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Abstract. Semi-volatile and intermediate-volatility organic
compounds (S–IVOCs) are considered critical precursors
of secondary organic aerosol (SOA), which is an impor-
tant component of fine particulate matter (PM2.5). How-
ever, knowledge of the contributions of S–IVOCs to SOA is
still lacking in the Pearl River Delta (PRD) region, south-
ern China. Therefore, in this study, an emission inventory
of S–IVOCs in the PRD region was developed for the first
time for the year 2010. The S–IVOC emissions were cal-
culated based on a parameterization method involving the
emission factors of POA (primary organic aerosol), emission
ratios of S–IVOCs to POA, and domestic activity data. The
total emissions of S–IVOCs were estimated to be 323.4 Gg,
with major emissions from central cities in the PRD, i.e.,
Guangzhou, Foshan, and Shenzhen. On-road mobile sources
and industries were the two major contributors of S–IVOC
emissions, with contributions of∼ 42 % and∼ 35 %, respec-
tively. Furthermore, uncertainties of the emission inventory
were evaluated through Monte Carlo simulation. The un-
certainties ranged from −79 % to 229 %, which could be
mainly attributed to mass fractions of OC (organic carbon)
to PM2.5 from on-road mobile emissions and emission ra-
tios of IVOCs /POA. The developed S–IVOC emission in-
ventory was further incorporated into the Weather Research
and Forecasting with Chemistry (WRF-Chem) model with
a volatility basis-set (VBS) approach to improve the perfor-
mance of SOA simulation and to evaluate the influence of S–
IVOCs on SOA formation at a receptor site (Wan Qing Sha
(WQS) site) in the PRD. The following results could be ob-
tained. (1) The model could resolve about 34 % on average of

observed SOA concentrations at WQS after considering the
emissions of S–IVOCs, and 18 %–77 % with the uncertain-
ties of the S–IVOC emission inventory considered. (2) The
simulated SOA over the PRD region was increased by 161 %
with the input of S–IVOC emissions, and it could be de-
creased to 126 % after the reaction coefficient of S–IVOCs
with OH radical was improved. (3) Among all anthropogenic
sources of S–IVOCs, industrial emission was the most signif-
icant contributor of S–IVOCs for SOA formation, followed
by on-road mobile, dust, biomass burning, residential, and
off-road mobile emissions. Overall, this study firstly quanti-
fied emissions of S–IVOCs and evaluated their roles in SOA
formation over the PRD, which contributes towards signifi-
cantly improving SOA simulation and better understanding
of SOA formation mechanisms in the PRD and other regions
in China.

1 Introduction

As the key component, secondary organic aerosol (SOA) ac-
counts for 20 %–80 % of organic aerosol (OA), while OA
accounts for 20 %–90 % of fine particulate matter (PM2.5)
(Kanakidou et al., 2005; Carlton et al., 2009; Zhang et al.,
2007, 2013). They not only affect atmospheric chemistry,
climate change, radiation balance, visibility, and air quality
(Kanakidou et al., 2005; Pope et al., 2002), but also endan-
ger human and vegetation health (Gehring et al., 2013; Zhou
et al., 2014). In recent years, although PM2.5 concentrations
in major city clusters including the Pearl River Delta (PRD)
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region have shown a declining trend, the annual PM2.5 con-
centrations are still higher than the World Health Organiza-
tion (WHO) air quality standards and Air Quality Guideline
(Li et al., 2015; Lin et al., 2018). Moreover, the contribution
of SOA to PM2.5 is increasing (Huang et al., 2015; Zheng et
al., 2014), and it dominates the composition of PM2.5 dur-
ing episodes of photochemical smog. Therefore, investigat-
ing the formation mechanism of SOA is a prerequisite for
better control over its precursors and PM2.5, which is be-
coming increasingly more prominent as the concentrations
of SOA precursors continue to increase over the years (Guo
et al., 2017).

Three-dimensional chemical transport models (CTMs)
have been widely used to investigate the formation and
sources of SOA. Initially, organic compounds with similar
properties or sources were clustered together in OA (or-
ganic aerosol) modules within gridded models due to the
high complexity of OA and large varieties of compounds
incorporated in the detailed chemical schemes (Johnson et
al., 2006), where large uncertainties occurred in simulations
of SOA formation. Then a two-product model (Odum et al.,
1996) based on the absorptive partitioning theory of Pankow
(1994) and fitting methods developed from chamber study
data was widely used in the simulation of SOA formation.
However, this empirical two-product model was reported to
largely underpredict SOA yield because it could not account
for the wide range of volatility of organic compounds. Re-
cently, another scheme, i.e., the volatility basis-set approach
(VBS, typically one-dimensional VBS; 1-D VBS), was used
to overcome the limitation of the two-product model (Don-
ahue et al., 2006). In VBS, organic compounds are clas-
sified by their volatility, and it was developed on the ba-
sis of the absorptive partitioning theory. The VBS approach
improves the modeling of further multigenerational oxida-
tion processes and incorporates low-volatility precursors of
SOA, which consequently reduces the discrepancy between
observation and simulation results. Furthermore, to capture
the fragmentation process and oxidation of OA more accu-
rately, the two-dimensional VBS (2-D VBS) was proposed;
2-D VBS features a more detailed classification of organic
compounds in different ranges of volatility and oxidation
state. However, despite its potential for accurately simulating
the evolution of SOA, it has rarely been used in CTMs be-
cause it involves much more complexity and computational
expense compared to the widely used 1-D VBS (Donahue et
al., 2011, 2012; Zhao et al., 2016a).

Although the scheme for SOA formation has been ad-
vanced significantly in recent years, large discrepancies have
still been found between the observed and predicted abun-
dance of SOA due to uncertainties in the formation mecha-
nisms of SOA as well as the related parameterization (i.e.,
SOA yields of precursors of SOA) and the omittance of
key precursors. For example, through recent chamber ex-
periments, SOA yields of aromatics have been updated to
be much higher than previous ones (Ng et al., 2007), while

suggestions have also been made to consider wall losses of
SOA in the SOA yields of each VOC precursor extracted
from chamber experiments (Hildebrandt et al., 2009; Li et
al., 2017a). In addition to the SOA yields, recent studies in-
dicated that in-cloud aqueous-phase formation (Lim, Carl-
ton and Turpin, 2005; Ervens et al., 2011) and oxidation of
VOCs (volatile organic compounds) that were previously not
considered in models (i.e., isoprene, benzene, and acetylene)
could be important pathways for SOA formation (Claeys et
al., 2004; Martín-Reviejo and Wirtz, 2005; Volkamer et al.,
2009).

In addition to the traditional precursors (i.e., VOCs), re-
cent laboratory and modeling studies have suggested that
semi-volatile and intermediate-volatility organic compounds
(S–IVOCs), which have effective saturation concentrations
in the ranges of 10−2–103 and 104–106 µg m−3 at 298 K and
1 atm, respectively, are key factors affecting the underestima-
tion of SOA in numerical simulations (Donahue et al., 2006;
Robinson et al., 2007; Jiang et al., 2012). To date, S–IVOCs
are found to mainly include straight-chain and branched alka-
nes with carbon numbers > 12, alkylcyclohexanes, unsub-
stituted and substituted polycyclic aromatic hydrocarbons
(PAHs), alkylbenzenes, and cyclic and polycyclic aliphatic
material (Zhao et al., 2015; Li et al., 2018; Drozd et al.,
2019). However, a vast majority of S–IVOC mass still has
not been speciated at the molecular level, which is defined as
an unresolved complex mixture (UCM) (Jathar et al., 2012;
Zhao et al., 2015; Drozd et al., 2019). Incomplete combus-
tion, such as the combustion of fossil fuel, especially vehicle
exhaust, has been reported to be a large contributor to S–
IVOC emissions in developed regions (May et al., 2013a, b;
Ots et al., 2016; Khare and Gentner, 2018). Recent studies
have also shown that consumer products and commercial
or industrial products, processes, and materials are signifi-
cant sources of unspeciated S–IVOCs (Czech et al., 2016;
Khare and Gentner, 2018). Conversely, biogenic S–IVOCs
have recently been demonstrated to have a non-negligible
impact on SOA formation, but very few measurements have
been reported on their emissions (Palm et al., 2016, 2017).
Therefore, to improve the performance of models simulat-
ing SOA formation, anthropogenic emissions and the chem-
ical mechanisms of S–IVOCs have been incorporated into
different models, including box, regional, and global models
(Robinson et al., 2007; Shrivastava et al., 2008, 2011, 2015;
Grieshop et al., 2009; Pye and Seinfeld, 2010; Tsimpidi et al.,
2010; Ahmadov et al., 2012; Woody et al., 2015). In terms of
chemical mechanisms, although 1-D VBS is still widely used
in current models, one of the most important improvements
is the adoption of the 2-D VBS scheme as mentioned above
(Woody et al., 2015; Zhao et al., 2016a). For emission inven-
tories, which is a prerequisite condition for improving model
simulation of SOA formation and evaluating the roles of S–
IVOCs in SOA production, previous studies typically esti-
mated S–IVOC emissions from various sources based on the
relationship of S–IVOCs with POA, NMHCs (non-methane
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hydrocarbons), or naphthalene as well as emission profiles
and source-specific volatility distribution factors for S–IVOC
emissions extracted from various studies (Robinson et al.,
2007; Pye et al., 2010; Shrivastava et al., 2011; May et al.,
2013a, b, c; Woody et al., 2015; Zhao et al., 2016a). However,
very few studies have directly developed an emission inven-
tory of S–IVOCs appropriate for CTMs. For example, only
Liu et al. (2017) reported an emission inventory of vehicu-
lar IVOCs for China, estimating total emissions of IVOCs
from vehicles in different provinces based on emission fac-
tors obtained from measurements of vehicle exhaust in the
United States. However, this emission inventory was flawed
as it could not be applied to CTMs because the total IVOC
emissions had not been spatially allocated into grid cells, and
it was not sufficiently localized as the emission factors of
IVOCs from vehicle exhaust were completely based on mea-
surements in the United States (Zhao et al., 2015, 2016b).
As such, most modeling studies used the same parameteri-
zations and volatility distributions of all emissions indepen-
dent of source types to simulate SOA formation. However,
S–IVOC emissions and characteristics of SOA and particles
widely vary among different countries and regions.

The significance of S–IVOCs has been demonstrated
through lab and modeling studies in different environments,
but the emissions of S–IVOCs and their roles in the formation
of SOA in China are still poorly understood, especially in the
PRD region, where photochemical smog and high oxidative
capacity are frequently observed (Hofzumahaus et al., 2009;
Xue et al., 2016). Therefore, in the present study, a gridded
emission inventory of S–IVOCs for the PRD region was first
developed and then incorporated into the WRF-Chem model
(Weather Research and Forecasting model with Chemistry)
with the 1-D VBS approach. The objectives of this study
are as follows: (i) to examine the potential of considering
S–IVOCs for improving the simulation of SOA formation
and (ii) to evaluate the contributions of S–IVOC to SOA over
the PRD region. This study is the first report focusing on the
emissions of S–IVOCs and their contributions to SOA forma-
tion in the PRD region, which could advance the understand-
ing of SOA formation mechanisms in the PRD and could be
extended to other regions in China. It should be noted that
this study mainly focused on anthropogenic S–IVOCs and
their roles in SOA formation in the PRD region as anthro-
pogenic S–IVOCs were found to have much greater contri-
butions to SOA formation than biogenic S–IVOCs in devel-
oped regions (Palm et al., 2016, 2017; Khare and Gentner,
2018).

2 Methodology

2.1 Establishment of the S–IVOC emission inventory

In this study, a gridded emission inventory of S–IVOCs was
determined using Eq. (1).

ES/IVOCs,j =
∑

j,kAj,k ×EFS/IVOCs,j (1)

×(1−µ)× 10−3,

where j and k denote the specific sector and city, respec-
tively; ES/IVOCs denotes the annual emissions of S–IVOCs;
and A, EF, and µ represent the activity level, mean emis-
sion factor, and removal efficiency, respectively. Emission
factors of S–IVOCs were calculated on the basis of exist-
ing traditional POA emission factors using source-specific
linear scaling factors because available emission factors of
S–IVOCs are limited. Moreover, the traditional POA emis-
sion factors for different source categories (e.g., industry, on-
road and off-road mobile sources, residential sources, dust,
and biomass burning) were obtained from POC (primary or-
ganic carbon) emission factors using source-specific ratios
of OM/OC (mass ratios of organic matter to organic car-
bon), while the POC emission factors were obtained from
PM2.5 emission factors by applying the source-specific mass
fractions of OC to PM2.5. Therefore, Eq. (1) was extended
to Eq. (2). The related parameters of S–IVOCs, including the
activity levels, removal efficiency, and spatiotemporal alloca-
tions, were assumed to be the same as those of POA and POC
for all source categories. S–IVOC emissions in the PRD re-
gion for the year 2010 were calculated using Eq. (3), among
which the activity levels, removal efficiency, and emission
factors were combined and expressed as PM2.5 emissions
(EPM2.5,j in Eq. 3). Note that the PM2.5 emissions in this
study were obtained from a highly resolved spatial anthro-
pogenic PRD regional emission inventory for the year 2010
with a horizontal resolution of 3 km (Zheng et al., 2010b).

ES/IVOCs,j =
∑

j,kAj,k ×EFPM2.5,j ×FOC,j (2)

×
OM
OCj
×

(
ESVOCs,j

EPOA,j
+
EIVOCs,j

EPOA,j

)
×(1−µ)× 10−3

ES/IVOCs,j =EPM2.5,j ×FOC,j ×
OM
OCj

(3)

×

(
ESVOCs,j

EPOA,j
+
EIVOCs,j

EPOA,j

)
The above parameters used in the development of the emis-
sion inventories of S–IVOCs of each source category were
extracted from recent studies (Table 1). In order to calculate
the oxygen fraction and ratios of the non-oxygen component
to the carbon component of each species in all anthropogenic
sources, which would be required in modeling (Sect. 2.2.2),
elemental ratios of O/C, H/C, and N/C were also estimated.
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Table 1. Datasets of all input parameters used in the emission inventory model. Ellipses indicate that not all data were present in the table as
the number of data was large (∼ 400).

Source FOC OM/OC O/C H/C N/C ESVOCs /EPOA EIVOCs /EPOA

Industrym 0.03a 1.77d 0.19d 1.26d 0.008d – –
0.3a 1.91e 0.56e 1.61e 0.02e – –
. . . . . . . . . . . . . . . . . . . . .

Residential sourcesn 0.1a 1.39e 0.17e 1.8e 0.004e – –
0.3a 1.44f 0.19f 1.78f 0.036f – –
. . . . . . . . . . . . . . . . . . . . .

On-road mobile sources 0.58a 1.4f 0.15f 1.77f 0.045f 0.67h 8k

0.37b 1.46g 0.19g 1.78g 0.05g 0.49i 30j

. . . . . . . . . . . . . . . . . . . . .

Off-road mobile sourceso 0.33a – – – – – –
0.32b – – – – – –

. . . . . . . . . . . . . . . . . . . . .

Dustp 0.1a – – – – – –
0.05a – – – – – –

. . . . . . . . . . . . . . . . . . . . .

Biomass burning 0.58c 1.55d 0.26d 1.62d 0.06d 0.65i 0.75l

0.6a 1.62c 0.32c 1.47c 0.06c 0.8j 1.5j

. . . . . . . . . . . . . . . . . . . . .

a Li et al. (2017b). b Zhao et al. (2011). c He et al. (2011). d Huang et al. (2011). e Hu et al. (2016). f Xu et al. (2015). g Ye et al. (2017). h May et
al. (2013a). i Louvaris et al. (2017). j Zhao et al. (2016a). k Zhao et al. (2015). l Shrivastava et al. (2008), etc. m Data of ratios of S–IVOCs to POA for
industry are the same as those for on-road mobile sources. n Data of ratios of S–IVOCs to POA for residential sources are the same as those for
on-road mobile sources. o Data of ratios of S–IVOCs to POA, O/C, H/C, N/C, and OM/OC for off-road mobile sources are the same as those for
on-road mobile sources. p Data of ratios of S–IVOCs to POA for dust are the same as those for on-road mobile sources; data of ratios of O/C, H/C,
N/C, and OM/OC for dust are the same as those for industry.

Furthermore, uncertainties of the emission inventory of S–
IVOCs, which can be attributed to uncertainties in all param-
eters, were evaluated and quantified using statistical meth-
ods and Monte Carlo simulation, as suggested by Zheng et
al. (2010a). Sample correlation coefficients between total S–
IVOC emissions and model input parameters or S–IVOC
emissions of each specific source category have been calcu-
lated to identify the key sources of uncertainties in the es-
timation of S–IVOC emissions (NARSTO, 2005). Based on
the different values of model input parameters from previ-
ous studies (Table 1), probabilistic distributions representing
uncertainty ranges of different parameters, including FOC,
ESVOCs/EPOA , EIVOCs/EPOA , OM/OC, O/C, H/C, and N/C,
from different source categories are summarized in Table 2.
Additionally, uniform distribution based on the results of un-
certainty assessment in Zhong et al. (2018) was applied to all
source categories of PM2.5 emission in the present study.

2.2 Model description and settings

2.2.1 Model settings

To further evaluate the roles of S–IVOCs in SOA forma-
tion, the newly developed S–IVOC emission inventory was
incorporated into the WRF-Chem model to simulate the for-

mation of SOA and investigate its impact factors in the
PRD region. The WRF-Chem model (https://ruc.noaa.gov/
wrf/wrf-chem/, last access: 8 May 2019) is a fully cou-
pled online meteorology–chemistry model that can be used
to simulate physical and chemical processes simultaneously
(Grell et al., 2005). This model has been widely used to sim-
ulate the formation of secondary products (i.e., SOA and O3),
including their relationship with precursors, the influence of
meteorological conditions, and contributions from anthro-
pogenic and biogenic emissions from regional to cloud re-
solving scales (Fast et al., 2009, 2006; He et al., 2015; Jiang
et al., 2012; Li et al., 2011; Liu, 2014; Sharma et al., 2017;
Tie et al., 2013).

The model configuration is presented in Table S1 in
the Supplement, and the model domain is presented in
Fig. 1. The simulation was conducted from 12:00 UTC on
17 November 2008 to 00:00 UTC on 26 November 2008
because measured data of SOA were available from 19 to
25 November 2008 at the receptor site of the PRD region, i.e.,
the Wan Qing Sha (WQS) site. During the simulation period,
the first 24 h was consumed as the spin-up time for the sim-
ulation. The initial meteorological field and boundary me-
teorological conditions were provided by the ERA-Interim
reanalysis dataset from the European Centre for Medium-
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Table 2. Probabilistic distributions with uncertainty range at the 95 % confidence interval in model input parameters.

Input Source Distribution Para1 Para2 Mean Uncertainty range
parameters type value (95 % confidence level)

FOC industry Weibull 0.09 1.07 0.08 (0.005, 0.28)
residential sources normal 0.46 0.17 0.45 (0.17, 0.70)
on-road mobile sources Weibull 0.39 2.02 0.33 (0.07, 0.70)
off-road mobile sources normal 0.26 0.11 0.25 (0.06, 0.70)
dust Weibull 0.08 5.26 0.08 (0.05, 0.10)
biomass burning lognormal −1.01 0.34 0.38 (0.19, 0.68)

OM/OC industry gamma 111.46 0.02 1.69 (1.43, 1.94)
residential sources lognormal 0.28 0.05 1.33 (1.26, 1.43)
on-road mobile sources lognormal 0.34 0.05 1.39 (1.31, 1.46)
off-road mobile sources lognormal 0.34 0.05 1.39 (1.31, 1.46)
dust gamma 111.46 0.02 1.69 (1.43, 1.94)
biomass burning lognormal 0.43 0.09 1.51 (1.40, 1.61)

ESVOCs /EPOA industry lognormal −0.32 0.23 0.70 (0.51, 0.97)
residential sources lognormal −0.32 0.23 0.70 (0.51, 0.97)
on-road mobile sources lognormal −0.32 0.23 0.70 (0.51, 0.97)
off-road mobile sources lognormal −0.32 0.23 0.70 (0.51, 0.97)
dust lognormal −0.32 0.23 0.70 (0.51, 0.97)
biomass burning normal 0.76 0.14 0.80 (0.58, 0.97)

EIVOCs/EPOA industry lognormal 1.86 0.88 8.00 (1.79, 25.45)
residential sources lognormal 1.86 0.88 8.00 (1.79, 25.45)
on-road mobile sources lognormal 1.86 0.88 8.00 (1.79, 25.45)
off-road mobile sources lognormal 1.86 0.88 8.00 (1.79, 25.45)
dust lognormal 1.86 0.88 8.00 (1.79, 25.45)
biomass burning gamma 0.66 0.82 0.40 (0.002, 1.33)

O/C industry Weibull 0.49 2.70 0.44 (0.19, 0.73)
residential sources normal 0.13 0.05 0.13 (0.08, 0.19)
on-road mobile sources lognormal −1.84 0.26 0.16 (0.11, 0.21)
off-road mobile sources lognormal −1.84 0.26 0.16 (0.11, 0.21)
dust Weibull 0.49 2.70 0.44 (0.19, 0.73)
biomass burning lognormal −1.29 0.35 0.30 (0.19, 0.47)

H/C industry gamma 71.81 0.02 1.59 (1.30, 1.90)
residential sources Weibull 1.76 32.93 1.72 (1.60, 1.80)
on-road mobile sources Weibull 1.77 90.92 1.75 (1.71, 1.78)
off-road mobile sources Weibull 1.77 90.92 1.75 (1.71, 1.78)
dust gamma 71.81 0.02 1.59 (1.30, 1.90)
biomass burning lognormal 0.45 0.05 1.55 (1.48, 1.62)

N/C industry lognormal −4.02 0.76 0.02 (0.01, 0.07)
residential sources lognormal −4.45 1.01 0.02 (0.00, 0.05)
on-road mobile sources normal 0.03 0.02 0.03 (0.01, 0.05)
off-road mobile sources normal 0.03 0.02 0.03 (0.01, 0.05)
dust lognormal −4.02 0.76 0.02 (0.01, 0.07)
biomass burning lognormal −3.62 0.81 0.03 (0.01, 0.06)

para1: the mean for normal, the mean of lnx for lognormal, and the scale parameter for gamma and Weibull distributions. para2: the standard deviation
for normal, the standard deviation of lnx for lognormal, and the shape parameter for gamma and Weibull distributions.

Range Weather Forecasts (ECMWF) with the resolution of
0.5◦× 0.5◦, while the chemical boundary condition was ob-
tained from the Model for Ozone and Related chemical Trac-
ers (MOZART) global simulation of trace gases and aerosols
(Emmons et al., 2010). The above initial field and boundary

meteorological conditions have been confirmed to be appro-
priate for the reproduction of observed meteorological pa-
rameters in the PRD (Situ et al., 2013).

The gas-phase chemistry mechanism used in the simula-
tion was SAPRC-99 (Statewide Air Pollution Research Cen-

www.atmos-chem-phys.net/19/8141/2019/ Atmos. Chem. Phys., 19, 8141–8161, 2019



8146 L. Wu et al.: Emission inventory of SVOCs and IVOCs

Figure 1. Modeling domain and locations of Wan Qing Sha air qual-
ity monitoring sites.

ter), including 235 reactions of 80 gases (Carter, 2000). It
should be noted that the gas-phase photochemical oxidation
of gas-phase organic species for the formation of SOA, e.g.,
the gas-phase chemistry of BVOCs (biogenic VOCs) such
as isoprene, monoterpenes, and sesquiterpenes, has been re-
cently updated and incorporated in the mechanism (Situ et
al., 2013). In addition, the Model for Simulating Aerosol
Interactions and Chemistry (MOSAIC) aerosol chemistry
mechanism coupled with two-species VBS treatment was
used to represent aerosol processes (Zaveri et al., 2008). The
MOSAIC scheme includes aerosol species, such as sulfates,
nitrates, ammonium salts, sodium salts, chlorine salts, cal-
cium salts and other inorganics (OIN), organic carbon (OC),
elemental carbon (EC), and water, but does not consider the
formation of SOA from organic vapors (Fast et al., 2009).
Therefore, this mechanism was coupled with a simplified
two-species 1-D VBS (Sect. 2.2.2) developed by Shrivastava
et al. (2011) to simulate the formation of OA.

Anthropogenic emissions of PM10, PM2.5, VOCs, NOx ,
SO2, and CO in the PRD region were derived from a highly
resolved spatial anthropogenic PRD regional emission inven-
tory for the year 2010 with a horizontal resolution of 3 km,
whereas emissions outside the PRD region were based on
the Guangdong provincial emission inventory (Zheng et al.,
2010b). This emission inventory was developed using the
best available domestic emission factors and activity data,
including the sectors of industry, on-road and off-road mo-
bile sources, residential sources, dust, and biomass burning
(Zheng et al., 2009). In our emission inventory, dust mainly
includes road fugitive dust and building construction dust.
Particles containing many toxic metals and organic contam-
inants such as PAHs and long-chain alkanes from various
sources (e.g., weathered materials of street surfaces, automo-
bile exhaust, lubricating oils, gasoline, diesel fuel, tire parti-

cles, construction materials, and atmospherically deposited
materials) can be deposited on roads and construction sites,
which are known as road fugitive dust and building construc-
tion dust (Takada et al., 1990; Rogge et al., 1993; Chen et al.,
2012). Furthermore, dust is a large source of POA at urban
locations, and S–IVOCs are frequently co-emitted with POA
(Zheng et al., 2012; Shrivastava et al., 2013; van Drooge and
Grimalt, 2015). Indeed, S–IVOCs, such as n-alkanes (C19-
C39) and PAHs, have been identified in dust samples, con-
firming that dust could be a source of S–IVOCs (Takada et
al., 1990; Rogge et al., 1993; Schefuß et al., 2003; Dong and
Lee, 2009). In addition, BVOC emissions were derived from
the Model of Emissions of Gases and Aerosols from Nature
(MEGAN, https://sites.google.com/uci.edu/bai, last access: 8
May 2019) developed by Guenther et al. (2012).

2.2.2 VBS approach

With the configuration mentioned above, the WRF-Chem
model used in this study provides a simplified and computa-
tionally efficient two-species 1-D VBS scheme coupled with
MOSAIC that includes V-SOA (SOA formed by the oxida-
tion of VOC-traditional SOA precursors emitted from var-
ied anthropogenic and biogenic sources) and SI-SOA (SOA
formed by the oxidation of S–IVOC-untraditional SOA pre-
cursors emitted from anthropogenic sources). This scheme
was simplified from the detailed nine-species VBS, a scheme
with more surrogate organic compounds categorized by dif-
ferent ranges of volatility (Shrivastava et al., 2011). The sim-
plified two-species scheme categorized S–IVOCs into two
volatility species with effective saturation concentration C∗

equal to 0.01 and 105 µg m−3 at 298 K and 1 atm. C∗ is the
inverse of the Pankow-type equilibrium partitioning coeffi-
cient, which describes the fraction of gas and particle com-
ponents in SOA formation. Note that gas-phase SVOCs and
all IVOCs in this mechanism are represented by species with
C∗ equal to 105 µg m−3, and IVOCs were considered to re-
main in the gas phase before photochemical oxidation in
the atmosphere. POA and SI-SOA were assumed to be non-
volatile in the model. POA is the remaining aerosol compo-
nent after the evaporation of gas-phase SVOCs. In this mech-
anism, POA with SI-SOA are represented by species with C∗

equal to 0.01 µg m−3. This simplified two-species VBS has
been confirmed to be more suitable for computationally ex-
tensive models (i.e., WRF-Chem) for running complex cou-
pled cloud–aerosol–meteorology because of its similar pre-
dictions of total OA mass, individual OA components, and
evolution of organic aerosols in addition to its reduction in
computational cost by a factor of 2, compared to the detailed
nine-species VBS (Shrivastava et al., 2011).

In terms of the formation of SI-SOA in the two-species
VBS, the primary oxidation of S–IVOCs transformed the
gas-phase high-volatility S–IVOCs (C∗ = 105 µg m−3) into
the extremely low-volatility SI-SOAs (C∗ = 0.01 µg m−3)
with the OH reaction rate constant (kOH) of 0.57×
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10−11 cm3 molecule−1 s−1 and oxygen yield of 50 %. In
order to align the SOA predictions between two-species
and nine-species VBS schemes, kOH in the two-species
VBS had been reduced by a factor of 7 (i.e., 0.57×
10−11 cm3 molecule−1 s−1) from that of the nine-species
VBS (4× 10−11 cm3 molecule−1 s−1) because the order
of magnitude reduction in volatility through one gener-
ation of oxidation in the two-species VBS was 7 times
that in the nine-species VBS. Note that the kOH of 4×
10−11 cm3 molecule−1 s−1 in the nine-species VBS was as-
sumed to be ∼ 50 % higher than that of a typical large sat-
urated n-alkane as suggested by previous studies (Atkinson
and Arey, 2003; Robinson et al., 2007). The specific oxida-
tion reaction equations are as follows (the detailed descrip-
tion of the parameters in the equations are provided in the
Supplement):

S/IVOC(g)2,e,c +OH→ SI-SOA(g)1,e,c + 0.5 SI-SOA(g)1,e,o (4)
S/IVOC(g)2,e,o+OH→ SI-SOA(g)1,e,o+OH (5)

where (g) denotes gas phase; the subscript “1” denotes the
low-volatility species (C∗ = 0.01 µg m−3 at 298 K and 1 atm)
and “2” denotes the high-volatility species (C∗ = 105 µg m−3

at 298 K and 1 atm); e denotes the emission categories,
including biomass burning and other anthropogenic emis-
sions; c denotes the non-oxygen (C, H, N) component of the
species; and o represents the oxygen component.

In addition, V-SOA formed by the oxidation of anthro-
pogenic and biogenic VOCs in this mechanism was consid-
ered using one-species treatment with the configuration of
the saturation concentration C∗ of V-SOA as 1 µg m−3 at
298 K and 1 atm. NOx-dependent fixed one-product yields
for all VOC precursors were proposed by Shrivastava et
al. (2011).

Gas-particle partitioning between the gas and aerosol
phases of both SI-SOA and V-SOA was calculated using the
absorptive partitioning theory as described by Donahue et
al. (2006):

Ci,a =
Ci,tot

1+C∗i /M
, (6)

where Ci,a denotes aerosol-phase SOA mass concentration at
a given volatility bin i (here, its bin boundaries are C∗ val-
ues of 0.01 and/or 105 µg m−3); Ci,tot denotes the total mass
concentrations of gas- and aerosol-phase SOA for bin i; C∗i
denotes the saturation concentration for bin i; andM denotes
total mass concentrations of OA, which includes POA and
SOA.

To calculate the influence of temperature on C∗, the
Clausius–Clapeyron equation was used:

C∗i = C
∗

i,0
T0

T
exp

(
1Hi

R

(
1
T0
−

1
T

))
, (7)

where C∗i and C∗i,0 denote saturation concentration at T and
T0 (reference temperature 298 K), respectively, for bin i; R

is the universal gas constant; and 1Hi denotes the enthalpy
of vaporization for bin i.

2.2.3 Model scenarios

In order to evaluate the roles of S–IVOCs in the formation of
SOA over the PRD region, 13 simulations were performed
from 19 to 25 November 2008, including one control BASE
simulation and 12 sensitivity CASE simulations. Table 5 pro-
vides detailed descriptions on the base and sensitivity sce-
narios. For the base scenario, the simulation was conducted
without the input of S–IVOC emissions. For CASE1, this
simulation was conducted with the input of S–IVOCs from
all anthropogenic emissions (Sect. 3) in order to estimate the
contributions of S–IVOCs to the formation of SOA.

A large uncertainty of 0.57× 10−11 cm3 molecule−1 s−1

was found for the kOH of S–IVOC species in the two-species
VBS used in the current WRF-Chem model, which was cal-
culated on the basis of the kOH of the nine-species VBS that
was assumed to be about 50 % higher than that of a typical
large saturated n-alkane (Atkinson and Arey, 2003; Robin-
son et al., 2007). In this study, the kOH of S–IVOC species
was updated according to the emission factors and kOH of 57
speciated IVOCs from the vehicular emission measurements
(Zhao et al., 2015, 2016b) using the molar weighting method
by the following equation (Carter, 2000):

kOH = kOH,i ×
EFi

EFtot
, (8)

where i denotes the specific S–IVOC species; tot de-
notes all S–IVOC species; EF denotes the emission
factor; and kOH denotes the OH reaction rate con-
stant. The kOH of S–IVOCs was calculated to be 3×
10−11 cm3 molecule−1 s−1, which is smaller than the origi-
nal kOH of 4×10−11 cm3 molecule−1 s−1 in the model. Then,
the reaction rate with OH radicals was reduced to 0.42×
10−11 cm3 molecule−1 s−1 by a factor of 7 in order to ensure
its applicability to the two-species VBS scheme, as suggested
in Sect. 2.2.2. To evaluate the effect of the OH reactivity of
S–IVOCs on the formation of SOA, CASE2 was conducted
using the new updated kOH with the input of the same S–
IVOC emission as in CASE1.

For CASE3–6, the simulations were designed with varied
amounts of S–IVOC emissions at the 50 % and 95 % con-
fidence intervals (Sect. 3.2) using the new updated kOH of
S–IVOCs in order to evaluate the sensitivity of the SOA sim-
ulation to the magnitude of S–IVOC emissions and quan-
tify the uncertainty ranges in SOA prediction attributable to
uncertainties of S–IVOC emissions. Note that CASE3 and
CASE6 were conducted with the lower and upper limits of
the uncertainty ranges of S–IVOC emissions estimated at the
95 % confidence interval (which was 21 % and 329 % of the
amounts in the inventory as suggested in Sect. 3.2) as pre-
sented in Table 4, whereas CASE4 and CASE5 were con-
ducted with the edges of the uncertainty ranges of S–IVOC

www.atmos-chem-phys.net/19/8141/2019/ Atmos. Chem. Phys., 19, 8141–8161, 2019



8148 L. Wu et al.: Emission inventory of SVOCs and IVOCs

Table 3. S–IVOC emission inventory in the PRD region for the year
2010.

Source S–IVOC emission Contribution
(Gg yr) (%)

Industry 114.6 35.4
Residential sources 8.4 2.6
On-road mobile sources 134.4 41.6
Off-road mobile sources 4.8 1.5
Dust 46.8 14.5
Biomass burning 14.4 4.5

Total 323.4 100.0

emissions estimated at the 50 % confidence interval (45 %
and 127 % of the amounts in the inventory as suggested in
Sect. 3.2). Furthermore, CASES7–12 were simulated using
the new updated kOH of S–IVOCs with only the input of indi-
vidual S–IVOC emissions, i.e., biomass burning, dust, indus-
try, off-road mobile, on-road mobile, and residential sources,
to quantify the contributions of each S–IVOC emission to the
formation of SOA.

3 Emission inventory of S–IVOCs

3.1 S–IVOC emissions

Using the parameterization method described in Eq. (3),
hourly gridded S–IVOC emissions in the PRD region for
the year 2010 with a resolution of 3 km× 3 km were es-
timated with parameters given in Table 2 and the high-
resolution PM2.5 emission inventory (Zheng et al., 2010b).
As shown in Table 3, the total S–IVOC emissions in the
PRD region are 323.4 Gg in 2010, of which on-road mobile
sources contribute about 41.6 % (134.4 Gg), industry about
35.4 % (114.6 Gg), dust about 14.5 % (46.8 Gg), biomass
burning about 4.5 % (14.4 Gg), residential sources about
2.6 % (8.4 Gg), and off-road mobile sources about 1.5 %
(4.8 Gg). Regarding city-level contributions, Guangzhou was
the largest contributor to S–IVOC emissions with a con-
tribution of 23.9 %, followed by Foshan (18.4 %), Shen-
zhen (15.1 %), Jiangmen (11.9 %), and Dongguan (11.7 %)
as shown in Fig. 2. Notably, as expected, on-road mobile
sources and industry, which involve large amounts of vehi-
cles and industrial plants, were the top two contributors in
all cities, except for Zhongshan, where the contribution of
dust to total S–IVOC emissions was higher than industry
because of the accelerating urbanization with frequent ur-
ban constructions but much fewer industrial plants than in
Guangzhou, Foshan, Dongguan, and Shenzhen (Pan et al.,
2015; Yin et al., 2015; GSY, 2010). It was also of inter-
est to find that the magnitudes of S–IVOC emissions from
dust and industry in Zhaoqing and Shenzhen were similar,
but the contributions were different. Dust contributed about

21.1 % (3.6 Gg) and 7.4 % (3.6 Gg) to the S–IVOC emis-
sions in Zhaoqing and Shenzhen, and industry contributed
about 22.8 % (3.9 Gg) and 8.8 % (4.3 Gg), respectively. The
contributions of dust and industry to S–IVOC emissions in
Shenzhen were smaller than those in Zhaoqing, attributable
to the dominance of on-road mobile S–IVOC emissions in
Shenzhen (81.3 %, 39.6 Gg) because of the dense traffic (Pan
et al., 2015). As Shenzhen and Zhaoqing have much fewer
industrial point sources than cities located in the southeast-
ern PRD such as southern Guangzhou and Foshan (Pan et
al., 2015), their corresponding industrial S–IVOC emissions
were also less. There were relatively higher S–IVOC emis-
sions from road fugitive dust and lower emissions from build-
ing construction dust in Zhaoqing than in Shenzhen because
of shorter road lengths and more developed construction in-
dustries in Shenzhen (GSY, 2011; Peng et al., 2013), result-
ing in similar magnitudes of S–IVOC emissions from dust in
these two cities.

Figure 3a–f show the spatial distributions of S–IVOCs
emitted from different sectors for the year 2010. In gen-
eral, the spatial characteristics of S–IVOC emissions in 2010
(Fig. 4) were consistent with the distribution of on-road
mobile and industrial emissions (Fig. 3), the top two S–
IVOC contributors in this region. Furthermore, the spatial
distributions of total S–IVOC emissions agreed well with
the road network with the high S–IVOC emissions located
in central cities including Guangzhou, Foshan, Dongguan,
and Shenzhen. Large amounts of emissions from biomass
burning were found in Zhaoqing, Jiangmen, and Huizhou,
which are characterized by extensive combustion of house-
hold firewood and straw associated with the large rural popu-
lations (Fig. 3a), contributing nearly 43 % to total rural pop-
ulations in the PRD region in 2010 (GSY, 2011; Yuan et
al., 2010). In contrast, high S–IVOC emissions from dust
were mainly concentrated in Guangzhou, Foshan, Dong-
guan, Shenzhen, and Zhongshan, associated with heavy traf-
fic flows and frequent urban constructions because of prepa-
ration for the 2010 Asian Games and accelerating urbaniza-
tion processes in recent years (Fig. 3b). The high industrial
emissions of S–IVOCs were mainly concentrated in Foshan,
Dongguan, Zhongshan, and Guangzhou, where numerous in-
dustrial point sources and power plants are located (Fig. 3c).
The spatial distributions of S–IVOCs emitted from on-road
mobile sources were very consistent with the patterns of road
networks in the PRD region. The emissions were concen-
trated in central economically developed cities with large
numbers of vehicles (Fig. 3e). Compared with the abovemen-
tioned sectors, S–IVOC emissions from residential and off-
road mobile sources in the PRD region were lower (Fig. 3d
and f). Nevertheless, the total S–IVOC emissions (323.4 Gg)
were only a quarter of total VOC emission (1224.5 Gg) in
the PRD region in 2010 (Fig. 5), but they were more than 6
times the total OC emission (52.9 Gg). Moreover, the con-
tributions of different sectors varied in different emission
inventories. For example, biogenic and solvent use sources
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Figure 2. Source-specific emissions in each city for the year 2010.

Table 4. Uncertainty assessment of the S–IVOC emission inventory for the year 2010.

Correlation coefficients between model inputs and outputs (uncertainty range at 95 % confidence interval)

Source ESVOCs EIVOCs ES/IVOCs FOC OM/OC EPM2.5 ESVOCs /EPOA EIVOCs /EPOA

Industry 0.108 0.510 0.496 0.098 0.006 0.018
(−95 %, 283 %) (−97 %, 404 %) (−97 %, 386 %) (−94 %, 233 %) (−16 %, 15 %) (−54 %, 55 %)

Residential 0.060 0.631 0.618 0.035 0.005 0.032
(−78 %, 132 %) (−89 %, 281 %) (−88 %, 264 %) (−63 %, 56 %) (−6 %, 7 %) (−66 %, 66 %)

On-road 0.477 0.961 0.956 0.345 0.020 0.204 0.019 0.782
mobile (−87 %, 183 %) (−93 %, 321 %) (−92 %, 302 %) (−79 %, 103 %) (−6 %, 5 %) (−73 %, 73 %) (−29 %, 34 %) (−79 %, 201 %)

Off-road 0.023 0.589 0.575 0.012 0.001 0.011
mobile (−83 %, 137 %) (−91 %, 284 %) (−90 %, 266 %) (−78 %, 70 %) (−6 %, 5 %) (−59 %, 59 %)

Dust 0.078 0.692 0.682 0.033 0.015 0.041
(−68 %, 103 %) (−86 %, 252 %) (−84 %, 235 %) (−35 %, 28 %) (−16 %, 15 %) (−61 %, 61 %)

Biomass 0.027 0.026 0.032 0.016 0.001 0.092 0.012 0.013
burning (−70 %, 127 %) (−100 %, 336 %) (−75 %, 163 %) (−50 %, 79 %) (−7 %, 7 %) (−58 %, 58 %) (−25 %, 26 %) (−99 %, 247 %)

Total (−55 %, 90 %) (−85 %, 250 %) (−79 %, 229 %)

contributed to the overall VOC emissions by 45 % in total
but did not contribute to emissions of S–IVOCs, PM2.5, and
OC. The contribution of biomass burning (4 %, 14.4 Gg) to
S–IVOCs was much smaller than that to OC (24 %, 12.9 Gg)
because the emission ratio of IVOCs to POA for biomass
burning is much smaller than that of other sectors. Industrial
sources contributed less to S–IVOC emissions than to PM2.5
with contributions of 35 % and 52 %, respectively, while on-
road mobile sources contributed more to S–IVOC emissions
(42 %, 134.4 Gg) as the fraction of OC in PM2.5 (FOC) in
on-road mobile emissions was higher than that in industrial
emissions, when other parameters in the emission model for
these two sectors were similar (Table 2).

3.2 Uncertainties in S–IVOC emissions

An uncertainty assessment of the 2010 PRD regional S–
IVOC emission inventory together with a sensitivity anal-
ysis based on the Monte Carlo simulation and sample cor-
relation coefficient method (Zheng et al., 2010a) were per-
formed to determine the ranges of uncertainties and identify
the key sources of uncertainties in S–IVOC emission esti-
mates. Table 4 lists estimated ranges of uncertainties and as-
sociated correlation coefficients with estimated total S–IVOC

emissions for the different parameters used in calculating the
total S–IVOC emissions in different source categories. As
shown in Table 4, the uncertainty in the total S–IVOC emis-
sions was very high with a relative error of −79 %–229 %
at the 95 % confidence interval, which could be mainly at-
tributed to uncertainties in the S–IVOC emissions of the on-
road mobile sources because of the largest correlation coeffi-
cient of the on-road mobile S–IVOC emissions with total S–
IVOC emissions among all the source categories. It is note-
worthy that the uncertainty ranges of the emission invento-
ries of S–IVOCs were wider than those of VOCs and PM2.5,
which were only −6 %–99 % and −6 %–77 %, respectively
(Zhong et al., 2018). For input parameters in the emission
model, the correlation coefficients between total S–IVOC
emissions and FOC for the on-road mobile sources or ratios
of EIVOCs /EPOA for all source categories, except biomass
burning, were very large, indicating that these parameters
were the key sources of high uncertainties in the S–IVOC
emission estimates. It should be noted that the actual uncer-
tainties in S–IVOC emission estimates should be larger be-
cause the same ratios of EIVOCs /EPOA and ESVOCs /EPOA
were used for all source categories, except biomass burning,
which was only based on measurements of vehicular emis-
sion. These results indicated that more measurement of FOC
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Figure 3. Spatial distribution of S–IVOC emissions from different source categories for the year 2010: (a) biomass burning, (b) dust,
(c) industry, (d) off-road mobile sources, (e) on-road mobile sources, (f) residential sources.

from on-road mobile emission and source-specific measure-
ments of EIVOCs /EPOA and ESVOCs /EPOA is key to reduc-
ing uncertainties in S–IVOC emission estimates.

3.3 Comparison with other emission inventories

To indicate the differences in S–IVOC emission inventories
developed using different methods, the S–IVOC emission
inventory developed in this study was further preliminarily
compared to recently proposed global emissions of PAHs
by Shen et al. (2013) (detailed data for the emission inven-
tory are provided in Table S2 in the Supplement) because
PAHs are important components of S–IVOCs. In this study,
emissions of five PAHs including NAP (naphthalene), ACY
(acenaphthylene), FLO (fluorene), PHE (phenanthrene), and
PYR (pyrene) with high fractions in total PAH emissions

were selected for comparison with corresponding PAH emis-
sions of Shen et al. (2013) for the year 2010 in the PRD re-
gion. Note that the emission of individual PAHs in all source
categories in this study was extracted from the total IVOC
emission using the ratio of specific individual PAHs to to-
tal IVOCs from vehicular emission measurements (Zhao et
al., 2015, 2016b). Large deviations were found for emissions
of the abovementioned PAHs between the present and previ-
ous studies, especially for NAP (Fig. S1 in the Supplement).
For example, NAP emissions were larger with more distinct
spatial characteristics in this study than in Shen’s inventory
over most of the PRD region. The characteristics of road
networks were also observed for the spatial distribution of
NAP emission in the present study, which was not reflected
in Shen’s inventory. Furthermore, the total emissions of the
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Figure 4. Spatial distribution of total S–IVOC emissions for the
year 2010.

Figure 5. Comparisons with emissions of other pollutants in the
PRD region for the year 2010.

five selected PAHs over the PRD in this study were about 3.4
times those in Shen’s inventory, with multiples ranging from
1.2 to 13.4 in nine individual cities of the PRD (Table S2).
The discrepancies in PAH emissions in different studies can
be mainly attributed to the following factors: (1) differences
in the resolution of emission inventories. For example, the
spatial resolution of the emission inventory in this study was
3 km× 3 km, which is much higher than that of the previous
study (0.1◦× 0.1◦). (2) The second factor is differences in
the parameterization methods for developing different inven-
tories. For example, emission factors of PAHs in the present
study were calculated on the basis of those of IVOCs using
the ratio of specific individual PAH to total IVOCs, wherein
the emission factors of IVOCs were obtained from those of
existing traditional POAs using source-specific linear scal-
ing factors. However, emission factors of PAHs in Shen’s
study were directly obtained from actual measurements from
various reports, which were further calculated to be time-
specific based on the regression model and technology split-
ting approach. Nevertheless, by considering the uncertainties
of different inventories (i.e., −55 %–27 % and −34 %–62 %

Figure 6. Comparisons of SOA between simulations and observa-
tions at the WQS monitoring site: (a) time series; (b) ratios of tem-
poral average SOA concentration to observed SOA concentration
during the study period (the box represents the uncertainty range
in SOA prediction, the central line is the ratio in CASE2, and the
edges of the box are the ratios in CASE4 and CASE5, the edges of
the whiskers are the ratios in CASE3 and CASE6).

at the 50 % confidence interval for emission inventories of the
present and previous studies, respectively), it is reasonable
to conclude that the emissions of selected PAHs between the
two studies are comparable. Moreover, further investigation
revealed that the spatial variations in PAH emissions in this
study may be more reasonable than those in Shen’s inven-
tory. For example, high centers of PAH emissions in Shen’s
inventory were located only in Guangzhou and Shenzhen.
Conversely, in this study, high PAH emissions were found in
central cities including Guangzhou, Foshan, Shenzhen, and
Dongguan, which have dense traffic and population. This re-
sult is consistent with the result that traffic was frequently
found to be one of the most important sources of PAH emis-
sions (Riva et al., 2017).

4 The simulation results of SOA formation

4.1 Effects of S–IVOCs on SOA concentration

In this study, daily measured concentrations of SOA at the
WQS site in Guangzhou, a receptor site of the PRD region
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Figure 7. Relative difference of SOA between CASE runs and BASE: (a) CASE1, (b) CASE2, (c) CASE3, (d) CASE4, (e) CASE5,
(f) CASE6.

during autumn and winter, were used to evaluate the model
performance for the simulation of SOA (Ding et al., 2012).
The monitoring data of this site could represent the regional
air pollution in the PRD because it is surrounded by farm-
land and not much traffic with flat terrain (Ding et al., 2012).
The time series of SOA for BASE, CASE1, CASE2, and
observations during the study period is plotted in Fig. 6a.
Both BASE and CASE simulations reproduced the day-to-
day variations in SOA well, although the model could not
capture the observed high concentrations of SOA. Another
remarkable feature in Fig. 6a is that the predicted concen-
trations of SOA became much closer to the observed values
after the S–IVOC emissions were considered, with the dis-
crepancy between simulations and observations decreasing
from −9.15 to −6.39 µg m−3 for CASE1 (30 % decrease,

p < 0.01). Moreover, the performance of SOA simulation
was improved by 196 % for CASE1 compared to BASE. The
ratios of predicted SOA to observed SOA in CASE1–2 and
BASE runs are presented in Fig. 6b. The model could resolve
39 % of the observed SOA with an increase of 26 % com-
pared to BASE when the S–IVOC emissions were included
and the original kOH of S–IVOCs was used. Figure 7a shows
the relative variations in SOA between CASE1 and BASE in
the whole modeling domain. An obvious increase of 40 %–
375 % in SOA is found over the PRD region with an average
regional increase of 161 % when S–IVOC emissions were in-
corporated into the model. The most remarkable increase pat-
terns are found in the cities of Foshan, Shenzhen, Dongguan,
and Jiangmen, with the increments ranging from 240 % to
375 %. This is consistent with the spatial SI-SOA in Fig. 8
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and can probably be attributed to the high anthropogenic S–
IVOC emissions in these cities (Fig. 4). Furthermore, a sub-
stantial increase in SOA was found in the southwest down-
wind area of the PRD region with increments of 240 %–
325 % attributable to the influences of both local pollutants
and pollutants transported from the upwind area because the
dominant wind direction over the PRD region was northeast-
erly during the pollution period (Fig. 8). Notably, high in-
creasing ratios of SOA concentrations in Guangzhou only
appeared in a small southwestern part of Guangzhou, prob-
ably because high S–IVOC emissions in Guangzhou mainly
resulted in considerable SOA growth in downwind areas, es-
pecially Foshan, which lies to the southwest of Guangzhou.
Nevertheless, the above results demonstrated that S–IVOCs
are significant precursors for forming SOA, and the model
performance for SOA formation could be improved signifi-
cantly if S–IVOC emissions were considered. Therefore, in
addition to traditional VOCs, S–IVOC emissions should be
included in CTMs to achieve accurate modeling of the for-
mation of SOA and regional air quality.

In contrast, the predicted SOA in CASE2 decreased by
14 % compared to CASE1 after the kOH of S–IVOCs was
improved. Moreover, the model could resolve 34 % of the
observed SOA at the WQS site, which is smaller than the re-
solved fraction of 39 % in CASE1 (Fig. 6a–b). The average
regional increase ratio of SOA decreased to 126 % in CASE2
with the newly updated decreased kOH of S–IVOCs and the
same S–IVOC emissions as in CASE1 (Fig. 7b). This sug-
gests that the decreased OH reactivity coefficient indeed de-
creased the formation rate of SOA, and a more precise OH
reactivity is required for the model to better simulate SOA.

CASE3–6 were simulated with the input of varied amounts
of S–IVOC emissions on the basis of the uncertainty
ranges of the estimates of S–IVOC emissions (Table 5 and
Sect. 2.2.3). The uncertainty ranges of the ratios of predicted
SOA concentrations to observed ones, attributable to uncer-
tainties in S–IVOC emissions, are presented as an error bar
in Fig. 6b. As expected, the ratios of temporal average simu-
lated SOA to observed SOA at the WQS site during the study
period varied from 18 % to 77 % after taking the uncertainties
of S–IVOC emissions into account. Figure 7c–d show minor
increases in SOA with the input of lower S–IVOC emissions
for CASE3 and CASE4, compared to CASE1, with average
regional increases of 27 % and 57 %, respectively. Figure 7e–
f show larger increases in SOA with the input of higher S–
IVOC emissions for CASE5 and CASE6, with average re-
gional increases of 158 % and 395 %, respectively. The re-
sults suggest that SOA is strongly sensitive to the amounts of
S–IVOC emissions. Consequently, it is of great importance
to reduce the uncertainties in the S–IVOC emission inven-
tory to achieve accurate simulations of SOA.

4.2 Key anthropogenic S–IVOCs for SOA formation

Six simulations including CASE7–12 were conducted with
only the input of S–IVOC emissions from individual source
categories in order to identify the key anthropogenic source
of S–IVOCs to form SOA, as described in Table 5. The spa-
tial distributions of the relative differences of predicted SOA
concentrations between CASE simulations and BASE are
presented in Fig. 9. The increasing ratio of SOA in CASE9
was found to vary in the range of 5 %–190 % over the PRD
region with an average increase of 52 % when the industrial
S–IVOC emission was incorporated into the model. The cen-
ter of increasing SOA was located in Foshan, which is an
industrially developed city (Fig. 9c). After including on-road
mobile S–IVOC emissions in the model, the predicted SOA
was increased by 5 %–180 % with an average regional in-
crease of 43 % (Fig. 9e), and high amounts were detected
over central cities including Shenzhen, Guangzhou, Foshan,
and Zhongshan, which feature a high rate of vehicle owner-
ship, contributing to 71 % of total vehicle ownership in the
PRD region (GSY, 2011). After considering S–IVOCs emit-
ted from dust, the average regional increase ratio of SOA was
18 % (Fig. 9b), and the centers were located in Guangzhou,
Foshan, Zhongshan, Dongguan, and Shenzhen. These cities
have high traffic flows and frequent urban constructions, and
their vehicle ownerships and floor space of buildings under
construction contributed to ∼ 86 % and ∼ 81 % of those in
the PRD region (Pan et al., 2015; GSY, 2011). With the input
of S–IVOC emissions from biomass burning, the average re-
gional increasing ratio of SOA was up to 8 % (Fig. 9a), and
high values were mainly distributed in Zhaoqing. This city
has expansive agricultural areas and large rural populations,
accounting for ∼ 31 % and ∼ 15 %, respectively, of the to-
tal in the PRD (Yang et al., 2013; Pan et al., 2015; GSY,
2011). Nevertheless, the average regional SOA increased by
only 2 % and 4 % with the input of S–IVOCs emitted from
off-road mobile and residential sources, respectively (Fig. 9d
and f). Notably, similar high centers of increasing SOA and
S–IVOC emissions could be found in Figs. 9 and 3, re-
spectively, for six specific sectors, indicating that the incre-
ment in SOA concentrations was highly correlated with the
input of S–IVOC emissions. Overall, the industry and on-
road mobile sources were the main anthropogenic sources
of S–IVOCs contributing to the formation of SOA in the
PRD region, followed by dust, biomass burning, residential,
and off-road mobile sources. However, it was of interest to
find that though the emission strength of on-road mobile S–
IVOCs was stronger than that of industrial S–IVOCs in the
PRD, the contribution of industry to SOA formation was
higher than on-road mobile sources. This is related to dif-
ferent transport patterns in varied simulations with the input
of S–IVOC emissions from different source categories. For
example, high industrial S–IVOC emissions outside the PRD
would induce considerable SOA growth downwind inside the
PRD; however, high on-road mobile S–IVOC emissions in
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Figure 8. Spatial distribution of temporal average (a) SOA and (b) SI-SOA during the study period over the modeling domain in the CASE2
run.

Table 5. Overview of simulations.

Test S–IVOC emission kOH of S–IVOCs Notes
name inventory (cm3 molecule−1 s−1)

BASE No S–IVOC emissions

CASE1 All anthropogenic S–IVOC emissions 0.57× 10−11 To evaluate the effect of kOH on the
CASE2 All anthropogenic S–IVOC emissions 0.42× 10−11 formation of SOA.

CASE3 21 % of the S–IVOC emissions in CASE2 0.42× 10−11 To evaluate the sensitivity of SOA
CASE4 45 % of the S–IVOC emissions in CASE2 0.42× 10−11 simulation to S–IVOC emission.
CASE5 1.27 times the S–IVOC emissions in CASE2 0.42× 10−11

CASE6 3.29 times the S–IVOC emissions in CASE2 0.42× 10−11

CASE7 Only S–IVOC emissions from biomass burning 0.42× 10−11

CASE8 Only S–IVOC emissions from dust 0.42× 10−11 To quantify the contributions of S–IVOCs
CASE9 Only industrial S–IVOC emissions 0.42× 10−11 emitted from different source categories
CASE10 Only off-road mobile S–IVOC emissions 0.42× 10−11 to the formation of SOA.
CASE11 Only on-road mobile S–IVOC emissions 0.42× 10−11

CASE12 Only residential S–IVOC emissions 0.42× 10−11

coastal cities such as Shenzhen would bring the SOA growth
to the South China Sea, resulting in a loss of SOA inside the
PRD.

5 Discussion and conclusions

In this study, a highly resolved gridded emission inventory
of S–IVOCs for the PRD region in 2010 was developed. The
estimates showed that total S–IVOC emission in the PRD re-
gion for the year 2010 was 323.4 Gg, 77 % of which could
be attributed to on-road mobile and industrial sources. Large
uncertainties were still observed in S–IVOC emission esti-
mates, with a relative error ranging from −79 % to 229 %.
These uncertainties could be attributed to the FOC of the on-
road mobile source andEIVOCs /EPOA ratio of all source cat-
egories, except biomass burning. Therefore, these parameters
should be prioritized in further experimental studies in order
to improve future S–IVOC emission inventories. Moreover,

13 simulations using the WRF-Chem model were conducted
to investigate the effects of S–IVOCs on SOA and identify
the key anthropogenic source of S–IVOCs contributing to
SOA formation over the PRD region. The analysis of the sim-
ulation results indicated that the performance of SOA sim-
ulation was greatly improved after considering the reaction
pathway producing SI-SOA from S–IVOCs. S–IVOCs could
result in considerable SOA growth, and the kOH of S–IVOCs
had a non-negligible effect on the production of SI-SOA. Af-
ter considering the uncertainties of S–IVOC emissions, the
model could resolve 18 %–77 % of observed SOA concen-
trations at the WQS site. These indicate the need for more
experimental data of kOH for S–IVOCs to reduce the uncer-
tainties of this parameter within the model, and reduction of
uncertainties of S–IVOC emissions to achieve more accurate
simulation of SOA formation. In addition, the industrial and
on-road mobile sources were the top two important anthro-
pogenic sources of S–IVOCs contributing to SOA formation,
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Figure 9. Relative difference of SOA between CASE runs and BASE: (a) CASE7, (b) CASE8, (c) CASE9, (d) CASE10, (e) CASE11,
(f) CASE12.

followed by dust, biomass burning, residential, and off-road
mobile sources.

Although the performance of the model in simulating SOA
could be significantly improved, many issues still remain
to be resolved. The observed SOA concentrations could not
be accurately reproduced in the present study, especially for
high SOA concentrations (Fig. 6a). We inferred that the in-
complete and inaccurate formation mechanism of SOA and
large unresolved uncertainties in the S–IVOC emission in-
ventory were the main reasons for the underestimation of
SOA concentrations in the simulation. For example, large un-
certainties still remained within source-specific and season-
specific S–IVOC emissions, reaction rates of S–IVOCs, and
SOA yields of VOCs and S–IVOCs. Furthermore, specific
profiles of S–IVOCs were lacking. The approach including

the distribution of S–IVOC emissions was based on inade-
quate data from domestic and foreign studies without suffi-
cient localization in the PRD region, which further included
large uncertainties. Furthermore, the assumption that SVOC
emissions were included in POA emissions was not suffi-
ciently constrained because of the limited observation data of
hydrocarbon-like organic aerosol (HOA) and biomass burn-
ing organic aerosol (BBOA). Therefore, much more local
experimental work is needed to quantify all the abovemen-
tioned parameters in the future. In addition, the introduction
of complete and complex physical and chemical processes
of SOA formation, e.g., gas- and aqueous-phase oxidation,
heterogeneous and accretion reactions, acid catalysis reac-
tions of SOA from glyoxal, and chemical aging of SOA,
may be useful in estimating SOA concentrations more ac-
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curately, although it will increase experimentation costs and
introduce larger uncertainties (Carlton et al., 2008; Denken-
berger et al., 2007; George and Abbatt, 2010; Hallquist et
al., 2009; Kroll and Seinfeld, 2008; Liggio et al., 2005; Pun
and Seigneur, 2007; Washenfelder et al., 2011). For exam-
ple, Dzepina et al. (2011) found that including chemical ag-
ing of V-SOA resulted in larger regional overprediction of
SOA, whereas Ahmadov et al. (2012) reported a good agree-
ment with observations after considering it. Shrivastava et
al. (2011) pointed out that aging parameterization based on
smog chamber measurements involves large uncertainties be-
cause the timescales of photochemical ages are longer than
that accessible in chambers. Shrivastava et al. (2015) also
pointed out that neglecting fragmentation reactions in ag-
ing parameterizations leads to large model overpredictions
of SOA concentrations at all surface sites. Therefore, we plan
to test more chemical processes that have not yet been con-
sidered in the WRF-Chem model and introduce the parame-
ters required for establishing the S–IVOC emission inventory
and model parameterization with fewer uncertainties based
on more local experimental work in the future. Furthermore,
we plan to build the S–IVOC emission inventory based on
ample local directly measured S–IVOC emission factors and
volatility distribution factors of POA in future work instead
of scaling POA emission factors.
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