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Abstract. We use 2010–2015 observations of atmospheric
methane columns from the GOSAT satellite instrument in
a global inverse analysis to improve estimates of methane
emissions and their trends over the period, as well as the
global concentration of tropospheric OH (the hydroxyl radi-
cal, methane’s main sink) and its trend. Our inversion solves
the Bayesian optimization problem analytically including
closed-form characterization of errors. This allows us to
(1) quantify the information content from the inversion to-
wards optimizing methane emissions and its trends, (2) di-
agnose error correlations between constraints on emissions
and OH concentrations, and (3) generate a large ensemble
of solutions testing different assumptions in the inversion.
We show how the analytical approach can be used, even
when prior error standard deviation distributions are lognor-
mal. Inversion results show large overestimates of Chinese
coal emissions and Middle East oil and gas emissions in
the EDGAR v4.3.2 inventory but little error in the United
States where we use a new gridded version of the EPA na-
tional greenhouse gas inventory as prior estimate. Oil and gas
emissions in the EDGAR v4.3.2 inventory show large dif-
ferences with national totals reported to the United Nations

Framework Convention on Climate Change (UNFCCC), and
our inversion is generally more consistent with the UN-
FCCC data. The observed 2010–2015 growth in atmospheric
methane is attributed mostly to an increase in emissions from
India, China, and areas with large tropical wetlands. The con-
tribution from OH trends is small in comparison. We find
that the inversion provides strong independent constraints on
global methane emissions (546 Tg a−1) and global mean OH
concentrations (atmospheric methane lifetime against oxida-
tion by tropospheric OH of 10.8± 0.4 years), indicating that
satellite observations of atmospheric methane could provide
a proxy for OH concentrations in the future.

1 Introduction

Methane is an important greenhouse gas with a particu-
larly strong decadal climate impact (Stocker et al., 2013).
The atmospheric methane concentration has increased by
a factor of 2.5 since pre-industrial times (Hartmann et al.,
2013). This increase is not well understood but is most
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likely to be mainly driven by anthropogenic activities in-
cluding the oil and gas industry, coal mining, livestock,
landfills, wastewater treatment, biomass burning, and rice
cultivation (Dlugokencky et al., 2011; Kirschke et al., 2013;
Saunois et al., 2016). Wetlands are the main natural source
and could be affected by climate change (Kirschke et al.,
2013). Atmospheric methane has a lifetime of 9.1±0.9 years
(Prather et al., 2012), with a dominant sink from ox-
idation by the hydroxyl radical (OH) that is also sub-
ject to interannual variability and trends (Holmes et al.,
2013). The methane burden rose by ∼ 12 ppb a−1 in the
late 1980s and by ∼ 6 ppb a−1 in the 1990s, plateaued in
the early 2000s (∼ 0.5 ppb a−1), and has resumed increas-
ing at ∼ 7 ppb a−1 since 2007 (https://www.esrl.noaa.gov/
gmd/ccgg/trends_ch4/, last access: 27 April 2019), for rea-
sons that remain unclear (Turner et al., 2017). Inverse anal-
yses can help interpret these trends by combining atmo-
spheric methane observations with a chemical transport
model (CTM) to infer the distribution of methane emissions
most likely to explain the observations (Houweling et al.,
2017; Saunois et al., 2016; Jacob et al., 2016). Here we use
global 2010–2015 methane observations from the GOSAT
satellite in an analytical inverse analysis with closed-form
error characterization to better quantify methane sources and
interpret the recent trend, including changes in both methane
emissions and OH concentrations.

A number of explanations have been proposed for the re-
newed growth of atmospheric methane concentrations since
2007. A parallel increase in ethane has been proposed as ev-
idence for an increase in oil and gas emissions (Hausmann
et al., 2016; Franco et al., 2016). A trend towards isotopically
lighter methane has been attributed to an increase in micro-
bial sources such as livestock and wetlands (Schaefer et al.,
2016; Schwietzke et al., 2016; Nisbet et al., 2016; McNorton
et al., 2016; Thompson et al., 2018). Worden et al. (2017)
suggest that a decrease in open fire emissions may mask the
isotopic signature of increasing fossil fuel emissions. Obser-
vations of methyl chloroform, a proxy for global OH concen-
trations, suggest that a decrease in the methane sink may be
implicated in the renewed growth (Turner et al., 2017; Rigby
et al., 2017; McNorton et al., 2018). Turner et al. (2017) find
from a global two-box model analysis that the surface record
of methane observations is too sparse to arbitrate between
methane emissions and OH concentrations as drivers for the
methane increase, though Naus et al. (2019) pointed out that
there are inherent biases in the two-box modeling approach.

GOSAT was launched in 2009 and measures atmospheric
methane columns with high precision (0.7 %) by solar
backscatter in the shortwave infrared (SWIR) (Butz et al.,
2011; Buchwitz et al., 2015; Kuze et al., 2016). A num-
ber of inverse analyses have used the GOSAT data to im-
prove estimates of methane emissions (Monteil et al., 2013;
Cressot et al., 2014; Alexe et al., 2015; Turner et al., 2015;
Pandey et al., 2016, 2017; Miller et al., 2019). Here we use
the GOSAT data to optimize not only global emissions but

also their 2010–2015 trends together with OH concentrations
and their trends. The independent optimization of OH and
emissions in the inversion is based on the different signa-
tures of those two terms on the methane concentration field
(Zhang et al., 2018). We use an analytical inverse method
with closed-form error characterization of the solution, rather
than the adjoint approaches used in previous inverse studies
that do not provide rigorous characterization of errors. This
allows us in particular to diagnose the error correlation be-
tween the independent constraints on methane emissions and
OH concentrations and their trends. It also allows us to read-
ily conduct inversions for an ensemble of cases once the Ja-
cobian matrix for the problem has been constructed.

2 Data and methods

We use the GEOS-Chem CTM (http://acmg.seas.harvard.
edu/geos/, last access: 27 April 2019) as forward model to
simulate the distribution of atmospheric methane and its re-
sponse to trends. Model results are fit statistically to the
GOSAT data by Bayesian optimization, including regular-
ization from prior knowledge of methane emissions and OH
concentrations. The January 2010–December 2015 GOSAT
methane column data are arranged in an observation vec-
tor y, and the inversion optimizes a state vector x includ-
ing global methane emissions on the 4◦× 5◦ GEOS-Chem
grid, 2010–2015 linear trends of emissions on that same grid,
and global mean OH concentrations for individual years (we
will also present results from an inversion optimizing a linear
OH trend over the 2010–2015 period). The optimal solution
x̂ is obtained by minimizing a Bayesian cost function that
balances the information from the observations (weighed by
the observational error covariance matrix SO) and the prior
knowledge xa (weighed by the prior error covariance matrix
Sa) (Rodgers, 2000). Below we describe the different ele-
ments and steps in the inversion.

2.1 GOSAT observations

The TANSO-FTS instrument on board the Greenhouse Gases
Observing Satellite (GOSAT) observes column-averaged
dry-air methane mixing ratios by solar backscatter in the
SWIR with near-unit sensitivity down to the surface (Butz
et al., 2011). The satellite is in polar sun-synchronous or-
bit. Observations are made at around 13:00 local time for
circular pixels of 10 km diameter. In the default observation
mode, the pixels are separated by ∼ 250 km along track and
cross track, with repeated observation of the same pixels ev-
ery 3 days. Denser observations are also made in target mode
over features of interest. GOSAT spectra have shown no sig-
nificant drift or degradation of data quality since the begin-
ning of the record (Kuze et al., 2016). We use the Univer-
sity of Leicester version 7 CO2 proxy retrieval over land
(Parker et al., 2011, 2015) from January 2010 to Decem-
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Figure 1. 2010–2015 average of the GOSAT methane dry column
mixing ratios used in our inversion. Data are from the University
of Leicester version 7 CO2 proxy retrieval (Parker et al., 2015), ex-
cluding glint observations over the oceans and observations pole-
ward of 60◦. GOSAT pixels are of 10 km circular diameter and are
inflated here to 0.5◦ for visibility. The red stripes are an averaging
artifact as these retrievals are from towards the end of the 2010–
2015 time period when methane was higher.

ber 2015 in order to have even observations of all seasons.
The single-observation precision is 13 ppb, and the relative
(regional) bias is 2 ppb compared to ground-based column-
averaged dry-air mole factions from the Total Carbon Col-
umn Observing Network (TCCON; Buchwitz et al., 2015).
Other retrievals of GOSAT data are consistent with the Uni-
versity of Leicester product (Buchwitz et al., 2015). Figure 1
illustrates the GOSAT data ingested in our inversion, rep-
resenting a total of 1 211 468 retrievals. Glint data over the
oceans and data poleward of 60◦ are not included because of
seasonal sampling biases (Turner et al., 2015).

2.2 Prior estimates

The inversion requires prior estimates and error statistics
for all components of the state vector including methane
emissions on the 4◦× 5◦ GEOS-Chem grid (1009 ice-free
land-containing grid cells with prior emissions larger than
8× 10−3 Mg km−2 a−1, covering 99 % of global emissions),
2010–2015 linear emission trends on the same grid, and
global mean OH concentrations for individual years 2009–
2015 (2009 is only used for initialization), for a total of 2025
state vector elements.

Table 1 gives our global prior inventory with the contri-
butions from different source types, and Fig. 2 shows the
spatial distributions. Monthly wetland emissions for individ-
ual years are from the WetCHARTS v1.0 extended ensem-
ble mean (Bloom et al., 2017). For anthropogenic emissions
we use the EDGAR v4.3.2 global emission inventory for
2012 (https://edgar.jrc.ec.europa.eu/, last access: 1 Decem-
ber 2017; Janssens-Maenhout et al., 2019) as worldwide de-
fault, including additional information from EDGAR to sub-
set the “fuel exploitation” emissions category into oil and
gas and coal mining. Over the continental United States, we
replace EDGAR v4.3.2 with a gridded version of the US

Table 1. Prior global estimates of methane sources and sinks (mean
2010–2015 values).

Source (Tg a−1) Sink (Tg a−1)

Natural

Wetlands 161 Tropospheric OH 475
Open fires 15 Stratospheric loss 33
Termites 12 Soil uptake 18
Seeps 5 Tropospheric Cl 9

Anthropogenic

Livestock 117
Oil and natural gas 70
Coal mining 38
Rice cultivation 38
Wastewater 38
Landfills 30
Other anthropogenic∗ 25

Total source 548 Total sink 535

∗ Including fossil fuel combustion, industrial processes, and agricultural field
burning.

EPA greenhouse gas inventory (Maasakkers et al., 2016). In
Canada and Mexico, we use the oil and gas emissions from
Sheng et al. (2017). Anthropogenic emissions are assumed
as aseasonal for lack of better prior information except for
manure management and rice cultivation. Seasonal scaling of
manure management emissions is done using the temperature
dependence of Maasakkers et al. (2016). Seasonal scaling of
rice cultivation emissions is based on Zhang et al. (2016).
Daily global open fire emissions are from QFED (Darmenov
and da Silva, 2013). Termite emissions are from Fung et al.
(1991). Emissions from geological macroseeps (oil and gas
seeps and mud volcanoes) are based on Etiope (2015) and
Kvenvolden and Rogers (2005). For areal seepage, we use the
sedimentary basins (microseepage) and potential geothermal
seepage maps from Kvenvolden and Rogers (2005) with the
emission factor previously used by Lyon et al. (2015). Over
the United States, we use the sedimentary basin map from the
Energy Information Administration (EIA, 2016) and basin-
specific emission factors from Etiope and Klusman (2010).
While global geological emissions have previously been esti-
mated to be over 50 Tg a−1 (Kirschke et al., 2013), Petrenko
et al. (2017) showed that based on ice core measurements
they should be no higher than 15 Tg a−1.

Construction of the prior error covariance matrix Sa re-
quires estimates of error variances for the prior emissions
on the 4◦× 5◦ grid. For wetland emissions, we use the
standard deviation of 4◦× 5◦ annual emissions from the
WetCHARTs ensemble members (Bloom et al., 2017). The
error variance averages 58 % on the grid level. For US an-
thropogenic emissions and oil and gas emissions in Canada
and Mexico, we use the scale-dependent error variances from
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Figure 2. Prior estimates of methane emissions from wetlands, livestock, coal mining, oil and gas, wastewater and landfills, and other sources.
Values are 2010–2015 averages and are shown on the 4◦×5◦ GEOS-Chem grid used for the inversion. Global totals for each source type are
given in Table 1.

Maasakkers et al. (2016). For lack of better information, we
assume 50 % error standard deviation for EDGAR v4.3.2
emissions (Turner et al., 2015) and 100 % for non-wetland
natural emissions. The diagonal terms of Sa are then con-
structed by adding the error variances of individual source
types for 4◦×5◦ grid cells in quadrature, capping total errors
at 50 %. We assume no error spatial covariance on the 4◦×5◦

grid so that Sa is diagonal. This is a reasonable assump-
tion for anthropogenic emissions (Maasakkers et al., 2016),
though errors on wetland emissions may still be correlated
on that scale (Bloom et al., 2017).

Our state vector in the inversion includes linear emission
trends for 4◦× 5◦ grid cells over the 2010–2015 period, su-
perimposed on interannual variability in the case of wet-
lands and fires. Our global prior estimate of mean methane
emissions for the 2010–2015 period exceeds the sinks by
13 Tg a−1 (Table 1), which drives a 5 ppb a−1 increase in
methane concentrations over that period, even in the absence
of an emission trend. Therefore our prior estimate of linear
emission trends for individual 4◦×5◦ grid cells is zero, with
an absolute error standard deviation of 10 % of the local prior
emissions over the 2010–2015 time period (1.7 % a−1). This
error standard deviation is based on trend estimates for North
America inferred from GOSAT data (Turner et al., 2016;
Sheng et al., 2018a).

The prior estimate of the global tropospheric OH concen-
tration is based on a GEOS-Chem full-chemistry simulation
(Wecht et al., 2014) that yields a methane lifetime τOH

CH4
of

10.6 years, consistent with the best estimate inferred from
the methyl chloroform proxy (Prather et al., 2012) and the
9.7± 1.5 years estimate from the ACCMIP model ensem-
ble (Naik et al., 2013). Here and elsewhere, τOH

CH4
is defined

as the ratio between the total mass of atmospheric methane
(including the stratosphere) and the annual loss rate from ox-
idation by OH below the tropopause. The uncertainty in the
methane lifetime is about 10 % (Prather et al., 2012), but the
uncertainty on OH interannual variability is less, about 3 %
(Holmes et al., 2013). We assume a 3 % error standard de-
viation in the global annual mean OH concentration for our
standard inversion but also conduct a sensitivity study with
10 % error standard deviation. We further conduct an inver-
sion taking the OH trend over the 2010–2015 period as lin-
ear and assuming in that case error standard deviations of
10 % for the mean global OH concentration and 5 % a−1 (ab-
solute) for the linear trend. Scaling of global OH concentra-
tions in the inversion is done without modifying the spatial or
seasonal OH distribution. Zhang et al. (2018) found that in-
versions of atmospheric methane data using the 3-D GEOS-
Chem OH fields give consistent results with inversions using
other global OH distributions from the ACCMIP model en-
semble (Naik et al., 2013).

2.3 Forward model

We use the GEOS-Chem CTM v11-01 at 4◦× 5◦ grid res-
olution (Wecht et al., 2014; Turner et al., 2015) as forward
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model for the inversion. The model is driven with 2009–2015
MERRA-2 meteorological fields (Bosilovich et al., 2016)
from the NASA Global Modeling and Assimilation Office
(GMAO). Atmospheric methane concentrations are initial-
ized on January 2009 using the previous GOSAT inversion
results of Turner et al. (2015), shown in that work to be un-
biased compared to surface and aircraft background data in-
cluding for the tropospheric meridional gradient.

The loss from oxidation by tropospheric OH is computed
with archived 3-D monthly fields of OH concentrations from
a GEOS-Chem full-chemistry simulation as described by
Wecht et al. (2014). Local tropopause information is from
the MERRA-2 data. The global loss rate for individual years
is optimized in the inversion by uniform scaling of the OH
concentrations. Other minor loss terms include stratospheric
oxidation computed with archived monthly loss frequencies
from the NASA Global Modeling Initiative model (Mur-
ray et al., 2012), tropospheric oxidation by Cl atoms com-
puted using archived Cl concentration fields from Sherwen
et al. (2016) and the reaction rate constant from Allan et al.
(2007), and soil uptake as described by Fung et al. (1991)
with temperature-based seasonality based on Ridgwell et al.
(1999). The loss from oxidation by Cl totals 9 Tg a−1, in-
termediate between the 12–13 Tg a−1 estimated by Hossaini
et al. (2016) using the TOMCAT chemical transport model
and 5.3 Tg a−1 estimated by Wang et al. (2019) in a GEOS-
Chem simulation with full accounting of tropospheric chlo-
rine. These minor sinks are not optimized in the inversion.

The GEOS-Chem simulation of GOSAT methane columns
features a latitude-dependent background bias that needs to
be corrected (Turner et al., 2015). This bias likely reflects
a model overestimate of methane in the extratropical strato-
sphere (Saad et al., 2016), which is common across global
models due to excessive meridional transport in the strato-
sphere (Patra et al., 2011) and was first seen in a SCIA-
MACHY inversion using the TM5 chemical transport model
(Bergamaschi et al., 2007). Stanevich (2018) found a signif-
icant difference in methane columns simulated by GEOS-
Chem at 4◦× 5◦ compared to 2◦× 2.5◦ resolution, but we
find that this difference is mainly in the stratosphere (Ap-
pendix A). We remove the background bias by applying
the latitudinal correction based on background grid cells
from Turner et al. (2015), recomputed with the University
of Leicester v7 GOSAT proxy retrieval (Parker et al., 2015)
and the MERRA-2 meteorological fields. The mean model–
GOSAT difference in column mean mixing ratio for back-
ground 4◦× 5◦ grid cells is fitted to a second-order polyno-
mial of latitude:

ξ =
(

4.0θ2
− 1.3θ

)
× 10−3

− 5, (1)

where θ is the latitude in degrees, and ξ is the model correc-
tion in ppb. This correction is similar to Turner et al. (2015),
who used ξ =

(
5θ2
− 5θ

)
× 10−3

− 0.5. A seasonal bias re-
mains after application of this correction, and we fix it by

removing the zonal monthly mean concentration differences
averaged over rolling 12◦ latitudinal bands. This seasonal
bias may be due to errors in the seasonality of emissions or
atmospheric transport (Saad et al., 2016; Bader et al., 2017;
Stanevich, 2018). We find that the seasonal correction does
not affect the inversion results significantly, as shown in Ap-
pendix B, where we optimize emissions for individual sea-
sons separately without applying a seasonal correction.

2.4 Observational error covariance matrix

The observational error covariance matrix SO includes con-
tributions from random instrument and forward model er-
rors. We construct it applying the residual error method
of Heald et al. (2004) using the 2010–2015 time series of
local methane column differences 1= yGEOS-CHEM, prior−

yGOSAT for individual 4◦× 5◦ grid cells between the
GEOS-Chem model with prior estimates (emissions and
OH concentrations) and the GOSAT observations after
background bias correction. The mean difference 1=

yGEOS-CHEM, prior− yGOSAT is to be corrected in the inver-
sion, while the residual error 1′ =1−1 is taken as the
observational error. Statistics of 1′ define the observational
error variance (diagonal of the observational error covari-
ance matrix). The same method was previously used in the
satellite-based methane inversions by Wecht et al. (2014) and
Turner et al. (2015). The resulting observational error stan-
dard deviation averages 13 ppb. The mean instrument error
standard deviation is 11 ppb (Parker et al., 2015), implying
that most of the observational error is generally from the in-
strument rather than from the forward model. This would in-
deed be expected for the random error of individual measure-
ments. For a given measurement, if the local error standard
deviation computed by the residual error method is smaller
than the reported measurement precision, then we use the lat-
ter instead; this is the case for 10 % of retrievals. All obser-
vational error standard deviations are set to be at least 10 ppb
(this threshold affects 8 % of retrievals). SO is taken to be
diagonal for lack of better information, but the general effect
of error correlation in the observations is accounted for in the
inversion by a regularization factor (Sect. 2.5).

2.5 Inversion procedure

We perform inversions with two different specifications of
prior error variance statistics: normal and lognormal. As-
sumption of normally distributed errors enables a linear
optimization problem with an analytical solution includ-
ing closed-form error characterization (Rodgers, 2000). As-
sumption of lognormal errors may be more appropriate for
modeling the high tail of the probability density function
(Zavala-Araiza et al., 2015) and also has the advantage of
enforcing positive solutions (Miller et al., 2014), but the op-
timization problem is then nonlinear. By comparing the two
approaches we can evaluate consistency in results.
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Both inversions minimize the Bayesian cost function J (x)
(Rodgers, 2000):

J (x)=(x− xa)
T S−1

a (x− xa)+ γ (y−F(x))
T (2)

S−1
O (y−F(x)) ,

where x is the state vector, xa is the prior estimate, Sa is
the prior error covariance matrix, F(x) is the simulation of
observations y by the GEOS-Chem model, SO is the obser-
vational error covariance matrix, and γ is a regularization
factor (Brasseur and Jacob, 2017). The variances in SO are
underestimated because of correlation in the observational
error that is missing in the diagonal formulation of SO and
is difficult to quantify. We use γ to scale the original diago-
nal SO to get an optimal covariance matrix to be used in the
inversion. Zhang et al. (2018) showed in an observing sys-
tem simulation experiment (OSSE) for inversion of methane
satellite data that a regularization factor γ = 0.05 adjusts the
variances optimally and prevents overfitting. This was done
by calculating the likelihood at x̂ for a range of values of γ .
Diagnosis of overfit and optimization of γ is readily done
in an OSSE such as in Zhang et al. (2018) where the “true”
solution is known. Here we find that using γ = 1 (as in the
pure Bayesian statement of the optimization problem) pro-
duces checkerboard patterns in the solution that are likely
spurious. We choose γ = 0.05 consistent with Zhang et al.
(2018) for our base inversion as providing the best balance
between prior and observational terms in the posterior value
of the cost function. We examine the sensitivity to the choice
of γ by conducting a sensitivity inversion with γ = 0.1.

Further balancing of the cost function is needed because
the global OH concentration and its interannual variability
are represented by only seven state vector elements, while
the emissions on the 4◦×5◦ grid are represented by 1009 el-
ements. To provide equal weight to OH and emissions for ex-
plaining global methane trends, we increase the weight of the
OH terms in the cost function (through the OH components
of Sa) by the ratio of the number of state vector elements
1009/7 so that from a cost-function perspective, a change in
OH and global methane emissions is equally expensive. The
sensitivity inversion assuming 10 % prior error standard de-
viation on OH instead of 3 % is equivalent to decreasing this
weighting by a factor of 11.

The GEOS-Chem forward model y = F(x) relating
methane column concentrations y to the state vector x is
essentially linear. There is a small nonlinearity from the
optimization of OH concentrations because changes in the
methane concentrations affect the loss rate (Houweling et al.,
2017), which we neglect because changes in methane con-
centrations are small, and methane is well mixed globally.
We therefore express the forward model as F(x)=Kx+ c,
where K= ∂y/∂x is the Jacobian matrix of the model, and
c is an initialization constant (January 2009 concentrations
taken from Turner et al., 2015). Replacing F(x)=Kx in
Eq. (2) and subtracting the initialization constant c from the

observations, the minimization problem dJ (x)/dx = 0 has
an analytical solution for the optimal posterior solution x̂

(Rodgers, 2000):

x̂ = xa+SaKT

(
KSaKT

+
SO

γ

)−1

(y−Kxa) . (3)

The posterior error covariance matrix Ŝ describing the error
statistics of x̂ is given by

Ŝ=
(
γKT S−1

O K+S−1
a

)−1
, (4)

and the averaging kernel matrix (A= ∂x̂/∂x) defining the
sensitivity of the solution to the true state is given by

A= SaKT

(
KSaKT

+
SO

γ

)−1

. (5)

The trace of the averaging kernel matrix defines the degrees
of freedom for signal (DOFS) of the inversion, that is the
number of pieces of information on the state vector that can
be gained from the observing system.

The analytical solution as described by Eqs. (3)–(5) re-
quires the explicit construction of the Jacobian matrix K
characterizing the GEOS-Chem model. We do this column
by column, with GEOS-Chem simulations perturbing each
element of the state vector independently. This is readily
achievable, even for 2025 state vector elements as a mas-
sively parallel computation. Sparse matrix algebra is used
where possible in solving Eqs. (3)–(5), taking advantage of
the diagonal structure of the error covariance matrices.

The analytical solution to the Bayesian optimization prob-
lem requires assumption of Gaussian errors, but this allows
for the possibility of negative values of state vector elements.
Negative emissions could conceivably be attributed to locally
strong soil uptake or oxidation by Cl atoms but may also
be unphysical (Miller et al., 2014). We can enforce positiv-
ity in the Bayesian solution by optimizing for ln(x) instead
of x, with normal Gaussian errors specified for ln(x) (cor-
responding to lognormal errors for x). The model is then
nonlinear, so that the solution and the corresponding error
statistics must be found iteratively with an updated Jacobian
matrix K′N = ∂y/∂ lnx at each iteration N . This recompu-
tation is immediate using the previously derived Jacobian
matrix K for the linear problem, since the individual scalar
elements ∂yi/∂ ln(xi) of K′ are related to those of K by
∂yi/∂ ln(xj )= xj∂yi/∂xj . Thus only a simple scaling of the
linear Jacobian matrix is required at each iteration. This con-
version to log space is done only for the emissions compo-
nent of x. Emission trends and global OH concentrations are
still optimized with normal error distributions, and no scaling
is applied to those rows of the Jacobian.

Optimizing emissions in log space means that the best pos-
terior estimate is for the median of emissions instead of the
mean. The mean and the median of the lognormal distribu-
tion are not equal, so results cannot be summed over grid
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squares to provide a best estimate of the mean. For this rea-
son, analysis of aggregate and global emissions and sinks
will be done with the inversion using normal errors.

The iterative solution for the inverse problem with log-
normal errors is obtained with the Levenberg–Marquardt
method (Rodgers, 2000) for each iteration N :

x′N+1 =x′N +
(
(1+ κ)S′−1

A + γK′TNS−1
O K′−1

N

)−1
(6)(

γK′TNS−1
O (y−KxN )−S′A

−1 (
x′N − x′A

))
,

where x′ = lnx, the initial guess x′0 is the prior estimate,
and κ is a coefficient for the iterative approach to the solu-
tion that is set to 100 to start and is gradually decreased as
the solution is approached. The prior error covariance matrix
S′a (diagonal elements s′A) defining error variances for lnxa
is derived from the previously described prior error covari-
ance matrix Sa (diagonal elements sA) by scaling the error
variances for the individual elements:

s′A =

 ln
(
xA+
√
sA

xA

)
+

∣∣∣ln( xA−
√
sA

xA

)∣∣∣
2

2

. (7)

2.6 Error correlations between global estimates of
sources and sinks

Inversion results for the spatial distributions of emissions and
trends on the 4◦× 5◦ grid are mainly informed by local and
regional patterns of methane concentration. However, im-
plied inversion results for the global methane emission and
its trend may be significantly correlated with those for the
global tropospheric OH concentration and its trend. Some
separation is expected because sources of methane have a
different spatial and seasonal imprint on the global methane
distribution than the OH sink (Zhang et al., 2018), but it is
important to quantify the error correlation, i.e., the extent to
which adjustments to the global methane emission and its
trend may be aliased by adjustments to the global OH con-
centration and its trend.

To do this we reduce the dimensionality of the inverse
analysis by collapsing global emissions and trends into one
state vector element each. Following Calisesi et al. (2005), if
the state vector can be transformed using a summation matrix
W as

xred =Wx, (8)

then the averaging kernel matrix of the reduced system (Ared)
is given by

Ared =WAW∗, (9)

where W∗ = (WTW)−1WT is the generalized pseudo-
inverse of W. Our original state vector x in this case in-
cludes mean 2010–2015 emissions and their linear trends on

the 4◦× 5◦ grid and the global mean tropospheric OH con-
centration for 2010–2015 and its linear trend. Again, the mi-
nor sinks in Table 1 are not optimized and are maintained
instead at their prior values. We apply the summation ma-
trix W to the emission terms and thus reduce the state vector
to four elements defining the global methane budget (global
mean emission, global mean OH concentration, global emis-
sion trend, global OH trend). The off-diagonal terms of the
reduced averaging kernel matrix Ared then measure the ex-
tent to which differences relative to the true state are aliased
between sources and sinks in the optimization of this global
budget. The advantage of this summation approach, as com-
pared to a global inversion including just four elements, is
that the distribution of methane emissions and its trends is
still optimized.

3 Results and discussion

We conduct an ensemble of inversions to characterize the
sensitivity of the solution to different assumptions made in
the formulation of the inverse problem. Our base inversion
optimizes annual mean emissions with normal error distri-
butions and seasonal background correction to the GOSAT–
model difference as discussed above. To test whether choices
in the regularization and cost-function construction affect our
conclusions, we also conduct inversions with (1) lognormal
error distributions for emissions, (2) a regularization factor
γ of 0.1 instead of 0.05, (3) no seasonal background cor-
rection to the model–GOSAT difference, (4) a 10 % error
standard deviation on the global OH concentration instead
of 3 %, (5) optimization of a linear trend in global OH con-
centration instead of year-to-year variability, assuming 10 %
error standard deviation for mean OH and 5 % for the 2010–
2015 trend, (6) no interannual variability in prior emission
estimates, and (7, 8) seasonally resolved emission optimiza-
tion including seasonal correction and not including seasonal
correction (see Appendix B). All inversions produce consis-
tent results, and we will focus our main presentation on the
base inversion, bringing in the sensitivity inversions to illus-
trate the spread of results and to address specific issues.

Before presenting results from the inversion, we compare
the posterior solution to observations to show that the inver-
sion accomplishes its task of providing an improved forward
model fit to observations. Figure 3a–d show the improve-
ment in the GEOS-Chem comparison to the GOSAT data
when using posterior vs. prior emissions, emission trends,
and OH concentrations. As expected for a successful inver-
sion, the posterior values provide a better fit to the observa-
tions. The inversion corrects prior underestimates over trop-
ical regions and an overestimate over China. It also fits the
observed 2010–2015 trend in methane concentrations and its
latitudinal distribution, while the prior model underestimated
the growth rate, especially in 2014–2015. It does not fully
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Figure 3. Comparisons of observed methane concentrations to the GEOS-Chem forward model using either prior or posterior (optimized)
estimates of 2010–2015 emissions and OH concentrations. Panels (a) and (b) show differences between the model and GOSAT observations
for 2010–2015 means on the 4◦× 5◦ grid. Panels (c) and (d) show the monthly time series of the differences averaged over latitude bands.
Panels (e–g) show independent 2010–2015 comparisons to global observations from NOAA surface stations, HIPPO aircraft meridional
cross sections over the Pacific (2010 and 2011, with the model sampled along the flight tracks), and TCCON. Reduced major axis (RMA)
regressions are as shown along with the 1 : 1 line (in grey). HIPPO observations are averaged over GEOS-Chem grid cells. The NOAA
surface stations and HIPPO aircraft measure local methane dry-air mole fractions, while TCCON measures column-averaged dry-air mole
factions. We apply the same latitudinal and seasonal corrections to TCCON that we applied to GOSAT.

correct the prior bias in the Arctic because GOSAT observa-
tions north of 60◦ N are not used in the inversion.

Figure 3 also shows independent evaluation of the inver-
sion results with background observations from the NOAA
cooperative flask sampling network (https://esrl.noaa.gov/
gmd/ccgg/flask.php, last access: 16 February 2018), the
HIPPO aircraft campaigns across the Pacific and Atlantic
(legs III–V; https://hippo.ornl.gov/, last access: 27 April
2019; Wofsy, 2011), and the Total Carbon Column Observ-
ing Network (TCCON; https://tccondata.org/, last access: 27
April 2019; Wunch et al., 2011). These observations are
mainly of the seasonal/latitudinal methane background and
are not used in the inversion. The background is already well
simulated in the prior estimate, and the posterior simulation
does not degrade this agreement.

3.1 Spatial distribution and source attribution of
methane emissions

Figure 4 shows the global distribution of mean 2010–2015
posterior emissions from the base inversion and from the
sensitivity inversion assuming lognormal errors in the prior
emission estimates. Correction patterns are very similar be-
tween the two inversions. Small negative emissions are found
in the base inversion for 6 of the 1009 optimized grid cells.
The inversion assuming lognormal errors does not allow
these negative emissions. Downward corrections tend to be
smaller in the inversion assuming lognormal errors, while
positive corrections are larger and more concentrated in a few
grid cells, as would be expected from the different shapes of
the error standard deviation distributions.
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Figure 4. Optimization of the global distribution of mean 2010–2015 methane emissions using GOSAT observations. Prior emissions are
in (a) (see breakdown in Fig. 2). Panel (b) shows averaging kernel sensitivities for the base inversion (diagonal elements of the averaging
kernel matrix), with the degrees of freedom for signal (DOFS; trace of the averaging kernel matrix) in the legend. Panels (c, d) show the
posterior emissions from the base inversion and the associated ratios between posterior and prior emissions. Grey grid cells (for example in
North Africa and Australia) indicate small negative posterior emissions. Panels (e, f) show the same but for the inversion assuming lognormal
prior errors, which does not allow for negative posterior emissions.

Figure 4b shows the diagonal terms of the averaging ker-
nel matrix for the base inversion (averaging kernel sensi-
tivities), measuring the ability of the observations to con-
strain the inversion. The trace of the averaging kernel matrix
(DOFS= 128) measures the number of independent pieces
of information constrained by the inversion. A Bayesian in-
version without correcting for overfit (γ = 1 in Eq. 3) would
erroneously produce much higher DOFS. We find that the
inversion provides strong constraints on the 4◦× 5◦ grid for
source regions in East Asia, central Africa, and South Amer-
ica. Averaging kernel sensitivities are generally weaker over
North America and in Europe, indicating that the inversion
provides more diffuse spatial information in these regions.

We find that the EDGAR v4.3.2 inventory prominently
overestimates anthropogenic emissions over eastern China,
likely from coal production, and around the Persian Gulf,
likely from oil and gas production. The finding of an EDGAR
overestimate in China is consistent with previous global in-
versions of GOSAT data using EDGAR v4.1, v4.2, and
v4.2FT2010 as prior estimates (Monteil et al., 2013; Thomp-
son et al., 2015; Alexe et al., 2015; Turner et al., 2015;
Pandey et al., 2016) and a regional inversion using EDGAR
v4.3.2 (Miller et al., 2019). The overestimate of coal mining
emissions may be because standard IPCC emission factors

used by EDGAR v4.2 were too high for Chinese coal mines,
and recovery of coal mine methane is not sufficiently taken
into account (Peng et al., 2016). Emission factors were de-
creased in EDGAR v4.3.2 (Janssens-Maenhout et al., 2019),
but we still find an overestimate. We find that EDGAR under-
estimates emissions over Japan and Southeast Asia, where
rice cultivation is the largest anthropogenic source, but there
are also large wetland emissions. There are also large correc-
tions in wetland areas of central Africa, South America, and
North America.

We do not find large correction factors over the United
States, except for the southeastern coast which is likely
due to an overestimate of methane emissions from coastal
wetlands in the prior WetCHARTs inventory. This over-
estimate of US coastal wetland emissions in WetCHARTs
is consistent with a previous inversion of aircraft ob-
servations over the Southeast United States by Sheng
et al. (2018b) and may be explained by low soil or-
ganic carbon in these ecosystems (Holmquist et al.,
2018) and/or the overestimated impacts of partial wet-
land land-cover classes predominant in the southeastern
United States (Lehner and Döll, 2004; Bloom et al., 2017).
Previous inversions found factor of 2 underestimates of
EDGAR v4.2 emissions of the South Central United States
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Figure 5. Global methane emissions by source type in the prior esti-
mate for the inversion (Table 1, “other” includes fossil fuel combus-
tion, industrial processes, and agricultural field burning) and in the
posterior estimate. Values are 2010–2015 means. The attribution to
source types in the posterior estimate is done by assuming that the
relative contributions of different source types in individual 4◦×5◦

grid cells are correct in the prior estimate. Posterior estimates are
from the base inversion, and error bars show the ranges of results
from the inversion ensemble.

(Miller et al., 2013; Turner et al., 2015), but we do not find
such an underestimate here and attribute this to our use of
the gridded version of the US EPA inventory as prior estimate
(Maasakkers et al., 2016). EDGAR v4.2 allocated oil and gas
emissions mainly according to population, which greatly un-
derestimates emissions in oil and gas production regions in
the South Central United States (Maasakkers et al., 2016).

Improved estimates of global methane emissions for the
individual source types of Table 1 can be inferred from our
results by assuming that the relative contributions from dif-
ferent source types in a given 4◦× 5◦ grid cell are cor-
rect in the prior inventory. The global posterior estimate
for a given source type is then obtained by applying the
4◦× 5◦ posterior / prior ratios from Fig. 4 to the distribu-
tion of source types in Fig. 2. Results in Fig. 5 indicate lit-
tle change to 2010–2015 average emissions compared to the
global prior inventory by source type, even though there are
large regional reallocations. Coal mining emissions decrease
by 29 %, mainly due to China, and rice cultivation and live-
stock increase by 15 % and 8 % respectively, mainly driven
by the tropics.

There has been particular interest in quantifying emis-
sions from oil and gas exploitation because of the poten-
tial for large reductions of these emissions through simple
control measures (Zavala-Araiza et al., 2015; Alvarez et al.,
2018). The EDGAR v4.3.2 national oil and gas emission
totals can differ greatly from the national (spatially unre-
solved) totals reported by individual countries to the United
Nations Framework Convention on Climate Change (UN-
FCCC, 2017). This is shown in Fig. 6 with national oil and

Figure 6. National estimates of methane emissions from the oil and
gas industry for countries in the top 10 of either the EDGAR v4.3.2
or UNFCCC inventories. Values reported by individual countries
to the UNFCCC for 2012 (Annex I countries) or the closest year
(non-Annex I countries: Nigeria (1994), Venezuela (1999), Algeria
(2000), Iran (2000), India (2010), Saudi Arabia (2010), and China
(2012)) are compared to 2012 emissions from EDGAR v4.3.2 na-
tional oil and gas totals and to the posterior values from our base
inversion as described in the text. Black lines are ranges for the en-
semble of inversions. A large part of Russian emissions are too far
north to be effectively constrained by the inversion.

gas emissions from the top 10 countries in either the EDGAR
v4.3.2 or UNFCCC inventories. We can estimate national oil
and gas emission totals from our inversion by again assuming
that the relative contributions of oil and gas to total emissions
in individual 4◦×5◦ grid cells are correct and by further map-
ping the 4◦×5◦ correction factors to the 0.1◦×0.1◦ EDGAR
emission grid. The emission-weighted scaling factor is then
used with the national oil and gas totals reported by EDGAR.
Russia is the largest national source, but the inversion is lim-
ited in its ability to constrain oil and gas emissions there be-
cause a third of these emissions are north of 60◦ N in EDGAR
v4.3.2 (Fig. 2).

Results in Fig. 6 show that the inversion generally pushes
the prior EDGAR v4.3.2 estimates of oil and gas emis-
sions toward the UNFCCC values. One would expect the
UNFCCC national reports to provide better estimates than
EDGAR v4.3.2 because of their use of local information
(Scarpelli et al., 2018) as compared to the more generic esti-
mates used by EDGAR on the basis of IPCC Tier 1 method-
ology (IPCC, 2006). Thus we find that EDGARv4.3.2 greatly
underestimates emissions in Uzbekistan, which are high be-
cause of leaky infrastructure (Scarpelli et al., 2018). For
Iran, Algeria, Nigeria, Saudi Arabia, and Qatar we find much
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Figure 7. 2010–2015 methane emission trends and global tropospheric OH trends as optimized by the inversion of GOSAT data and corre-
sponding averaging kernel sensitivities (diagonal terms of the average kernel matrix). The degrees of information for signal or DOFS (trace
of the averaging kernel matrix) is shown inset. Panel (c) gives the global attribution of the emission trends to individual source types, with
ranges from the inversion ensemble. Shaded sections of the bars indicate the contribution from the tropics (24◦ S–24◦ N). The vertical bars in
the OH trend panel are the posterior error standard deviations from the base inversion. The 2010–2015 decreasing trend in OH concentrations
is not statistically significant (95 % confidence level).

lower emissions than EDGAR v4.3.2 that are more consistent
with the UNFCCC data. For China we are in better agree-
ment with EDGAR v4.3.2 than with the UNFCCC estimate,
which relies on anomalously low emission factors (Larsen
et al., 2015). In Venezuela we find higher emissions than
both EDGAR v4.3.2 and UNFCCC. The latest available re-
port from Venezuela to the UNFCCC dates back to 1999.

3.2 Spatial distribution and source attribution of
methane emission trends

Figure 7 shows base inversion results for the linear emis-
sion trends on the 4◦× 5◦ grid for 2010–2015 and the as-
sociated averaging kernel sensitivities. Also shown in panel
d is the 2010–2015 time series of posterior OH concentra-
tions with error standard deviations from the posterior error
covariance matrix. We find no significant OH trend over the
period, although uncertainties are large. The information on
the spatial distribution of emission trends originates from lo-
cal and regional gradients of atmospheric methane observed
by GOSAT, and we find from the posterior error covariance
matrix of the inversion that it is not correlated with informa-
tion on OH concentrations. Thus the large posterior uncer-
tainty in global OH concentrations does not induce any sig-
nificant correlated error in the spatial distribution of emission

trends. This may be expected in view of the long lifetime of
methane relative to the relevant timescales for atmospheric
transport.

The GOSAT data provide seven independent pieces of in-
formation (DOFS) on the spatial distribution of the emis-
sion trend. Again, a Bayesian inversion without correcting
for overfit (γ = 1) would erroneously indicate much higher
DOFS. We find increasing emissions in the tropics and lit-
tle change at higher latitudes. There are well-defined anthro-
pogenic positive trends over China, India, and the Persian
Gulf. Trends in China are in areas with dominant emissions
from coal mining but also significant contributions from live-
stock and waste. In an inversion of surface observations,
Thompson et al. (2015) previously found an increasing trend
over China for 2000–2011, which they attributed to coal
mining. Miller et al. (2019) found that this trend continued
up to 2015 using GOSAT in a regional inversion. Trends
over India are in areas of rice production but may also re-
flect waste management and livestock. The trend over In-
dia is 0.4 (0.3–0.5) Tg a−1 (range of the inversion ensem-
ble), consistent with the 2010–2015 trend of 0.7±0.5 Tg a−1

from a regional GOSAT inversion by Miller et al. (2019).
Ganesan et al. (2017) found a nonsignificant trend (0.2±
0.7 Tg a−1) over India for 2010–2015 using an ensemble of
GOSAT, commercial aircraft (CARIBIC), and surface station
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Table 2. Global 2010–2015 methane budgeta.

Prior Posterior

Mean emission (Tg a−1) 548± 10 546± 2
Emission trend (% a−1) 0± 0.1 0.84± 0.04
Mean methane lifetime τOH

CH4
(a)b 10.6± 1.1 10.8± 0.4

OH trend (% a−1) 0± 0.8 −0.2± 0.8
a From the inversion optimizing (1) mean 2010–2015 methane emissions on the
4◦ × 5◦ grid, (2) linear methane emission trends on that same grid, (3) global mean
2010–2015 tropospheric OH concentration, and (4) linear trend in global OH
concentrations. Expected values and error standard deviations are shown. The prior
estimates are described in Sect. 2.2. The posterior global emission and its trend are
obtained by summing the contributions from all 4◦ × 5◦ grid cells, and the error
standard deviations are computed accounting for posterior error correlation. Minor
methane sinks totaling 61 Tg a−1 are not optimized in the inversion. b Methane
lifetime against oxidation by tropospheric OH, computed as the ratio between the
total atmospheric mass of methane (including the stratosphere) and the annual loss
rate from oxidation by OH in the troposphere.

methane data, but our estimate is not incompatible with their
range. EDGAR v4.3.2 predicts a 0.4 Tg a−1 increase in an-
thropogenic emissions from India between 2010 and 2012,
mainly from livestock, coal, and waste based on increasing
activity data (this trend is not included in our prior estimate).
The trend over the United States is less well defined and not
well constrained but suggests an increase over the eastern
part of the country where multiple source types could con-
tribute (Sheng et al., 2018a, b).

Figure 7c shows the attribution of the global increasing
trend in emissions to individual source types, following the
same assumption that was used in Fig. 5 to attribute emis-
sions to source types. We further separate tropical and extra-
tropical contributions. Boreal wetland trends cannot be con-
strained by our inversion effectively (no observations north
of 60◦ N). 43 % of the 5 Tg a−1 global emission trend found
in the inversion for 2010–2015 is driven by wetlands (mainly
tropical), 16 % by livestock, and 11 % by oil and gas. No
source type shows a global decrease. Our source attribu-
tion of the methane trend is consistent with isotopic evi-
dence, suggesting that the increase in methane over the past
decade has been driven by biogenic sources outside the Arc-
tic (Nisbet et al., 2016; Schwietzke et al., 2016; Schaefer
et al., 2016), including tropical wetlands (McNorton et al.,
2016). Worden et al. (2017) previously found a decrease in
biomass burning from 2001–2007 to 2008–2014 but no sig-
nificant change for the 2010–2015 period investigated here.
Their argument that a decrease in the biomass burning emis-
sions would have masked the effect of an increase in fossil
fuel emissions on the isotope signature of methane would not
apply for our time period.

3.3 Global methane budget and trends

The previous sections showed that our inversion of the
GOSAT data is able to provide relatively fine information on
the spatial distribution of methane emissions (DOFS= 128)
as well as some information on the spatial distribution of

Figure 8. Constraints on the global 2010–2015 methane budget
from our inversion of GOSAT data. The lines show the rows of the
averaging kernel matrix Ared (Eq. 9) for the reduced four-element
state vector consisting of the 2010–2015 mean emission, the linear
emission trend, the 2010–2015 mean tropospheric OH concentra-
tion, and the linear OH trend.

2010–2015 emission trends (DOFS= 7). This information
on the spatial distribution originates from local and regional
gradients of atmospheric methane observed by GOSAT. We
now examine to what extent error correlations may limit
our ability to independently quantify the global emission
of methane, the global tropospheric OH concentrations, and
their respective trends.

To analyze the constraints from the inversion on the global
budget of methane, we collapse the inversion to the reduced
four-member global state vector of 2010–2015 mean values
described in Sect. 2.6 (global methane emission, global emis-
sion trend, global tropospheric OH concentration, global OH
trend). We use normal errors for all state vector elements (us-
ing lognormal errors could bias the mean). Table 2 compares
the prior and posterior values for this global budget. The un-
certainty in global emissions and trends is likely underesti-
mated because of the lack of prior error covariance assumed
between the 1009 grid cells. The global mean tropospheric
OH concentration is expressed in terms of the corresponding
methane lifetime τOH

CH4
. Figure 8 shows the averaging kernel

rows for this reduced global state vector (Ared in Sect. 2.6),
measuring the sensitivity of the inversion results to the true
values (diagonal terms) and the aliasing due to error correla-
tions (off-diagonal terms). We find that the mean 2010–2015
global methane emission and OH concentration are strongly
and independently constrained, with averaging kernel sen-
sitivities near unity and little error correlation. On the other
hand, there is strong negative error correlation between emis-
sion trends and OH trends, and the OH trend can only be
weakly constrained. This is illustrated further in Fig. 9 with
the joint probability density function (pdf) plots of the poste-
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Figure 9. Joint probability density functions (pdfs) for the global methane budget as constrained by the 2010–2015 GOSAT data. Panel
(a) shows the joint pdfs of the 2010–2015 global mean methane emission and methane lifetime against oxidation by tropospheric OH. Panel
(b) shows the joint pdfs of the 2010–2015 global emission trend and the OH trend. Contours show confidence ranges from 0.1 to 0.9. The
error correlation coefficients are shown inset. The tilt of the ellipse indicates the extent of error correlation.

rior estimates, where the confidence levels measure the prob-
ability of a given value, and the tilts of the ellipses measure
the error correlations.

A major implication of being able to constrain the global
methane emission and the global OH concentration indepen-
dently is that satellite observations of atmospheric methane
can provide an independent proxy for quantifying the global
mean tropospheric OH concentration. Our posterior estimate
of the methane lifetime τOH

CH4
is 10.8±0.4 years. It is strongly

constrained by the inversion, as shown by the averaging ker-
nel sensitivity near unity, and is thus largely independent of
the prior estimate of 10.6±1.1 years. So far the main method
for estimating global OH has been through the methyl chlo-
roform budget (Prather et al., 2012), but this is becoming
problematic as methyl chloroform concentrations decrease,
and previously minor potential sources like ocean outgassing
may become significant (Wennberg et al., 2004; Liang et al.,
2017). Satellite observations of methane could provide an al-
ternative. Our inversion confirms the best estimate of global
OH from the methyl chloroform budget (Prather et al., 2012)
but reduces its uncertainty from 10 % to 4 %. The magni-
tude of reduction may be overoptimistic because of the ide-
alized treatment of error statistics, the assumption that the
global 3-D OH distribution in the forward model is correct,
and the assumption that the minor sinks (Table 1) are correct.
Zhang et al. (2018) present a more thorough error analysis of
this potential of methane satellite observations as proxy for
global OH concentrations.

We find on the other hand that there is large error cor-
relation between our estimates of global 2010–2015 emis-
sion trends and OH trends and limited ability to constrain the
OH trend. We find that most of the increase in methane is
explained by increasing emissions. Our posterior estimates
for the 2010–2015 trends are +0.84± 0.04 % a−1 (4.6±

0.2 Tg a−1) for emissions and −0.2± 0.8 % a−1 (−1.0±
3.8 Tg a−1) for OH. The joint pdf in Fig. 9 illustrates the
error correlation between the two. Other factors driving the
2010–2015 atmospheric methane trend are the initial im-
balance in the 2010 budget, which we can derive from the
posterior estimates of the mean 2010–2015 budget imbal-
ance and trends, and the interannual variability of wetlands
emissions as represented by WetCHARTS. Figure 10 shows
the contributions of these different terms to the observed
2010–2015 methane growth. 2010 was a relatively high year
for tropical wetlands emissions according to WetCHARTS,
which acts to dampen the overall trend. We can state with
some confidence that increasing tropical emissions (Fig. 7)
made an important contribution to the 2010–2015 methane
trend, but any conclusion about the effect of an OH trend
is highly uncertain, including in its sign. Our 2010–2015
growth rate averages 6.8 ppb a−1, compared to 7.3 ppb a−1

in the NOAA record (https://www.esrl.noaa.gov/gmd/ccgg/
trends_ch4/, last access: 27 April 2019). The increase in the
NOAA record is higher because of especially strong growth
in 2014 (12.8 ppb), which is not fully captured by the lin-
earized optimization used here. In our base inversion, this
anomaly is explained by a reduced sink from OH.

4 Conclusions

We used 2010–2015 observations of atmospheric methane
columns from the GOSAT satellite instrument in a global in-
verse analysis to optimize a state vector including (1) mean
2010–2015 methane emissions on a 4◦× 5◦ grid, (2) 2010–
2015 emission trends on that same grid, and (3) global
mean tropospheric OH concentrations for individual years.
Our work aimed to improve current understanding of global
methane sources and the renewed growth in atmospheric
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Figure 10. Attribution of the 2010–2015 increase in the atmo-
spheric burden of methane. The grey bars show the trend imposed
by the 2010 imbalance between sources and sinks combined with
the interannual variability (IAV) of the prior estimate (mainly from
wetlands). This trend decreases over the 2010–2015 period because
the methane sink rises in response to the increasing methane con-
centration and also because wetland emissions in 2010 are higher
than in other years. Purple and orange show the contributions of
the 2010–2015 methane emission trends and OH trends. The appor-
tionment of the emission trend by source region and source type is
shown in Fig. 7. The OH trend has high uncertainty as discussed in
the text.

methane over the past decade and to examine if satellite ob-
servations can independently constrain methane emissions
and tropospheric OH, the main methane sink.

Our inversion used the GEOS-Chem chemical transport
model as forward model to relate the state vector ele-
ments (1)–(3) to atmospheric methane columns. We fitted
the model to the GOSAT observations by analytical solu-
tion of the Bayesian problem, including construction of the
full Jacobian matrix. The analytical solution provides closed-
form characterization of errors and of the information content
in the solution. This is critical for diagnosing the ability of
the GOSAT observations to constrain emission trends and to
achieve separate constraints on emissions and OH concentra-
tions. It also allows us to easily generate an ensemble of in-
versions testing different assumptions. An analytical solution
of the inverse problem generally requires normal prior error
distributions, but we show here that it can be readily extended
to lognormal prior error distributions by using a simple scal-
ing of the original Jacobian matrix.

Our optimization of mean 2010–2015 methane emissions
on the 4◦× 5◦ grid achieves 128 degrees of information for
signal (DOFS), with strong constraints in source regions. The
EDGAR v4.3.2 anthropogenic emission inventory taken as
default anthropogenic prior estimate in the inversion is too

high in China (coal emissions) and in the Middle East (oil
and gas emissions). Oil and gas national totals in EDGAR
v4.3.2 can differ greatly from the values reported by individ-
ual countries to the United Nations Framework Convention
on Climate Change (UNFCCC), and our inversion results are
generally more consistent with the UNFCCC estimates. We
find little correction to anthropogenic US emissions when a
new gridded version of the US EPA greenhouse gas inventory
is used as the anthropogenic prior estimate. Previous inverse
studies that relied on the EDGAR v4.2 inventory as prior es-
timate found large underestimates of US emissions, but this
may reflect errors in the spatial distribution of EDGAR v4.2
oil and gas emissions.

Optimization of methane emission trends over the 2010–
2015 period yields DOFS of 7 on the 4◦× 5◦ grid, meaning
that only strong source regions can be constrained. We find
that the 2010–2015 increasing trend in atmospheric methane
is mostly due to increasing emissions rather than decreasing
OH concentrations. Most of the increase is in tropical wet-
lands, India, and China. Trends in North America and Eu-
rope are small. Our findings are consistent with isotopic con-
straints pointing to tropical biogenic sources as responsible
for the renewed growth of methane over the past decade.

We further examined the ability of the GOSAT data to
constrain the global methane emission and its trend over
the 2010–2015 period independently of the global OH con-
centration and its trend. For this purpose we considered a
reduced four-component state vector consisting of (1) the
global mean methane emission for 2010–2015, (2) the global
emission trend over that period, (3) the global mean OH con-
centration for 2010–2015, and (4) the global OH trend over
that period. (1) and (2) were obtained by collapsing the in-
verse solutions for emissions on the 4◦× 5◦ grid, so that
the distributions of emissions and their trends are still opti-
mized. Results show that the global methane emission (546±
2 Tg a−1) can be constrained independently of the global OH
concentration (atmospheric methane lifetime against oxida-
tion by tropospheric OH of 10.8±0.4 years), with little error
correlation. This is because methane emissions and loss have
different and separable signatures on atmospheric methane
columns. An important implication is that satellite observa-
tions of atmospheric methane can serve as a useful proxy for
the global OH concentration. In contrast, we find that errors
on the 2010–2015 OH trends are strongly correlated with the
stronger signal from emission trends.

Satellite observations of atmospheric methane are ex-
pected to vastly improve in the near future with the launch
of the TROPOMI instrument in October 2017, the advent of
geostationary observations from the GeoCARB instrument
to be launched in the early 2020s, and other instruments
measuring methane on local to global scales (Jacob et al.,
2016). Our work with the relatively sparse GOSAT data sug-
gests that this future constellation of satellites will enable the
mapping of emissions at fine scales. Satellite observations of
methane could also provide an effective means for monitor-
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ing OH concentrations, replacing methyl chloroform whose
ability to serve as an OH proxy is declining.

Data availability. TCCON data were obtained from the TCCON
data archive, hosted by CaltechDATA – https://tccondata.org/ (last
access: 27 April 2019) (Strong et al., 2017; Wunch et al., 2015;
Morino et al., 2014a, b; Wennberg et al., 2014a, b, 2016a, b; Iraci
et al., 2016a, b; Kivi et al., 2014; Blumenstock et al., 2014; De Maz-
ière et al., 2014; Dubey et al., 2014a, b; Te et al., 2014; Kawakami
et al., 2014; Hase et al., 2014; Griffith et al., 2014a, b; Sherlock
et al., 2014; Sussmann and Rettinger, 2014; Deutscher et al., 2014;
Notholt et al., 2014; Warneke et al., 2014).
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Appendix A: Comparison of forward model simulations
at 4◦× 5◦ and 2◦× 2.5◦ resolutions

Stanevich (2018) pointed out significant global meridional
biases in the GEOS-Chem simulation of methane columns
at 4◦× 5◦ resolution relative to 2◦× 2.5◦, and they argued
that 2◦×2.5◦ was much better for use in global inversions of
methane sources. However, we find that most of the differ-
ence between the two resolutions is in the stratosphere, which
we correct following Eq. (1). Figure A1 illustrates this point
with the differences between the two resolutions averaged
over latitudinal bands. Values are 2010–2015 means for the
full column and for the tropospheric column only. There are
large high-latitude biases for the total column, but these are
mainly in the stratosphere. The tropospheric bias is less than
5 ppb at all latitudes. Results for individual seasons are simi-
lar. Buchwitz et al. (2015) consider that biases below 10 ppb
are acceptable in methane inversions.

Figure A1. Difference between methane column concentrations simulated by GEOS-Chem at 4◦×5◦ versus 2◦×2.5◦. Values are 2010–2015
averages over latitudinal bands for total atmospheric columns and tropospheric columns.
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Appendix B: Sensitivity to seasonal bias in prior
emission estimates

The GEOS-Chem forward model simulation using prior
emission estimates shows a seasonal background bias rela-
tive to GOSAT observations, for which we applied a latitude-
dependent correction (Sect. 2.3). This correction could mask
a bias in the seasonality of prior emissions. We conducted
an additional inversion in which we did not apply this sea-
sonal correction and instead optimized emissions for individ-
ual seasons with no prior error correlation between seasons.
This brings the total size of the state vector up to 5052, which
challenges the power of the GOSAT observations to provide
independent constraints. As shown in Fig. B1, the effective
posterior / prior ratios found by summing the seasonal emis-
sions are very similar to the ones from the base inversion.
This indicates that the global pattern of scaling factors is not
driven by corrections made to improve the seasonal agree-
ment between the model and GOSAT. The effective scaling
factors are smaller in magnitude and smoother than the previ-
ous results because fewer observations are available per state
vector element, resulting in smoothing error (Turner and Ja-
cob, 2015).

Figure B1. Results from the seasonal inversion, showing effective posterior / prior scaling factors in the top panel and the seasonal scaling
factors in the four bottom panels.
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