN 181 (0.5) 20.4 (0.4) 8.8 1.30 2.39 (0.4) 0.267 (0.3)
GFED 223 (0.7) 29.9 (0.6) 7.5 1.94 5.23 (0.9) 0.693 (0.9)

had lower (higher) aerosol emissions in the eastern (western)
Amazon compared to GFAS during the SAMBBA period.
Reddington et al. (2016) reported similar patterns for com-
parison of GFAS version 1.0, FINN version 1.0 and GFED
version 3 emissions. During the SAMBBA campaign, daily
mean aerosol (OC+BC) emissions differ between the differ-
ent datasets by up to a factor of 3.7 in the western Amazon
(FINN : GFAS) and by up to a factor of 2.4 in the eastern
Amazon (GFAS : FINN).

Figure 1 also shows the difference in annual total OC emis-
sions between 2012 and the 2002–2012 mean (very simi-
lar spatial patterns are seen for BC emissions). All three
datasets show consistently lower emissions in 2012 com-
pared to 2002–2012 across the arc of deforestation in west-
ern Brazil and Bolivia (8–18◦ S, 70–50◦W). OC emissions
in 2012 in the western Amazon were 4 %–47 % lower than
the 2002–2012 mean (Table 1). Aerosol emissions from fire
in Brazil have declined over this period, related to reduc-
tions in deforestation (Reddington et al., 2015) and consis-
tent with observed declines in CO (Jiang et al., 2017) and
AOD (Reddington et al., 2015). Figure S5 shows a reduction
in the area dominated by deforestation type fires (and an in-
creasing dominance of savanna-type fires) in 2012 relative to
the 2002–2012 mean. In 2012, emissions were greater than
the 2002–2012 average across much of Peru, possibly due
to increased deforestation there (Kalamandeen et al., 2018).
In the eastern Amazon, emissions in 2012 were 30 %–96 %
greater than the 2002–2012 mean (Table 1), with the largest
differences in GFAS and GFED datasets.

2.3 South American Biomass Burning Analysis
(SAMBBA)

We used observations from the South American Biomass
Burning Analysis (SAMBBA) campaign. Aircraft and
ground observations took place from 13 September to 3 Oc-
tober 2012. We separate the campaign into the dry season
(Phase 1; 13 to 22 September) and the dry–wet season tran-
sition (Phase 2; 23 September to 3 October) following Brito
et al. (2014). Figure 2 shows locations of aircraft flights and
surface measurement sites.

2.3.1 Aircraft observations

The BAe-146 research aircraft from the Facility for Air-
borne Atmospheric Measurements (FAAM) made 20 re-
search flights with measurements of a range of gas-phase
and aerosol species. We use measurements of OA and sul-
fate mass in the 50–750 nm size range from an aerosol mass
spectrometer (AMS) (Canagaratna et al., 2007; Morgan et al.,
2010; Allan et al., 2014), refractive BC from a single-particle
soot photometer (SP2) (Stephens et al., 2003; McMeeking
et al., 2010; Allan et al., 2014) and aerosol size distribution
from a scanning mobility particle sizer (SMPS) (Wang and
Flagan, 1990; Morgan et al., 2015) and a GRIMM model
1.108 optical particle counter (OPC) (Heim et al., 2008).
Further details about the instruments used aboard the BAe-
146 during SAMBBA can be found in Sect. S2.1, includ-
ing information about measurement uncertainty. See Allan
et al. (2014), for more specific details regarding the aerosol
sampling during SAMBBA.

The flights sampled a broad region spanning 1–12◦ S, 46–
68◦W (Fig. 2). Aerosol properties and fire emissions (Fig. 1)
varied across this region, so we separated data into a west-
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Figure 2. Flight tracks of the FAAM aircraft during the SAMBBA field campaign (Phase 1: 13–23 September; Phase 2: 23 September–
3 October 2012). The location of the Porto Velho ground station is shown by a black circle. The locations of AERONET stations operating
during the SAMBBA campaign are shown by black crosses: Porto Velho UNIR (8.84◦ S, 63.94◦W), Alta Floresta (9.87◦ S, 56.10◦W), Rio
Branco (9.96◦ S, 67.87◦W), Cuiabá-Miranda (15.73◦ S, 56.02◦W) and Santa Cruz UTEPSA (17.77◦ S, 63.20◦W). The eastern (4.5–15◦ S,
43–50◦W) and western (6–12◦ S, 54–68.5◦ W) domains are shown with black boxes. Land cover type is shown using the standard MODIS
Land Cover Type Data Product (MCD12Q1) in the IGBP Land Cover Type Classification (Channan et al., 2014; Friedl et al., 2010).

ern region (6–12◦ S, 54–68.5◦W) and an eastern region (4.5–
15◦ S, 43–50◦W), following Johnson et al. (2016). We note
that the aircraft sampling in the eastern region (including one
full flight and sections of three flights) was limited relative
to the sampling performed in the western region (including
14 full flights and sections of 5 flights). We used aircraft data
from both vertical profiles and straight and level runs (SLRs).
To avoid bias, time periods when the plane was actively sam-
pling smoke plumes were removed from the SLR data using a
plume removal algorithm (Darbyshire et al., 2019). Visually
observable plumes were specifically avoided when perform-
ing vertical profiles during SAMBBA, so any enhancements
due to smoke plumes in the profile data are small. Time peri-
ods when in-cloud sampling was performed were also filtered
out of the data; specifically the data were screened for cloud
artefacts when the liquid water content exceeded 0.05 g m−3

(Darbyshire et al., 2019).

2.3.2 Ground observations

A large suite of instruments were deployed at a site in
the southwestern Amazon (8.69◦ S, 63.87◦W) (Brito et al.,
2014). The site is located in a forest reserve about 5 km
from Porto Velho (population of around 500 000) and is usu-
ally upwind of the city (Brito et al., 2014). Here we used
measurements from an aerosol chemical speciation monitor
(ACSM; Ng et al., 2011) and an aethalometer (Magee Sci-
entific, model AE30). The ACSM measured 30 min resolu-
tion mass concentrations of particulate ammonium, nitrate,
sulfate, chloride and organic species in the 75–650 nm size

range. The Aethalometer measured 5 min resolution equiv-
alent black carbon (BCeq) mass concentrations. Details re-
garding the aethalometer and ACSM measurement uncer-
tainty can be found in Sect. S2.2. Data from both instruments
are available from the 6 September to the 1 October 2012.
Mean aerosol mass concentration (ACSM + Aethalometer)
during this period was 13.7 µgm−3, with OA contributing an
average of 83 % of the total mass. Mean aerosol mass con-
centrations were lower in Phase 2 (6.0 µgm−3) compared to
Phase 1 (17.8 µgm−3). Full details are provided in Brito et
al. (2014). PM2.5 concentrations were measured using gravi-
metric filter analysis, with a measurement duration ranging
from less than 1 to ∼ 7 d (Artaxo et al., 2013).

2.3.3 AERONET aerosol optical depth

We used spectral columnar AOD measured by Aerosol
Robotic Network (AERONET) Cimel sun photometers (Hol-
ben et al., 1998) from five stations deployed across the
region that have data available for the SAMBBA cam-
paign period: Porto Velho UNIR (8.84◦ S, 63.94◦W),
Alta Floresta (9.87◦ S, 56.10◦W), Rio Branco (9.96◦ S,
67.87◦W), Cuiabá-Miranda (15.73◦ S, 56.02◦W) and Santa
Cruz UTEPSA (17.77◦ S, 63.20◦W). We used Version 3
Level 2 cloud-screened and quality-assured daytime average
AOD (Giles et al., 2019), retrieved at 500 nm. Locations of
the AERONET stations are shown in Fig. 2.
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Figure 3. Time series of simulated (lines) and observed (bars) PM2.5 concentrations at Porto Velho between January and November 2012.
Simulated daily mean concentrations are shown with FINN1.5 (green), GFAS1.2 (blue), GFED4 (red) emissions and with no biomass burning
emissions (noBBA; orange). Observed PM2.5 concentrations are averages over sampling periods that ranged from < 1 to 7 d in 2012. The
NMBF values are given separately for Phase 1 and Phase 2 of the SAMBBA field campaign in Table 2.

2.3.4 MODIS aerosol optical depth

We used daily AOD retrieved at 550 nm from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) in-
strument on board the Terra and Aqua satellites for the
SAMBBA campaign period to calculate regional average
AODs. Specifically, we used the Collection 5.1 Level-3
MODIS Atmosphere Daily Global Product gridded to 1◦×1◦

resolution (Terra: MOD08_D3; Aqua: MYD08_D3; https://
modis-atmosphere.gsfc.nasa.gov/products/daily, last access:
30 March 2019) (Hubanks et al., 2008) acquired through
NASA’s Level 1 and the Atmosphere Archive and Distri-
bution System (LAADS). Daytime Equator crossing is at
10:30 LT for Terra and at 13:30 LT for Aqua.

2.3.5 Measurement uncertainty

Section S2 describes further details of the instrumenta-
tion used during SAMBBA, including information about
measurement calibration and uncertainty. In summary, for
conditions during SAMBBA the mass concentration mea-
surement uncertainty has been estimated to be ∼ 20 % for
the aethalometer (Schmid et al., 2006), 10 %–35 % for the
ACSM (depending on the species, OA is 15 %; Crenn et al.,
2015), ∼ 30 % for the AMS (Bahreini et al., 2009; Middle-
brook et al., 2012 and ∼ 30 % for the SP2 (Schwarz et al.,
2008; Shiraiwa et al., 2008). For AOD retrievals, the 1σ un-
certainty is estimated to be ±0.05+ 15% for MODIS (Levy
et al., 2010) and ±0.01 for AERONET (Giles et al., 2019).

2.3.6 Comparing model and observations

To compare the model to the aircraft and ground-based ob-
servations, we linearly interpolated the simulated hourly data
along the flight path of the aircraft and to the horizontal lo-
cation of the Porto Velho ground station. To compare with
the aircraft AMS and ground-based ACSM measurements,
the same detection ranges of the instruments (see Sect. 2.3.1
and 2.3.2) were applied to the simulated mass concentrations.

Prior to analysis, simulated data corresponding to periods
of missing or invalid measurement data were removed. To
quantify the agreement between the model and observations,
we use the Pearson correlation coefficient (r) and normalised
mean bias factor (NMBF) as defined by Yu et al. (2006):

NMBF=

(∑
Mi −

∑
Oi
)∣∣∑Mi −

∑
Oi
∣∣
[

exp
(∣∣∣∣ln∑Mi∑

Oi

∣∣∣∣)− 1
]
, (1)

where M and O represent model and observed values, re-
spectively, for each time step, i. A positive NMBF indi-
cates the model overestimates the observations by a factor
of NMBF+1. A negative NMBF indicates the model under-
estimates the observations by a factor of 1−NMBF.

3 Results and discussion

3.1 Surface aerosol measurements

Figure 3 shows surface PM2.5 concentrations observed at
Porto Velho, in the southwestern Amazon, from January to
November 2012. Observed PM2.5 concentrations are less
than 2 µgm−3 between January and July 2012, increasing
to 30–50 µgm−3 in late August and September, then de-
clining to less than in 10 µgm−3 in October. This seasonal
cycle is well reproduced by the model with all fire emis-
sion datasets. Simulated PM2.5 concentrations are enhanced
by biomass burning from August through to October, when
more than 80 % of PM2.5 concentrations are from biomass
burning. PM2.5 concentrations during September are well re-
produced by the model with GFED and FINN emissions but
underestimated by the model with GFAS emissions. PM2.5
concentrations are underestimated during early August, po-
tentially indicating that emission datasets have missed fires
during the start of the dry season (see Fig. S2). During the
SAMBBA campaign (13 September–3 October), PM2.5 con-
centrations are well reproduced by the model with FINN
(r2
= 0.65; NMBF= 0.03) and GFED (r2

= 0.69; NMBF=
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Table 2. Summary of comparison between the model and observations expressed as normalised mean bias factor (NMBF, italics indicates
model underestimation). Comparisons are shown for observations from the Porto Velho measurement station (PVH): PM2.5 (particulate mat-
ter with diameters smaller than 2.5 µm) mass; total aerosol mass (mass measured by the ACSM plus equivalent black carbon measured by the
aethalometer); and organic aerosol (OA), black carbon (BC), and sulfate mass concentrations. Comparisons are shown from the aircraft: total
aerosol mass (mass measured by AMS plus refractive BC measured by the SP2) and OA, BC, and sulfate mass concentrations; aerosol scatter-
ing; and aerosol extinction. Comparisons are shown from the satellite: aerosol optical depth at 550 nm (AOD550) from MODIS and AOD500
from AERONET. Aircraft comparisons are for concentrations below 2.5 km (western Amazon) or 4 km (eastern Amazon). AERONET com-
parisons are the average NMBF across five stations. For aircraft total aerosol mass, scattering and extinction, the model and observations are
compared only during time periods with available AMS measurements. Values are shown for the model with FINN1.5, GFAS1.2, GFED4.1s
emissions and with no biomass burning emissions (noBBA). The numbers highlighted in bold show the model simulation with the smallest
bias.

noBBA FINN GFED GFAS

Western Amazon, Phase 1

PVH PM2.5 –4.80 –0.09 –0.54 –1.35
PVH total mass –3.43 0.45 0.08 –0.49
PVH OA –3.45 0.50 0.11 –0.50
PVH BC –53.12 0.02 –0.34 –1.32
PVH sulfate 0.47 2.69 2.32 1.96
Aircraft total mass (< 2.5 km) –6.83 –0.23 –0.76 –1.42
Aircraft OA (< 2.5 km) –7.63 –0.25 –0.82 –1.64
Aircraft BC (< 2.5 km) –37.23 –0.13 –0.78 –1.52
Aircraft sulfate (< 2.5 km) –2.31 –0.48 –0.72 –0.83
Aircraft scattering (total column) –4.62 –0.29 –0.77 –1.29
Aircraft extinction (total column) –5.47 –0.37 –0.89 –1.46
AOD550 (MODIS) –5.25 –0.51 –0.97 –1.43
AOD500 (AERONET) –6.95 –0.47 –0.53 –1.26

Western Amazon, Phase 2

PVH PM2.5 –2.26 0.32 –0.25 –0.61
PVH total mass –0.72 1.94 0.89 0.30
PVH OA –0.44 2.44 1.18 0.47
PVH BC –34.63 0.12 –0.51 –1.51
PVH sulfate –0.06 2.22 1.51 1.24
Aircraft total mass (< 2.5 km) –1.24 1.13 0.36 0.02
Aircraft OA (< 2.5 km) –1.16 1.21 0.39 0.02
Aircraft BC (< 2.5 km) –20.94 0.56 –0.06 –0.56
Aircraft sulfate (< 2.5 km) –0.58 0.71 0.40 0.24
Aircraft scattering (total column) –0.85 0.93 0.34 –0.07
Aircraft extinction (total column) –1.07 0.83 0.26 –0.00
AOD550 (MODIS) –3.68 –0.38 –0.70 –1.06
AOD500 (AERONET) –4.50 –0.41 –0.68 –1.11

Eastern Amazon

Aircraft total mass (< 4 km) –8.43 –2.60 –1.00 –0.78
Aircraft OA (< 4 km) –13.17 –3.14 –1.23 –0.92
Aircraft BC (< 4 km) –41.29 –6.11 –1.91 –1.48
Aircraft sulfate (< 4 km) 0.29 0.69 1.40 1.22
Aircraft scattering (total column) –8.81 –3.30 –1.49 –1.29
Aircraft extinction (total column) –10.80 –3.90 –1.75 –1.51
AOD550 (MODIS) –4.92 –2.41 –1.44 –1.23
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Figure 4. Composition-resolved aerosol mass at Porto Velho ground station during the SAMBBA campaign. (a) Time series of hourly mean
observed (black) and simulated (colour) total aerosol mass. The observed aerosol mass is the total mass from the ACSM plus equivalent BC
from the aethalometer. Simulated total aerosol mass is shown for the model with FINN1.5 (green), GFAS1.2 (blue), GFED4 (red) emissions
and with no biomass burning emissions (noBBA; orange). Numbers on the panel show the NMBF for the SAMBBA campaign separately
for Phase 1 (P1) and Phase 2 (P2) (also see Table 2). (b) Bar chart showing observed and simulated average aerosol composition during the
campaign: black carbon (BC; black), nitrate+ammonium+chloride (NO3+NH4+Chl; blue, not treated by the model), organic aerosol (OA;
green) and sulfate (SO4; red).

−0.45) but underestimated with GFAS (r2
= 0.44; NMBF=

−1.09) (see Table 2 for a summary of NMBF values).
Figure 4 compares simulated and measured composition-

resolved aerosol at Porto Velho during September 2012.
Measured total aerosol mass, calculated as mass measured
by the ACSM plus BCeq measured by the aethalometer,
varies consistently with measured PM2.5 concentrations dur-
ing the campaign (Fig. S6). However, when averaged over
the gravimetric filter analysis sampling time, measured total
(ACSM+BCeq) aerosol mass concentrations are consistently
lower than measured PM2.5 concentrations by ∼ 20 %–60 %
(Fig. S6a). This difference in the measurements is mostly ap-
portioned to the reduced aerosol detection–size range from
the ACSM (i.e. submicrometric) in comparison to the gravi-
metric analysis (< 2.5 µm) (Sect. 2.3.2), and, to a smaller
extent, the different measurement techniques and aerosol
species unaccounted by the on-line instrumentation (ACSM),
e.g. crustal elements.

Average observed total (ACSM+BCeq) aerosol mass con-
centrations are 20 µgm−3 in Phase 1, reducing to 7 µgm−3 in
Phase 2. The model with fire emissions captures the decrease

in observed aerosol mass concentrations between Phase 1
and Phase 2 but underestimates the magnitude of the reduc-
tion (5–10 µgm−3, depending on the fire emission dataset,
compared to 13 µgm−3 in the observations). The model with
GFED simulates observed total mass well in the ACSM de-
tection range in Phase 1 (NMBF= 0.08) but overestimates
observed mass in Phase 2 (NMBF= 0.89). Conversely, the
model with GFAS emissions simulates observed total mass
reasonably well in Phase 2 (NMBF= 0.30) but underesti-
mates in Phase 1 (NMBF=−0.49). The model with FINN
emissions overestimates observed total mass in both Phase 1
(NMBF= 0.45) and Phase 2 (NMBF= 1.94).

Observed total aerosol mass is dominated by OA (84 %),
with BC contributing 9 % and summed NH4, NO3 and Chl
contributing less than 5 % of total mass during the SAMBBA
campaign (Fig. 4b). Simulated aerosol (with fire emissions
included) is also dominated by OA (86 %–88 %), with BC
contributing a slightly smaller fraction of the total aerosol
mass (5 %) than observed (see Fig. S7 for simulated and mea-
sured hourly OA and BC time series). NH4, NO3 and Chl are
not accounted for in GLOMAP. Sulfate accounts for 2.6 % of
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Figure 5. Mean observed and simulated vertical profiles of (a) organic aerosol (OA), (b) black carbon (BC) and (c) sulfate (SO4) during the
SAMBBA aircraft campaign, sectioned into 400 m altitude bins. Observations are shown by the black data points. Simulated concentrations
are shown for the model with FINN1.5 (green), GFAS1.2 (blue), GFED4 (red) emissions and with no biomass burning emissions (noBBA;
orange). The simulated data (linearly interpolated to the flight track of the aircraft) and the observations are split into western and eastern
regions of the Amazon (Fig. 2), as well as by time (Phase 1: 13–22 September 2012; Phase 2: 23 September–3 October 2012) for the western
region. Error bars show the standard deviation of the observed mean. Concentrations are reported at standard temperature and pressure (STP)
conditions (at 273.15 K and 1013.25 hPa). The NMBF values are given separately for the western region (Phase 1 and Phase 2) and eastern
region in Table 2.

the observed total aerosol mass during the campaign but 5 %–
11 % in the model (Fig. 4b). Sulfate concentrations are well
reproduced by the model with no fire emissions and are over-
estimated when fire emissions are included (Table 2). This
suggests that either emissions of sulfate from fires are over-

estimated or that other sources of sulfate are overestimated
in the model in the region of Porto Velho.
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Figure 6. Mean observed (black) and simulated (colour) aerosol number size distributions during the SAMBBA aircraft campaign for two
altitude bands: between the surface and 2 km (a, b, c) and between 2 and 4 km a.s.l. (c, d, e). The observed number size distribution was
measured with a scanning mobility particle sizer (SMPS; black crosses) and a Grimm optical particle counter (OPC; black diamonds). The
simulated data (linearly interpolated to the flight track of the aircraft) and the observations are split into western and eastern regions of the
Amazon (Fig. 2), as well as by time (P1: 13–22 September 2012, P2: 23 September–3 October 2012) for the western region. Simulated
concentrations are shown for the model with FINN1.5 (green), GFAS1.2 (blue), GFED4 (red) emissions and with no biomass burning
emissions (noBBA; orange).

3.2 Aerosol mass concentration vertical profile

Figure 5 compares average vertical profiles of OA, sul-
fate and BC measured on the aircraft to that simulated
by GLOMAP. As before, the data are split into Phase 1
(flights 1–8) and Phase 2 (flights 9–20). We also split the
data spatially into western and eastern Amazon regions (see
Fig. 2). We note that the aircraft sampling in the eastern
region was limited relative to sampling in the western re-
gion (Sect. 2.3.1). Figure S8 shows the number of OA (from
the AMS) and BC (from the SP2) observations per vertical
bin for the western region (Phases 1 and 2) and eastern re-
gion. Figure 5 shows that observed aerosol concentrations
are greatest in the boundary layer (BL) then reduce rapidly
above it (see also Fig. S9). Figures 5 and S9 show that the
shape of the aerosol vertical profile is well reproduced by the
model, further confirming that simulated vertical mixing and
the vertical injection height of fire emissions are reasonable.
Observed aerosol concentrations are relatively constant be-
tween the surface and ∼ 2500 m in the western Amazon and
between the surface and ∼ 4000 m in the eastern Amazon.
This behaviour is reproduced by the model and is likely due
to a deeper BL over grassland vegetation in the eastern Ama-
zon (Fig. S10).

In the western Amazon, average concentrations of OA be-
low 2.5 km (roughly the BL) were 19 µgm−3 in Phase 1 com-
pared to 6 µgm−3 in Phase 2, similar in both magnitude and
temporal pattern to the surface observations at Porto Velho.
In Phase 1, the model underestimates observed OA con-
centrations in the BL with all emission datasets (NMBF=

−0.25 for FINN to −1.64 for GFAS). OA concentrations
in Phase 1 in the western Amazon between 3 and 4.5 km
are also underestimated by the model, with all emission
datasets consistent with comparisons in the BL. The model
does not simulate the observed reduction in OA concentra-
tions between Phase 1 and Phase 2, overestimating OA con-
centrations in the western Amazon in Phase 2 with GFED
(NMBF= 0.39) and FINN (NMBF= 1.21) emissions but
having good agreement with GFAS (NMBF= 0.02). This
may be because the emission datasets report only moderately
lower emissions in Phase 2 compared to Phase 1 (Fig. S3a;
Table 1) but also because the model may underestimate wet
removal of aerosol during Phase 2 (consistent with model and
observation comparisons in Archer-Nicholls et al., 2015). In
the eastern Amazon, average concentrations of OA below
4 km (roughly the BL) of 16 µgm−3 are underestimated by
the model with all three emission datasets (NMBF=−0.92
for GFAS to −3.14 for FINN).

Disagreement between observed and simulated OA may
be due to uncertainty in the OA : OC ratio. In this study we
assume an OA : OC ratio of 1.4, at the lower end of the range
(1.4 to 2.6) assumed by other models (Tsigaridis et al., 2014).
Philip et al. (2014) combined satellite data and AMS mea-
surements to estimate an OA : OC ratio of 1.3 to 2.1. Prelim-
inary analysis of aircraft data during SAMBBA suggests an
OA : OC ratio of 1.5 to 1.8 for fresh biomass burning aerosol
and 2.0 to 2.3 for aged aerosol (Johnson et al., 2016). Assum-
ing an OA : OC ratio of 2.3 would enhance our simulated OA
concentrations by 60 %, reducing our underestimate of OA in
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both the western (Phase 1: NMBF=−0.64 to 0.29) and east-
ern (NMBF=−1.59 to −0.20) Amazon.

Observed refractive BC (rBC) concentrations in the BL are
∼ 1.0 µgm−3 in the western Amazon during Phase 1, drop-
ping to ∼ 0.5 µgm−3 during Phase 2. BC concentrations ob-
served at the surface (Sect. 3.1; Phase 1, 1.6 µgm−3; Phase
2, 0.9 µgm−3) are greater than those measured on the air-
craft, although this may be partly due to the different mea-
surement techniques used and different size detection ranges.
In the eastern Amazon, observed rBC concentrations are
higher (1.8 µgm−3), qualitatively reproduced by the model
with GFAS and GFED emissions but not with FINN emis-
sions. The model strongly underestimates BC concentrations
in the eastern Amazon with all emission datasets, particularly
with FINN (NMBF=−1.48 for GFAS to −6.10 for FINN).
In the west, the agreement is more variable, with the model
simulating concentrations in Phase 1 well with FINN emis-
sions but overestimating in Phase 2, GFED underestimat-
ing in Phase 1 but simulating concentrations well in Phase
2 and the model with GFAS emissions underestimating in
both phases.

In the western Amazon, comparison with sulfate aerosol
is fairly consistent with OA and BC comparisons, with
the model underestimating in Phase 1 and overestimating
in Phase 2. In the eastern Amazon, the model overesti-
mates sulfate concentrations even without a contribution
from fires, suggesting that other natural and anthropogenic
sulfate sources may be overestimated in the model.

Observed average BC : OA mass concentration ratios in
the BL vary from 0.05 in the western Amazon (Phase 1,
1/19= 0.05; Phase 2, 0.5/6= 0.08) to 0.11 (1.8/16= 0.11)
in the eastern Amazon. These ratios reflect the much higher
BC emission factors found for flaming Cerrado fires in the
eastern Amazon relative to tropical forest fires in the western
Amazon (Hodgson et al., 2018). Simulated ratios are in good
agreement with observations in the western Amazon with
all emission datasets (e.g. Phase 1, FINN: 0.9/15= 0.06;
Phase 2, FINN: 0.8/13= 0.06). In the eastern Amazon, BC :
OC ratios are underestimated using FINN (0.26/3.8= 0.07)
emissions, with better agreement using GFED (0.63/7.0=
0.09) and GFAS (0.74/8.2= 0.09) emissions.

In the western Amazon, average aerosol concentra-
tions at 4 km are ∼ 27 %–50 % of concentrations in the
BL (< 2.5 km) (OAP1: 7/19= 0.37, OAP2: 3/6= 0.50;
BCP1: 0.27/1= 0.27, BCP2: 0.26/0.5= 0.52). Marenco et
al. (2016) reported a mean aerosol layer of 2.0±0.4 km dur-
ing the SAMBBA campaign, which is consistent with the
model results presented here. A plume rise model coupled to
WRF-Chem overestimated OA concentrations at 6–8 km alti-
tude observed over tropical forest regions during SAMBBA,
suggesting the plume rise model overestimated fire injection
height (Archer-Nicholls et al., 2015). Injecting fire emissions
into the surface layer (Fig. S11, “GFED_surflev”) has a rel-
atively small impact on the simulated aerosol vertical pro-
file in the west (a mean change of −0.3 % below 2.5 km),

with a small change in the bias against observations (e.g. for
OA in Phase 1; NMBF =−0.82 for GFED and −0.77 for
GFED_surflev), demonstrating that vertical mixing rapidly
redistributes aerosol in the model. In the eastern region, the
impact is larger (a mean change of +5 % below 4 km), with
a slight improvement in the model bias (e.g. for OA; NMBF
=−1.23 for GFED and −0.90 for GFED_surflev). Overall
there appears to be limited evidence for the need for substan-
tial injection of fire emissions above the BL for fires in this
region.

Overall, the comparisons with aircraft observations show
variable agreement between the model and observations. The
model with GFAS emissions consistently underestimates ob-
served aerosol mass concentrations by up to a factor of 3 but
gives the best agreement (relative to GFED and FINN) with
observations in the eastern Amazon. Agreement between the
model and observations with GFED and FINN emissions is
more variable, with up to a factor of 2–3 underestimation
or overestimation, depending on the region and time period.
In general, the model with FINN emissions performs well
against observations in the western Amazon in Phase 1 (when
observed aerosol mass concentrations are relatively high) but
gives the largest underestimation of aerosol mass concentra-
tions in the eastern Amazon (relative to GFED and GFAS).

3.3 Aerosol size distribution

Figure 6 compares simulated aerosol size distributions
against those measured on the aircraft during straight and
level runs. In the eastern Amazon, the model underestimates
particle number below 300 nm in diameter, consistent with
aerosol mass comparisons (Sect. 3.2). In the western Ama-
zon, the model with FINN and GFED emissions generally
matches the observed size distribution well above 200 nm in
diameter (N200), with a small underestimate during Phase 1
with GFED (NMBFP1 =−0.52; NMBFP2 =−0.08) and a
small overestimate during Phase 2 with FINN (NMBFP1 =

−0.13; NMBFP2 = 0.39), consistent with the vertical pro-
files of aerosol mass (Fig. 5). The model with GFAS emis-
sions underestimates throughout the size distribution (e.g.
for N200: NMBFP1 =−1.20; NMBFP2 =−0.45), consistent
with earlier comparisons.

There is a persistent underestimation of aerosol number at
particle sizes below about 100 nm. We assume all biomass
burning emissions are emitted into the accumulation mode
with a geometric mean diameter of 150 nm (Sect. 2.1.1;
Mann et al., 2010), which is substantially higher than ob-
served in the Porto Velho ground station data (94 nm; Brito et
al., 2014). The observations suggest biomass burning makes
a considerable contribution to aerosol number from ∼ 50 to
200 nm in diameter that is not included in the model. This is
consistent with Vakkari et al. (2018), where assumed emis-
sion size distributions in models poorly represented the num-
ber of particles in the 30–100 nm (Aitken mode) size range
for southern African savanna and grassland fires.
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Figure 7. Time series of simulated (colour) and observed (black) aerosol optical depth at 550 nm (AOD550) for the SAMBBA campaign
(13 September–3 October 2012) over (a) the western Amazon (6–12◦ S, 54–68.5◦W) and (b) the eastern Amazon (4.5–15◦ S, 43–50◦W).
Observed AOD550 retrieved by MODIS on board Terra (overpass time 10:30 LT) is shown by the black diamonds and AOD550 retrieved by
MODIS on board Aqua (overpass time 13:30 LT) is shown by the black crosses; the black line shows an average value for each day (plotted at
midday local time). Simulated hourly AOD550 (plotted at local time for Rondônia, Brazil: UTC−4h) is shown for the model with FINN1.5
(green), GFAS1.2 (blue), GFED4 (red) emissions and with no biomass burning emissions (noBBA; orange). The NMBF values are given
separately for the western region (Phase 1 and Phase 2) and eastern region in Table 2.

We performed two sensitivity tests where we varied the as-
sumed emission size distribution for primary biomass burn-
ing aerosol in GLOMAP (Fig. S12). Reid and Hobbs (1998)
measured count median diameters (CMD) of 130± 10 nm
(σ = 1.68±0.02) and 100±10 nm (σ = 1.77±0.02) for de-
forestation fires and 100± 10 nm (σ = 1.91± 0.15) for Cer-
rado fires (Reid et al., 2005). Assuming a CMD of 100 nm
increases the simulated particle number concentration be-
low 100 nm in diameter by factors of ∼ 1.8 (with σ = 1.7)
and ∼ 1.5 (with σ = 1.8) over the SAMBBA regions. This
results in a reduction in the negative bias in simulated
number concentration above 50 nm (N50) (GFED, 150 nm,
σ = 1.59: NMBFWestP1 =−1.85; GFED, 100 nm, σ = 1.7:
NMBFWestP1 =−0.51) but a slight increase in the nega-
tive bias in N200 (GFED, 100 nm, σ = 1.7: NMBFWestP1 =

−0.55). Therefore, reducing the assumed emission size dis-
tribution for primary BC and OC from biomass burning may
be important for cloud condensation nuclei concentrations
but will only have a small effect on simulated aerosol mass
and AOD (see Sect. 3.5.1).

3.4 Aerosol optical depth

Figure 7 compares simulated and satellite-retrieved
(MODIS) AOD at 550 nm (AOD550) over the eastern
and western regions for the SAMBBA campaign period.
Compared to MODIS, the model generally underestimates
AOD550 over both regions and with all fire emission
datasets (NMBF=−2.41 to −0.38; Table 2). The model
with GFAS emissions has the largest underestimation in the
western Amazon (the smallest with FINN) and the model

with FINN emissions has the largest underestimate in the
eastern Amazon (the smallest with GFAS). The model with
FINN emissions underestimates AOD550 in the western
Amazon in Phase 2 even when it overestimates aerosol mass
concentrations throughout the vertical profile. In the eastern
region, the underestimation of AOD550 with all emission
datasets is consistent with the comparison of the vertical
profile of aerosol mass concentration.

Figure 8 compares simulated and observed AOD at 500 nm
(AOD500) at five AERONET sites across the western and
southern Amazon during SAMBBA (no data are available
from the AERONET station located in the eastern region dur-
ing the campaign). There is reasonable agreement between
AOD500 reported by AERONET and AOD550 reported by
MODIS, with AERONET generally reporting higher values
(Aqua: NMBF=−0.60 to −0.27; Terra: NMBF=−0.47 to
−0.18), partly due to differences in the wavelengths of the
retrievals.

Consistent with comparisons to MODIS, the model gener-
ally underestimates AOD500 at all stations and with all fire
emissions, except at two stations in the western Amazon (Rio
Branco in both campaign phases and Porto Velho in Phase 2)
with FINN emissions. The negative model bias in AOD500
across all AERONET stations is consistent with the nega-
tive model bias in AOD550 (against MODIS) (Table 2) but
is smaller at some individual stations (Fig. 8). This is likely
due to multiple reasons including differences in (i) the AOD
wavelengths (500 nm versus 550 nm), (ii) the AERONET and
MODIS retrieval uncertainties (Sect. S2.3), (iii) the location
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Figure 8. Time series of simulated (colour) and observed (black) daily aerosol optical depth (AOD) during the SAMBBA campaign at five
AERONET stations in the western and southern Amazon: (a) Porto Velho UNIR (8.84◦ S, 63.94◦W), (b) Santa Cruz UTEPSA (17.77◦ S,
63.20◦W), (c) Cuiabá-Miranda (15.73◦ S, 56.02◦W), (d) Rio Branco (9.96◦ S, 67.87◦W) and (e) Alta Floresta (9.87◦ S, 56.10◦W). Daily
mean AOD at 500 nm (AOD500) from AERONET (black line) is compared to AOD550 retrieved by MODIS (Terra: black diamonds; Aqua:
black crosses), using grid cells nearest to the AERONET station location. Simulated daily mean AOD500 is shown for the model with
FINN1.5 (green), GFAS1.2 (blue), GFED4 (red) emissions and with no biomass burning emissions (noBBA; orange). The NMBF values are
given separately for Phase 1 (P1) and Phase 2 (P2) of the campaign.

and region of comparison affecting magnitude and sources of
AOD, and (iv) the AERONET and MODIS data coverages.

For all stations, the model with GFAS emissions has the
largest underestimation (Table 2). The fire emission dataset
that gives the smallest model bias varies between GFED and
FINN depending on the station and time period (Phase 1 or
2 of the campaign; Table 2). At Porto Velho, the model with
GFED emissions underestimates AOD500 (NMBF=−0.70;
Table 2) during Phase 2 even when it overestimates aerosol
mass concentrations at the surface (NMBF=0.89; Table 2).
The smallest model bias for all simulations is at Rio Branco
in the western Amazon (e.g. with FINN: NMBFP1 = 0.03,
NMBFP2 = 0.11).

Figure 9 compares average vertical profiles of aerosol scat-
tering and extinction coefficients (at 550 nm) measured on
the aircraft to that simulated by GLOMAP. In the west-
ern region, during Phase 1, the model underestimates the
observed scattering coefficient throughout the vertical pro-
file (NMBF=−1.29 with GFAS to −0.29 with FINN; Ta-
ble 2); consistent with the comparisons against MODIS and
AERONET AOD. During Phase 2, the agreement between

simulated and measured scattering coefficient is more con-
sistent with the vertical profile of aerosol mass concentra-
tions than with MODIS or AERONET AOD, i.e., good agree-
ment with GFAS emissions (NMBF=−0.07) and overesti-
mation with FINN (NMBF= 0.92), respectively. The agree-
ment between simulated and measured extinction coefficient
is similar but with larger negative biases during Phase 1 and
slightly smaller positive biases in Phase 2. In the eastern re-
gion, the model strongly underestimates observed scattering
(NMBF=−3.3 to −1.29) and extinction (NMBF=−3.90
to −1.51) coefficients, consistent with MODIS AOD550
(with larger negative biases than for total aerosol mass con-
centrations).

In summary, the model generally underestimates observed
AOD during the SAMBBA campaign. The negative biases
in simulated AOD and scattering and extinction coefficients
are generally larger than in simulated aerosol size distribu-
tion (> 200 nm in diameter) and in total aerosol mass con-
centrations at the surface (consistent with Reddington et al.,
2016) and aloft, which suggests that model underestimation
of AOD is not solely due to an underestimation of biomass
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Figure 9. Vertical profiles of observed (black) and simulated (colour) aerosol scattering coefficient at 550 nm (a, b, c) and extinction coef-
ficient at 550 nm (d, e, f) during the SAMBBA aircraft campaign, sectioned into 400 m altitude bins. Observations are shown by the black
data points. Simulated concentrations are shown for the model with FINN1.5 (green), GFAS1.2 (blue), GFED4 (red) emissions and with no
biomass burning emissions (orange). The simulated data (linearly interpolated to the flight track of the aircraft) and the observations are split
into western and eastern regions of the Amazon (Fig. 2), as well as by time (Phase 1: 13–22 September 2012, Phase 2: 23 September–3 Oc-
tober 2012) for the western region. Error bars show the standard deviation of the observed mean. The NMBF values are given separately for
the western region (Phase 1 and Phase 2) and eastern region in Table 2.

burning aerosol mass and/or emissions. The calculation of
AOD also depends on aerosol optics and water uptake. We
explore the sensitivity of simulated AOD to these other fac-
tors in the following section.

3.5 Exploring the sensitivity of simulated aerosol
optical depth

In Reddington et al. (2016) we identified a greater model un-
derestimation of AOD than surface PM2.5 in the Amazon re-
gion, where coincident observations were available, suggest-
ing that the negative model bias in AOD could be caused by
errors in the calculation of AOD rather than by errors in sim-
ulated aerosol properties. However, due to a lack of available
observations, we were unable to rule out errors in simulated
aerosol size distribution and vertical profile (i.e. an underes-
timation of aerosol aloft) with any certainty.

In this work, using the detailed SAMBBA observations,
we have shown that the model represents the vertical profile
of aerosol mass concentrations and aerosol size distribution
well (in the diameter range relevant for visible light) in the
western Amazon, yet continues to underestimate AOD. Be-
low we explore the sensitivity of simulated AOD to the treat-
ment of biomass burning emissions in GLOMAP and to other
relevant aerosol properties including aerosol mixing state, re-
fractive indices and hygroscopicity (summarised in Table 3,
Figs. 10 and S13). To quantify the sensitivity of each simula-
tion we calculate the percentage change of simulated hourly
AOD550 during the SAMBBA campaign relative to simu-
lation 1 in Table 3; the relative changes are summarised in
Fig. 10. Figure S13 summarises the agreement between sim-
ulated and measured optical properties during the SAMBBA
campaign for each simulation in Table 3.
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Table 3. Summary of tests performed to explore the sensitivity of simulated aerosol optical depth (AOD) to assumptions about biomass
burning emissions, aerosol optical properties (refractive indices, RIs), aerosol mixing state and aerosol water uptake calculation (Sect. 3.5).
The water uptake schemes used (ZSR and κ-Köhler) are described in Sect. S1 (κ is the component-specific hygroscopicity parameter).

No. Name Description Fire Refractive indices Mixing (internal or Water uptake RH
emissions (RIs) external) scheme fields

BC POM

1 GFED Control (GFED emissions) GFED 1.750 − 0.442286i
(λ= 542 nm)a

1.500 − 0.00i
(all λ)a

Internal ZSRb GLOMAP
(ECMWF)

2 FINN FINN emissions FINN 1.750 − 0.442286i
(λ= 542 nm)a

1.500 − 0.00i
(all λ)a

Internal ZSRb GLOMAP
(ECMWF)

3 GFAS GFAS emissions GFAS 1.750 − 0.442286i
(λ= 542 nm)a

1.500 − 0.00i
(all λ)a

Internal ZSRb GLOMAP
(ECMWF)

4 surflev GFED emissions injected into
the model surface level

GFED 1.750 − 0.442286i
(λ= 542 nm)a

1.500 − 0.00i
(all λ)a

Internal ZSRb GLOMAP
(ECMWF)

5 emsize GFED emissions with a re-
duced emission size for BC/OC
particles (CMD= 100 nm, σ =
1.7).

GFED 1.750 − 0.442286i
(λ= 542 nm)a

1.500 − 0.00i
(all λ)a

Internal ZSRb GLOMAP
(ECMWF)

6 extmix External mixing assumption GFED 1.750 − 0.442286i
(λ= 542 nm)a

1.500 − 0.00i
(all λ)a

External ZSRb GLOMAP
(ECMWF)

7 rfidx_1 RI calculated for young smoke
aerosol over southern Africa.

GFED 1.54 − 0.025i
(λ= 550 nm)c

1.54 − 0.025i
(λ= 550 nm)c

Internal ZSRb GLOMAP
(ECMWF)

8 rfidx_2 RI retrieved by Ndola
AERONET station in Zam-
bia; close to smoke sources
(Sep 2000 mean).

GFED 1.51 − 0.024i
(λ= 440 nm)d

1.51 − 0.024i
(λ= 440 nm)d

Internal ZSRb GLOMAP
(ECMWF)

9 rfidx_3 RI retrieved by Ndola
AERONET station in Zambia
(16 Sep 2000).

GFED 1.52 − 0.019i
(λ= 440 nm)d

1.52 − 0.019i
(λ= 440 nm)d

Internal ZSRb GLOMAP
(ECMWF)

10 rfidx_4 RI retrieved by AERONET sta-
tion, Jaru Reserve in Brazil
(20 Sep 2002).

GFED 1.50 − 0.02i
(λ= 440 nm)e

1.50 − 0.02i
(λ= 440 nm)e

Internal ZSRb GLOMAP
(ECMWF)

11 rfidx_5 Mid-range value for RI for light
absorbing carbon

GFED 1.85 − 0.71i
(λ= 550 nm)f

[set to 1.500 −
0.000i]a

Internal ZSRb GLOMAP
(ECMWF)

12 rfidx_6 Upper limit of RI for light ab-
sorbing carbon

GFED 1.95 − 0.79i
(λ= 550 nm)f

[set to 1.500 −
0.000i]a

Internal ZSRb GLOMAP
(ECMWF)

13 κK_1 κ-Köhler to calculate aerosol
water uptake.

GFED 1.750 − 0.442286i
(λ= 542 nm)a

1.500 − 0.00i
(all λ)a

Internal κ-Köhler
(κOA = 0.1g;
κSO4 = 0.53h)

GLOMAP
(ECMWF)

14 κK_2 κ-Köhler to calculate aerosol
water uptake (using κ for
H2SO4).

GFED 1.750 − 0.442286i
(λ= 542 nm)a

1.500 − 0.00i
(all λ)a

Internal κ-Köhler
(κOA = 0.1g;
κSO4 = 1.19h)

GLOMAP
(ECMWF)

15 κK_3 κ-Köhler to calculate aerosol
water uptake (using high κ for
OA and κ H2SO4).

GFED 1.750 − 0.442286i
(λ= 542 nm)a

1.500 − 0.00i
(all λ)a

Internal κ-Köhler
(κOA = 0.2i;
κSO4 = 1.19h)

GLOMAP
(ECMWF)

16 κK_4 κ-Köhler to calculate aerosol
water uptake (using CCN-
derived κ for (NH4)2SO4).

GFED 1.750 − 0.442286i
(λ= 542 nm)a

1.500 − 0.00i
(all λ)a

Internal κ-Köhler
(κOA = 0.1g;
κSO4 = 0.61h)

GLOMAP
(ECMWF)

17 κK_5 κ-Köhler to calculate aerosol
water uptake (using high κ for
OA and CCN-derived κ for
(NH4)2SO4).

GFED 1.750 − 0.442286i
(λ= 542 nm)a

1.500 − 0.00i
(all λ)a

Internal κ-Köhler
(κOA =0.2i;
κSO4 = 0.61h)

GLOMAP
(ECMWF)

18 κK_RH κ-Köhler to calculate aerosol
water uptake with mean aircraft
RH vertical profile.

GFED 1.750 − 0.442286i
(λ= 542 nm)a

1.500 − 0.00i
(all λ)a

Internal κ-Köhler
(κOA = 0.1g;
κSO4 = 0.53h)

Aircraft (mean
RH)

19 κK_RHmax96 κ-Köhler to calculate aerosol
water uptake with maximum
aircraft RH vertical profile
(capped at 96 %).

GFED 1.750 − 0.442286i
(λ= 542 nm)a

1.500 − 0.00i
(all λ)a

Internal κ-Köhler
(κOA = 0.1g;
κSO4 = 0.53h)

Aircraft (max
RH, capped at
96 %)

20 κK_RHmax99 κ-Köhler to calculate aerosol
water uptake with maximum
aircraft RH vertical profile
(capped at 99 %).

GFED 1.750 − 0.442286i
(λ= 542 nm)a

1.500 − 0.00i
(all λ)a

Internal κ-Köhler
(κOA = 0.1g;
κSO4 = 0.53h)

Aircraft (max
RH)

a Bellouin et al. (2011). b Stokes and Robinson (1966). c Haywood et al. (2003). d Matichuk et al. (2007). e Matichuk et al. (2008). f Bond and Bergstrom (2006).
g Gunthe et al. (2009). h Petters and Kreidenweis (2007). i Petters et al. (2009).
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Figure 10. Box-and-whisker plot summarising the relative difference between simulated hourly mean AOD550 from the control simulation
(GFED emissions with ZSR water uptake scheme) and each of the sensitivity simulations listed in Table 3. Simulation numbers in the
figure correspond to the simulation numbers in Table 3. Simulations are compared during the SAMBBA campaign period (13 September–
3 October 2012) for the western region (6–12◦ S, 54–68.5◦W; a) and the eastern region (4.5–15◦ S, 43–50◦W; b) separately. Simulations 18,
19 and 20 are compared to the control simulation only on days with available aircraft measurements of RH. Circles show the mean values,
whiskers show the minimum and maximum values, boxes show the 25th and 75th percentiles, and horizontal lines show the median values.

3.5.1 Biomass burning aerosol emission strength,
particle size and injection height

Figure 10 shows that simulated AOD is sensitive to the
fire emission dataset used in the model. Changing between
GFED emissions (simulation 1 in Table 3) and GFAS emis-
sions (simulation 2 in Table 3) changes simulated hourly
AOD550 during the SAMBBA campaign by −14 % on av-
erage in the western region and by +10 % on average in
the eastern region (Fig. 10). Changing from GFED emis-
sions to FINN emissions (simulation 3 in Table 3) increases
simulated AOD550 in the western region (a mean change of
+32 %) and decreases simulated AOD550 in the eastern re-
gion (a mean change of −28 %) (Fig. 10). As discussed in
Sect. 3.4, the model with FINN emissions has the smallest
underestimate against MODIS AOD550 in the western re-
gion (the largest underestimation is with GFAS) but overes-
timates measured scattering and absorption coefficients dur-
ing Phase 2 (Fig. S13). In the eastern region, the model with
GFAS has the smallest underestimate of MODIS AOD550
and aircraft-measured scattering and absorption coefficients
(the largest underestimation is with FINN) (Fig. S13).

Altering the injection height of biomass burning emissions
to the surface level (simulation 4 in Table 3) has an almost
negligible effect on simulated AOD550, with mean changes

of < 1 % in the eastern region (ranging from +6 to −17 %
on the hourly timescale) and−3 % in the western region rela-
tive to the control simulation (Fig. 10). Injecting GFED emis-
sions at the surface results in an increase in the model NMBF
in AOD550 against MODIS in the west (e.g. Phase 1: from
0.97 to−1.03) and a slight reduction in the NMBF in the east
(from −1.44 to −1.42) (Fig. S13).

Reducing the assumed emission size for primary BC and
OC particles from biomass burning (from a CMD of 150
to 100 nm; simulation 5 in Table 3) decreases simulated
AOD550 in both the eastern (−9 %) and western (−13 %)
regions (Fig. 10), consistent with the decrease in simulated
N200 (Sect. 3.3). As a result, the model bias in AOD550
against MODIS is increased relative to the control from
NMBF=−0.97 to −1.28 in the west (Phase 1) and from
NMBF=−1.44 to −1.70 in the east (Fig. S13).

3.5.2 Mixing state

We find that simulated AOD is relatively insensitive to the as-
sumption about the aerosol mixing state, with a less than 5 %
difference in the magnitude of AOD550 between internally
mixed (simulation 1; Table 3) and externally mixed (simu-
lation 6; Table 3) cases (consistent with Reddington et al.,
2016). Calculating AOD550 assuming optical properties de-
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rived from an external mixture of aerosol species leads to
slightly reduced values (by ∼ 1 %–4 % – mean reduction in
the west: ∼ 2 %; mean reduction in the east: ∼ 1 %; Fig. 10)
when compared to AOD550 calculated assuming an internal
(volumetrically averaged) aerosol mixture (Fig. 10). There-
fore, assuming an internal mixture leads to slightly improved
agreement between simulated and observed AOD over the
external mixture assumption (Fig. S13).

Han et al. (2013) also find relatively small changes in
the magnitude of AOD (0.03 to 0.07) in high AOD regions
(∼ 0.8 to 2.0) between internally and externally mixed cases,
with the internal mixture assumption giving higher values
than the external mixture assumption. Curci et al. (2015) find
a greater difference (∼ 37 %) in simulated AOD between in-
ternally and externally mixed assumptions, with the external
mixed case giving the highest AOD. However, the greater
sensitivity of simulated AOD to the mixing state assumption
in Curci et al. (2015) was primarily due to the difference in
the calculation of the aerosol number size distribution rather
than the difference in the calculated optical properties. The
GLOMAP model simulates both mass and number concen-
tration of each size mode so the total number concentration
stays identical for both mixing state assumptions (in the ex-
ternally mixed case the number concentration of particles in
a given size mode is split between aerosol components based
on the volume fraction of that component in the mode). We
note that the internally mixed case used in this study does not
consider different mixing structure assumptions, i.e. core–
shell internal mixing, which may account for an additional
uncertainty of ∼ 5 %–10 % in simulated AOD (Curci et al.,
2015).

3.5.3 Refractive index

To investigate the sensitivity of simulated AOD to assump-
tions about the aerosol optical properties, we calculated
AOD550 from the model simulation with GFED emissions
assuming a range of refractive indices appropriate for BC
and POM aerosol (see simulations 7 to 12 in Table 3). We
find that the magnitude of simulated AOD550 varies by up
to ∼ 7 % (relative to the control AOD550) depending on the
choice of refractive indices.

Applying smoke aerosol refractive indices from Matichuk
et al. (2007, 2008) to the model BC and POM components
(simulations 8–10 in Table 3) leads to a small mean decrease
in AOD550 relative to the control (by 2 %–5 % in the eastern
region and 0 %–3 % in the western region; Fig. 10). Assum-
ing medium and highly absorbing refractive indices for BC
from Bond and Bergstrom (2006) (simulation 11 in Table 3)
increases AOD550 by an average of 4 %–6 % in the eastern
region and 2 %–4 % in the western region. Using the highly
absorbing refractive index for BC (simulation 12 “rfidx_6”
in Table 3) gives the best agreement between the model and
satellite-retrieved (MODIS) AOD550 out of the refractive in-
dex sensitivity tests (Fig. S13).

The relatively small sensitivity of simulated AOD to as-
sumed aerosol refractive indices is consistent with previous
studies (Matichuk et al., 2007; Curci et al., 2015; Reddington
et al., 2016) and suggests that the negative bias in AOD can-
not be wholly explained by the uncertainty associated with
this assumption.

3.5.4 Aerosol water uptake

Aerosol water uptake plays a significant role in determining
AOD, altering the refractive index and the size distribution of
the aerosol. Our estimate of aerosol water uptake depends on
the calculation method (including assumptions made regard-
ing aerosol hygroscopicity; described in Sects. 2.1.2 and S1),
the model relative humidity (from ECMWF reanalyses), and
the simulated aerosol physical and chemical properties (size
distribution and composition).

To test the sensitivity of AOD to the calculation of aerosol
water uptake, we compare AOD550 calculated using two
methods (described in Sect. S1): (1) using ZSR online in the
model (simulation 1 in Table 3) and (2) using the κ-Köhler
water uptake scheme (Petters and Kreidenweis, 2007) of-
fline during post-processing (simulation 13 in Table 3). Our
previous work demonstrated that simulated AOD is sensi-
tive to this calculation, with simulated AOD440 varying by
a factor of ∼ 1.6 between the upper and lower estimates of
water uptake (Reddington et al., 2016). We find the same
here, with AOD550 varying by a mean factor of 1.6 over the
western Amazon and a mean factor of 1.5 over the eastern
Amazon, between the two calculation methods. Using the κ-
Köhler water uptake scheme decreases AOD550 (by 32 %–
39 %; Fig. 10) relative to AOD550 calculated using ZSR,
thus increasing the negative model bias against observations
(Fig. S13).

To explore the sensitivity to assumed κ values, we varied
κ values separately for the sulfate and POM components in
the model. Assuming a higher κ for sulfate (1.19, the same
as for sulfuric acid; Petters and Kreidenweis, 2007, and sim-
ulation 14 “κK_2” in Table 3) results in simulated AOD550
being 26 % and 33 % lower on average than ZSR in the east-
ern and western regions, respectively (Fig. 10). Assuming a
higher κ for both sulfate (1.19) and for POM (0.2) (simu-
lation 15 “κK_3” in Table 3) results in simulated AOD550
being 23 %–25 % lower than ZSR on average (Fig. 10). Fig-
ure S14 shows the change in simulated AOD550 due to as-
suming different κ values for sulfate and POM relative to the
simulation using the κ-Köhler water uptake scheme with κ
of 0.53 for sulfate and 0.1 for POM (simulation 1 “κK_1”
in Table 3). Using high κ values for both sulfate and for
POM (simulation 15 “κK_3” in Table 3) increases simu-
lated AOD550 on average by 12 %–23 %, improving agree-
ment with MODIS AOD550, relative to simulation “κK_1”
(Fig. S13). However, these high κ values are likely to be un-
realistically high for biomass burning aerosol (particularly
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for sulfate) and, despite this, the model bias remains nega-
tive.

The higher AOD550 values calculated using the ZSR
scheme can be explained by the steeper hygroscopic growth
curve for biomass burning aerosol (at ambient relative hu-
midity, RH, < 90 %) when calculated with the GLOMAP
ZSR scheme compared with the κ-Köhler scheme (see
Fig. 13 of Johnson et al., 2016). At ambient RH above 90 %
the opposite is true, with a steeper growth curve for the κ-
Köhler scheme (due to the RH restriction of 90 % applied
in GLOMAP for ZSR; see Sect. S1.1). However, the model
RH stays below 90 % during the SAMBBA campaign (see
Sect. 3.5.5). We note that AOD simulated with ZSR (assum-
ing sulfuric acid and high water uptake for organics) is likely
to be an upper estimate for water uptake. Our results confirm
the large uncertainty present in the simulated AOD due to
aerosol hygroscopicity.

3.5.5 Relative humidity

In Reddington et al. (2016), we discussed the potential sen-
sitivity of simulated AOD to errors in ambient RH. In this
work we are able to evaluate the model relative humid-
ity against SAMBBA aircraft observations. The model cap-
tures the shape of the mean profile of observed relative hu-
midity in both the western and eastern regions (NMBF=
−0.03), with small overestimates and underestimates in the
BL in the western and eastern regions, respectively (western
BL: NMBF= 0.10; eastern BL: NMBF=−0.05) (Fig. S15).
However, the model underestimates the variability in ob-
served RH above ∼ 1.5 km altitude in the west and below
∼ 4 km altitude in the east. In particular, in the western re-
gion, the model does not capture the elevated observed RHs
(≥ 90 %), which disproportionately affect aerosol water up-
take and hygroscopic growth. This underestimation is likely
due to the relatively coarse vertical and horizontal resolu-
tion of the model. A recent study by Haslett et al. (2019)
found that high AODs observed by AERONET in southern
West Africa could only be recreated by accounting for very
elevated and variable RHs in the BL. They found that hu-
mid layers had a significant impact on AOD (particularly for
RH> 98 %), resulting in a wet AOD more than 1.8 times the
dry AOD (Haslett et al., 2019). This suggests that inadequate
representation of sub-grid variability of RH may contribute
to the model discrepancy in AOD.

To explore the sensitivity of model AOD to variability
in RH, we forced the model RH to match either the mean
or maximum observed RH in each vertical model level (on
days with available aircraft data) and calculated the resulting
water uptake using the κ-Köhler scheme (with κPOM = 0.1;
κSO4 = 0.53; simulations 18–20 in Table 3). These sensitivity
tests have mixed results on simulated AOD (see Figs. 10 and
S14). Setting the model RH to the mean observed RH in each
vertical level (simulation 18 “κK_RH” in Table 3) results in
a small mean increase in simulated AOD550 in the east (by

∼ 11 %) and small mean decrease in the west (by∼ 8 %) rel-
ative to AOD550 calculated using κ-Köhler and GLOMAP
RH (simulation 13 “κK_1” in Table 3; see Fig. S13). Setting
the model RH to the maximum observed RH in each ver-
tical level (with a restriction of RH ≤ 99 %; simulation 20
“κK_RHmax99” in Table 3) increases model AOD550 (by
∼ 58 %–87 % on average; Fig. S14) improving agreement
with MODIS AOD550 (Fig. S13) but leads to overestima-
tion of the observed aerosol scattering and extinction coeffi-
cients between 4 and 6 km altitude. Using the maximum ob-
served RH but with a restriction of RH≤ 96 % (simulation
19 “κK_RHmax96” in Table 3) increases by ∼ 20 %–58 %
on average, improving agreement with MODIS AOD550 rel-
ative to simulation “κK_1” (Fig. S13) and maintains good
agreement with the relative vertical profiles of the scatter-
ing and extinction coefficients. However, the negative bias in
AOD550 remains larger than for total aerosol mass concen-
trations (Table 2).

Although these sensitivity tests do not resolve the model
discrepancy in model AOD, they demonstrate the large sen-
sitivity of simulated AOD to the magnitude and variability
of RH and that changes in RH can be important for simu-
lated AOD even at RH < 90 % (for instance, in the eastern
region). Improving model representation of RH variability
while using an upper estimate for water uptake (e.g. the on-
line ZSR scheme in GLOMAP) would likely bring the model
bias in AOD more in-line with that of total aerosol mass con-
centration but this would require thorough testing in a high-
resolution model.

3.5.6 Model spatial resolution

The relatively coarse spatial resolution of the simulated
aerosol and relative humidity (Sect. 3.5.5) fields may also
contribute to the model underestimation of AOD, due to
underestimation of sub-grid variability (e.g. Weigum et al.,
2016). Increasing model spatial resolution has been shown
to increase simulated AOD by ∼ 11 %–13 % (Bian et al.,
2009; Weigum et al., 2016), depending on the initial and al-
tered grid resolutions. However, we note that comparisons
between simulated and aircraft observed aerosol mass con-
centrations suggest that the model captures observed spatial
variations in aerosol mass concentrations reasonably well for
the SAMBBA period, at least over the western Amazon re-
gion.

Model spatial resolution will also affect the model–
measurement sampling uncertainty, which can be up to 50 %
for hourly time resolution data (e.g. Schutgens et al., 2016a,
2017; Reddington et al., 2017). In our analysis we have
strived to reduce spatial and temporal sampling errors as
much as possible by (1) running the model and using anal-
ysed meteorology for the same time period as the observa-
tions, (2) temporally co-locating model and measurement
data points, removing time periods with missing or invalid
measurement points from the model data (as discussed in
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Schutgens et al., 2016b) (and temporal averaging for bias
calculations and comparisons with aircraft measurements),
and (3) spatially co-locating model data to observational data
points using interpolation (and spatial averaging for compar-
isons with aircraft and MODIS observations). For compar-
isons with aircraft measurements, we have also attempted
to reduce measurement representativeness error by removing
in-plume and in-cloud sampling from the data where pos-
sible. We estimate remaining model–measurement sampling
uncertainty to be up to ∼ 30 %, corresponding to monthly
average model–measurement comparisons (Schutgens et al.,
2016a). A higher-resolution model would be required to ac-
curately quantify the model–measurement sampling uncer-
tainty for this specific analysis and to explore the degree
of sensitivity of AOD to the spatial resolution of simulated
aerosol and relative humidity fields in detail.

3.6 Summary of AOD sensitivity simulations and
uncertainties

Simulated AOD varies by more than a factor of 2 across the
different sensitivity simulations (Figs. 10 and S14). The dif-
ferent emission inventories change simulated AOD by up to
approximately ±30 %. Altering assumed refractive indices
changes simulated AOD by less than 8 % and assumptions
about external mixing change simulated AOD by less than
2 %. Changes to assumptions controlling aerosol water up-
take change simulated AOD by up to −40 % (for assump-
tions regarding the water uptake calculation scheme) and up
to +20 % (for assumptions regarding the hygroscopicity pa-
rameter, κ). Uncertainty in the variability of RH changed
simulated AOD by up to +87 %. This analysis suggests that
the largest uncertainties in simulated AOD are associated
with uncertainty in aerosol water uptake and model repre-
sentation of relative humidity.

For the magnitude of AOD observed during the SAMBBA
campaign, the uncertainty in the retrievals of AOD are ap-
proximately ±30 % for MODIS AOD550 and < 10 % for
AERONET AOD500 (see Sects. 2.3.5 and S2). Although
the uncertainties in AOD retrievals are important to consider,
they are smaller than the uncertainties associated with simu-
lated biomass burning aerosol properties and AOD.

4 Conclusions

We have used surface, aircraft and satellite observations
made during the SAMBBA field campaign in the southern
Amazon during September and October 2012 to improve
our understanding of biomass burning emissions. We ap-
ply three different biomass burning emission datasets (FINN,
GFAS, GFED) in the GLOMAP global aerosol model. In
fire-impacted regions of the Amazon, total annual aerosol
emissions from fires (averaged over 2002–2012) vary by up
to a factor of 2.4 across these datasets, highlighting the large

uncertainty in aerosol emissions from fires. In 2012, annual
aerosol fire emissions were 4 %–47 % lower than the 2002–
2012 mean in the western Amazon but 30–96 % greater than
the long-term mean in the eastern Amazon. This reflects de-
clining deforestation rate and associated fires in the western
Amazon over this period (Reddington et al., 2015) and op-
posing trends in fires in the eastern Amazon (Andela et al.,
2017).

During 2012, observed surface PM2.5 concentrations in the
southern Amazon increased from ∼ 2 µgm−3 between Jan-
uary and July to 30–50 µgm−3 in September, then declined
to less than 10 µgm−3 in October. Observed aerosol mass
(in the 75–650 nm in diameter size range) in September was
dominated by OA, which accounted for 84 % of total mass
with BC accounting for 9 % of mass. The model reproduced
the observed seasonal cycle of aerosol concentrations, with
∼ 54 %–78 % of simulated PM2.5 concentrations originating
from fire emissions during September 2012. Fires are the
dominant source of PM2.5 across the region during the dry
season.

In the western Amazon, where deforestation fires are the
dominant fire type, agreement between simulated and ob-
served aerosol mass concentrations in the BL is variable,
depending on the fire emission dataset used both for OA
(NMBF =−1.6 to +1.2) and BC (NMBF=−1.5 to +0.6).
In this region we do not find evidence that aerosol emis-
sions are systematically underestimated across all emission
datasets. In the eastern Amazon, where grassland and sa-
vanna fires are dominant, GLOMAP underestimates OA
(NMBF =−0.9 to −3.1) and BC (NMBF =−1.5 to −6.1)
concentrations with all three emission datasets. This sug-
gests that all emission datasets may underestimate aerosol
emissions from grassland and savanna fires in the eastern
Amazon, although we acknowledge the limited measurement
sampling in this region relative to the western Amazon. We
assume fire emissions have an OA : OC ratio of 1.4. Increas-
ing our OA : OC ratio to 2.3, towards the upper end of that
used in models (Tsigaridis et al., 2014), and matching aged
aerosol observed in SAMBBA (Johnson et al., 2016), would
improve the model–observation OA comparison in the east-
ern Amazon but would lead to an overestimate of OA in the
western Amazon in some periods.

Comparisons of the simulated particle number size distri-
bution against aircraft observations revealed a persistent un-
derestimation of number concentrations of particles smaller
than ∼ 100 nm in diameter. Reducing the assumed emission
size of primary carbonaceous aerosol in the model improved
agreement with observed number concentrations of particles
less than 100 nm in diameter but increased the negative bias
in simulated AOD. Assuming a bimodal emission size dis-
tribution for primary biomass burning aerosol may solve the
model discrepancy in particle number concentrations below
∼ 100 nm in diameter while retaining the simulated accumu-
lation mode of biomass burning aerosol. Model underestima-
tion of particle number concentration of particles less than
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100 nm will have implications for simulation of cloud con-
densation nuclei concentrations and simulated aerosol–cloud
interactions.

Observed vertical profiles of aerosol mass concentrations
were characterised by enhanced concentrations from the sur-
face up to around 2 km altitude in the western Amazon and
4 km altitude in the eastern Amazon. In our model, we as-
sume that all emissions from vegetation fires in this region
are injected below 3 km altitude, with ∼ 80 % of emissions
injected below 1 km. The model simulated a realistic rela-
tive vertical profile of aerosol mass concentrations, suggest-
ing that our assumptions about injection height are valid. Our
results further confirm that Amazon fires rarely inject emis-
sions above the BL, as found by previous studies (Archer-
Nicholls et al., 2015, Marenco et al., 2016).

The model generally underestimates AOD across the
Amazon both in comparison to AERONET (NMBF=−1.3
to −0.4) and MODIS (NMBF =−2.4 to −0.4). In the east-
ern Amazon, the underestimation of aerosol mass concentra-
tions through the vertical profile contributes to this under-
estimation of AOD. In the western Amazon, the model un-
derestimates AOD even when the vertical profile of aerosol
mass concentration is either well predicted or overestimated.
This suggests that underestimation of AOD may be due to
uncertainties in the calculation of AOD, rather than under-
estimation of aerosol mass concentrations. To explore this
possibility we tested the impact of uncertainty in refractive
index, aerosol mixing state, aerosol water uptake and rela-
tive humidity on model AOD. We found that simulated AOD
was most sensitive to assumptions about water uptake and
the model representation of variability in relative humidity,
leading to an average uncertainty range in simulated AOD of
approximately −40 % to +90 %.

Overall, our work suggests that aerosol emissions from
fires are on average underestimated over the Amazon, partic-
ularly over grassland and savanna fires in the eastern Ama-
zon, albeit by less than the factor of ∼ 3–5 assumed in some
previous studies. Confirming our previous work (Redding-
ton et al., 2016), we find that simulated and observed aerosol
mass concentrations are generally in better agreement than
simulated and observed AOD. We show that the model un-
derestimates AOD even when it reproduces the observed ver-
tical profile of aerosol mass. This suggests that uncertainties
in the calculation of AOD, rather than the aerosol mass con-
centration, are the dominant reason for underestimation of
AOD, and we find the largest sensitivity to uncertainty in
water uptake and model representation of relative humidity
variability. We therefore caution against using comparison
with AOD to scale particulate emissions from fires, as has
been done in a number of previous studies.

Data availability. Data from all GLOMAP model simulations and
processing codes are available from the corresponding author on re-
quest. All raw time series data from the FAAM research aircraft are

publicly available from the Centre for Environmental Data Analy-
sis website, where the entire SAMBBA dataset may be accessed.
Data masks for categorising flight patterns into plume-sampling
and other sampling types (vertical profiles and SLRs) are currently
available on request from Hugh Coe. Biomass burning emission
datasets are available publicly and can be accessed from the follow-
ing web pages: http://bai.acom.ucar.edu/Data/fire/ (FINN; Wiedin-
myer et al., 2011), https://apps.ecmwf.int/datasets/data/cams-gfas/
(GFAS; Kaiser et al., 2012) , https://www.globalfiredata.org/data.
html (GFED; van der Werf et al., 2017). AERONET and MODIS
aerosol optical depth data are available publicly from NASA: https:
//aeronet.gsfc.nasa.gov/new_web/aerosols.html (AERONET; Giles
et al., 2019) and https://ladsweb.modaps.eosdis.nasa.gov (MODIS;
Hubanks et al., 2008; Platnick et al., 2015).
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