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Abstract. An atmospheric inversion was performed for the
city of Cape Town for the period of March 2012 to June 2013,
making use of in situ measurements of CO2 concentrations
at temporary measurement sites located to the north-east and
south-west of Cape Town. This paper presents results of sen-
sitivity analyses that tested assumptions regarding the prior
information and the uncertainty covariance matrices asso-
ciated with the prior fluxes and with the observations. Al-
ternative prior products were considered in the form of a
carbon assessment analysis to provide biogenic fluxes and
the ODIAC (Open-source Data Inventory for Anthropogenic
CO2 product) fossil fuel product. These were used in place
of the reference inversion’s biogenic fluxes from CABLE
(Community Atmosphere Biosphere Land Exchange model)
and fossil fuel emissions from a bespoke inventory analy-
sis carried out specifically for the Cape Town inversion. Our
results confirmed that the inversion solution was strongly de-
pendent on the prior information, but by using independent
alternative prior products to run multiple inversions, we were
able to infer limits for the true domain flux. Where the refer-
ence inversion had aggregated prior flux estimates that were
made more positive by the inversion – suggesting that CA-
BLE was overestimating the amount of CO2 biogenic uptake
– the carbon assessment prior fluxes were made more neg-
ative by the inversion. As the posterior estimates tended to-
wards the same point, we could infer that the best estimate
was located somewhere between these two posterior fluxes.

The inversion was shown to be sensitive to the spatial er-
ror correlation length in the biogenic fluxes – even a short
correlation length – influencing the spatial distribution of the
posterior fluxes, the size of the aggregated flux across the
domain, and the uncertainty reduction achieved by the inver-
sion. Taking advantage of expected spatial correlations in the
fluxes is key to maximizing the use of a limited observation
network. Changes to the temporal correlations in the obser-
vation errors had a very minor effect on the inversion.

The control vector in the original version consisted of sep-
arate daytime and night-time weekly fluxes for fossil fuel
and biogenic fluxes over a 4-week inversion period. When
we considered solving for mean weekly fluxes over each 4-
week period – i.e. assuming the flux remained constant over
the month – larger changes to the prior fossil fuel and bio-
genic fluxes were possible, as well as further changes to the
spatial distribution of the fluxes compared with the refer-
ence. The uncertainty reduction achieved in the estimation
of the overall flux increased from 25.6 % for the reference
inversion to 47.2 % for the mean weekly flux inversion. This
demonstrates that if flux components that change slowly can
be solved for separately in the inversion, where these fluxes
are assumed to be constant over long periods of time, the pos-
terior estimates of these fluxes substantially benefit from the
additional observational constraint.

In summary, estimates of Cape Town fluxes can be
improved by using better and multiple prior information
sources, and particularly on biogenic fluxes. Fossil fuel and
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biogenic fluxes should be broken down into components,
building in knowledge of spatial and temporal consistency
in these components into the control vector and uncertainties
specified for the sources for the inversion. This would allow
the limited observations to provide maximum constraint on
the flux estimates.

1 Introduction

Bayesian inverse modelling provides a top-down technique
for verifying emissions and uptake of carbon dioxide (CO2)
from both natural and anthropogenic sources. It relies on ac-
curate measurements of CO2 concentrations at suitably lo-
cated sites that can collect information about these sources
at different spatial and temporal scales. The concentration
measurements on their own are not sufficient to solve for the
emission sources as there are many more sources of CO2 than
there are measurements of the concentrations. Therefore,
well-informed initial estimates of the biogenic and anthro-
pogenic emissions are required, together with uncertainty es-
timates, which are used to regularize the problem. This tech-
nique is a useful tool for monitoring, reporting and verifi-
cation (MRV) of CO2 emissions from cities (Bellassen and
Stephan, 2015; Wu et al., 2016; Lauvaux et al., 2016; Oda et
al., 2017). While cities represent only 2 % of the global land
surface area, they are responsible for approximately 70 % of
anthropogenic greenhouse gas emissions (UN-Habitat, 2011;
Seto et al., 2014), with annual urban CO2 emissions averag-
ing more than double the size of net terrestrial or ocean car-
bon sinks (Le Quéré et al., 2013).

Estimates of city-level CO2 emissions are usually obtained
using bottom-up techniques, which require knowledge of
what activities produce CO2 emissions and the fuel usage
of these activities. These estimates are strongly dependent
on accurate reporting, accurate and representative emission
factors, and on assumptions regarding temporal or spatial
disaggregation of these emissions (Andres et al., 2012). As-
certaining the uncertainty in these inventory-based estimates
is not trivial, and these uncertainties increase as the spatio-
temporal resolution of these estimates is increased (Turnbull
et al., 2011; Andres et al., 2014).

Verifying the accuracy of inventory-based estimates of
emissions has become essential (NRC, 2010). This requires
transparency, quality and comparability of information, with
narrow uncertainty estimates (Wu et al., 2016), but cur-
rently uncertainties associated with urban emissions far ex-
ceed emission reduction goals, and therefore verification re-
mains challenging. The uncertainty is due to factors such
as incomplete data, inconsistency in reporting between dif-
ferent institutions or facilities, fugitive emissions from point
sources such as those caused by gas leaks, and methodology
that is rarely checked against scientific standards and proce-
dures (Hutyra et al., 2014). Recently, several inverse mod-

elling studies aimed at resolving CO2 emissions have been
conducted at the city scale in Europe and North America
(Strong et al., 2011; Duren and Miller, 2012; McKain et al.,
2012; Brioude et al., 2013; Kort et al., 2013; Lauvaux et al.,
2013; Bréon et al., 2015; Turnbull et al., 2015; Boon et al.,
2016; Lauvaux et al., 2016; Oda et al., 2017) and more re-
cently for the city of Cape Town (CT) in South Africa (Nick-
less et al., 2018). South Africa is the single largest emitter
of CO2 on the continent of Africa and the 13th largest emit-
ter in the world (Boden et al., 2011). South African cities
are home to 63 % of the present population (Statistics South
Africa, 2011), and by 2030 this is predicted to be 71 %. Cape
Town saw its population increase from 2 563 095 in 1996
to 3 740 026 in 2011, an increase of 46 % (Nickless et al.,
2015a).

Atmospheric inversions at the city scale are limited by
available CO2 concentration observations – due to insuffi-
cient monitoring sites but also a limited number of loca-
tions for suitable monitoring sites (Bréon et al., 2015). At-
mospheric transport is complex in the urban environment
and challenging for atmospheric transport models to resolve.
This may result in large representation errors in the modelled
concentrations at the measurements sites. To avoid these er-
rors, a further reduction in the number of observations is of-
ten made, as observations are excluded based on when the
models are likely to perform poorly (Lauvaux et al., 2016;
Staufer et al., 2016). The observed concentration data are as
a result of aggregated fluxes from all sources of CO2 along
the path of the air flow. Sources refer to anything that may
have a positive (i.e. emit) or negative (i.e. uptake) contribu-
tion to the overall CO2 concentration. Even if biogenic fluxes
are not necessarily of interest in the city-level inversion, they
need to be accounted for in the model as these fluxes will
induce changes to the observed CO2 concentration.

Atmospheric monitoring sites targeting CT air masses
were not available; therefore, temporary measurement sites
were installed at Robben Island and Hangklip lighthouses,
located to the north-west and south-east of the metropolis
(Nickless et al., 2018). A fossil fuel emission inventory anal-
ysis was performed for the city, which spatially and tempo-
rally disaggregated these fluxes to provide prior estimates of
the fossil fuel fluxes, with uncertainty estimates determined
by means of error propagation techniques (Nickless et al.,
2015a). Net ecosystem exchange (NEE) fluxes from bio-
genic processes were obtained from the land–atmosphere ex-
change model CABLE (Community Atmosphere Biosphere
Land Exchange). Uncertainty estimates were based on the
estimates of net primary productivity (NPP). CABLE was
dynamically coupled to the regional climate model CCAM
(Conformal Cubic Atmospheric Model), which provided the
climate inputs required to drive the Lagrangian particle dis-
persion model (LPDM). The Bayesian inversion framework
included a control vector where fossil fuel and NEE fluxes
were solved for separately.
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One way that CT differs from the mega cities that pre-
vious inversions have targeted (Bréon et al., 2015; Staufer
et al., 2016) is through the high integration of natural areas
around the city borders of CT (Nickless et al., 2018). Nat-
ural fluxes are an important contributor to the CO2 budget
of the region. For example, Table Mountain National Park
is located directly adjacent to the city bowl and covers an
area of 221 km2. For this reason, the gradient method used
by Bréon et al. (2015) and Staufer et al. (2016), which relies
on the difference between pairs of measurement sites when
the wind is blowing from one site over the target region to
the second site, would not be appropriate given the locations
of our two measurement sites. For the CT case, if the air trav-
elled between the two sites, it would pass directly over Table
Mountain National Park, and therefore the gradient method
would not have the desired effect of diminishing the impact
of biogenic fluxes along the transect between the two sites.
In addition, the wind fields showed that air did not travel in a
straight path between our two sites (Nickless et al., 2018).

We adopted the approach usually used from regional in-
versions, where the inversion modelled the concentrations at
the measurement sites (Lauvaux et al., 2012). Instead of sub-
tracting the background CO2 concentration from the mea-
surements, which would have arrived from one of the domain
boundaries, we solved for the concentrations at the bound-
ary as an additional unknown, and therefore included these
in the control vector, similar to the approach of Lauvaux et
al. (2016). We kept tight constraints on these concentrations
and used the background measurements obtained from Cape
Point, a Global Atmospheric Watch (GAW) background sta-
tion, as prior estimates of these concentrations. We were able
to do this as there are no large anthropogenic sources near
the boundary of the domain. We showed in the reference in-
version that the variation in the total CO2 was largely driven
by the variation in the NEE fluxes (Nickless et al., 2018).

Nickless et al. (2018) was a first attempt at estimating CO2
fluxes at the high resolution of 1 by 1 km over CT, solving
for separate fossil fuel and biogenic sources. The inversion
increased the domain emission of CO2 from −83.5 kt per
month to −19.8 kt. The inversion was able to reduce uncer-
tainty of the total flux within a pixel by up to 97.7 % and was
able to reduce the uncertainty in the total weekly flux over
the whole domain by up to 50.5 %. The largest innovation
to a fossil fuel flux was applied to the pixel with the largest
point-source fossil fuel flux over an oil refinery. We found
that the optimal solution for the posterior fluxes was one that
made the overall flux in this pixel less positive by reducing
the fossil fuel flux and by creating areas of more negative
fluxes around this pixel. This indicated that either the prior
fossil fuel flux was overestimated or that the atmospheric
transport model was not correctly indicating sensitivity of the
measurement site to this flux. Compared with the fossil fuel
emissions, relative innovations to the NEE fluxes were much
larger, due to the large uncertainty assigned to these fluxes.
The largest innovations were made to natural areas near the

central business district (CBD) of CT, as well as to agricul-
tural regions within the domain, particularly those close to
the measurement sites.

Nickless et al. (2018) demonstrated the advantage of using
the Bayesian inverse modelling approach to solve for disag-
gregated fluxes within each pixel when the ultimate goal was
to solve for the aggregated flux within each pixel or within
a region of interest. The inversion created negative covari-
ances in the posterior uncertainty covariance matrix for those
fluxes that were viewed simultaneously at the atmospheric
measurement site. When we summed these fluxes, the effect
of these negative covariances was to reduce the uncertainty
of the aggregated flux – over and above the uncertainty re-
duction achieved by the inversion for the individual fluxes.

The specification of the uncertainty covariance matrices
substantially influences the inversion result (Lauvaux et al.,
2016). This paper investigates a series of adjustments to the
inversion that impact on the uncertainty covariance matrix
of the fluxes and the observation error covariance matrix.
We considered sensitivity tests that halved and doubled the
uncertainties of the individual sources and investigated the
impact of the uncertainty correlations in the inversion. We
also manipulated the prior products, either by smoothing the
products used in the reference inversion or using alternative
sources for the fossil fuel and biogenic prior fluxes and un-
certainties.

Additionally, we were interested in the composition of the
control vector, also referred to as the state vector, which
specifies the surface fluxes and domain boundary concen-
trations to be solved for by the inversion. The composition
of this vector is determined by the size of the source pix-
els and the time length over which we assume the fluxes
are homogeneous. This in turn impacts the assigned uncer-
tainty covariance matrix. For the reference inversion we car-
ried out 13 four-week inversions, which solved for weekly
fluxes from each of the 101× 101 surface pixels. The weekly
fluxes consisted of working week and weekend fossil fuel
fluxes and NEE fluxes for the full week: each separated into
day and night fluxes. We tested whether solving for an aver-
age weekly flux over the course of 4 weeks would achieve
similar results compared with the reference inversion, which
allowed the four weekly fluxes within a monthly inversion
to differ. We also compared the reference inversion with the
approach of carrying out separate inversions for each week.
Each of these cases requires considerably fewer computa-
tional resources to perform an individual inversion. If either
of these alternative control vectors provides sufficiently sim-
ilar results to the reference case, this would provide a more
efficient means of conducting the inversion.

The purpose of this paper is to present the results of these
sensitivity tests in comparison with the CT reference inver-
sion presented in Nickless et al. (2018), with the aim of de-
termining the best course of action to improve the ability to
resolve fluxes for CT through the inversion method. Section 2
briefly introduces the Bayesian inversion framework used in
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the reference inversion (Nickless et al., 2018). This is fol-
lowed by a description of the alternative prior information
products and a presentation of the details of the sensitivity
analyses. A summary of the reference inversions and the re-
sults of the sensitivity analyses are provided in Sect. 3, fol-
lowed by discussion of these results in Sect. 4 and a final
concluding section.

2 Methods

2.1 Reference inversion and Bayesian inverse
modelling framework

2.1.1 Bayesian inverse modelling approach

The Bayesian synthesis inversion method, as described by
Tarantola (2005) and Enting (2002), was used to solve for
the fluxes in this study. The observed concentration (c) at
a measurement station results from contributions from the
surface in the form of fluxes, from the domain boundaries,
and from the initial concentration at the site. Concentrations
at the measurement site can be modelled as follows:

cmod =Hs, (1)

where cmod is the modelled concentrations and s is a vector
of source fluxes or concentrations. H is the Jacobian matrix
representing the first derivative of the modelled concentration
at the observational site and dated with respect to the coeffi-
cients of the source components (Enting, 2002). It provides
the sensitivity of each observation to each of the sources,
where the sources can be fluxes or concentrations of CO2.
Estimates of the unknown sources can be obtained by mini-
mizing the following cost-function with respect to s:

J (s)=
1
2

(
(cmod− c)T C−1

c (cmod− c)+ (s− s0)
T C−1

s0
(s− s0)

)
, (2)

where s is the control vector of unknown surface fluxes and
boundary concentrations we wish to solve for, s0 is the vector
of prior flux and boundary concentration estimates, Cc is the
uncertainty covariance matrix of the observations, and Cs0 is
the uncertainty covariance matrix of the fluxes and boundary
concentrations (Tarantola, 2005).

Minimizing this cost function leads to the following solu-
tion:

s = s0+Cs0HT
(

HCs0HT
+Cc

)−1
(c−Hs0), (3)

with the following posterior covariance matrix:

Cs =
(

HTC−1
c H+C−1

s0

)−1
, (4)

= Cs0 −Cs0HT
(

HCs0HT
+Cc

)−1
HCs0 . (5)

2.1.2 Control vector: s

The total CO2 flux from a single surface pixel can be thought
of as being made up of the following individual fluxes:

ssf; i = sff weekday; i + sff weeknight; i + sff weekend day; i

+ sff weekend night; i + sNEE day; i + sNEE night; i, (6)

where ssf; i is the total weekly surface flux from the ith pixel,
sff weekday; i is the total fossil fuel flux during the working
week day, sff weeknight; i is the total night-time fossil fuel
flux during the working week, sff weekend day; i is the total
weekend daytime fossil fuel flux, sff weekend night; i is the to-
tal weekend night-time fossil fuel flux, and sNEE day; i and
sNEE night; i are the total daytime and night-time biogenic
fluxes for the full week from the ith spatio-temporal pixel.
The reference inversion solved for each of these separate
fluxes for each week. There are 101× 101= 10201 sur-
face pixels. Over the 16-month period from March 2012 to
June 2013, separate monthly inversions were carried out for
all months with sufficient valid concentration observations:
a total of 13 inversions. Each monthly inversion solved for
four weekly fluxes. Therefore, a monthly inversion solves for
10 201× 6× 4= 244 824 surface fluxes.

The mean daytime and night-time concentrations at each
of the four domain boundaries for each week are in-
cluded in the control vector. The inversion solved for
4× 2× 4= 32 boundary concentrations (four boundaries,
day–night, 4 weeks). We solved for weekly concentrations
at the boundaries, as we expected these concentrations to
show small changes on synoptic time scales, particularly in-
flow from the ocean boundaries. We avoided solving for too
short a period so that the percentile filtering technique (see
Sect. 2.1.8) would never discard all measurements for a pe-
riod. The maximum standard deviation in the hourly back-
ground CO2 concentrations for a week was 0.8 ppm.

2.1.3 Concentration measurements: c

The reference inversion made use of two CO2 monitoring
sites that were established at Robben Island and Hangk-
lip lighthouses. Each site was equipped with a Picarro cav-
ity ring-down spectroscopy (CRDS) (Picarro G2301) instru-
ment. Sufficient data for 13 of the 16 months were avail-
able to perform monthly inversions. The Robben Island site
predominantly viewed air influenced by the Cape Town city
bowl, whereas Hangklip viewed air influenced by biogenic
fluxes from nearby fynbos vegetation and agricultural areas.
Details about these measurement sites are provided in Nick-
less et al. (2018). Rigorous calibration was performed on a
regular basis, ensuring that these sites measured on the same
scale as the Cape Point background site, which is calibrated
to the WMO-X2007 scale. The high-frequency observations
were processed into hourly concentrations, which provided
the observed data for the inversion.

Atmos. Chem. Phys., 19, 7789–7816, 2019 www.atmos-chem-phys.net/19/7789/2019/



A. Nickless et al.: Cape Town atmospheric inversion: sensitivity analyses 7793

2.1.4 System meteorology

CCAM is a variable-resolution global atmospheric model
developed by the Commonwealth Scientific and Industrial
Research Organisation (CSIRO) (McGregor, 1996, 2005a,
b; McGregor and Dix, 2001, 2008) and has been validated
over South Africa (Roux, 2009; Engelbrecht et al., 2009,
2011, 2013, 2015). Full details are provided in Nickless et al.
(2018). CCAM was applied in stretched-grid mode to func-
tion as a regional climate model. A multiple-nudging ap-
proach was followed to downscale the 250 km resolution
National Centers for Environmental Prediction (NCEP) re-
analysis data (Kalnay et al., 1996) to a resolution of 60 km
over southern Africa, 8 km over the south-western cape and
subsequently to a 1 km resolution over the study area. The
model produced hourly estimates on a 1 km× 1 km spatial
grid, which extended from 34.5◦ to 33.5◦ S and from 18.2◦

to 19.2◦ E.

2.1.5 Jacobian matrix: H

The Jacobian matrix, H, provides the sensitivities of the
concentrations observed at the receptor sites to the surface
fluxes and boundary inflows. To generate this matrix in our
application the particle counts were processed from a La-
grangian particle dispersion model (LPDM) run in backward
mode (Uliasz, 1994). The LPDM was driven by hourly three-
dimensional fields of mean winds (u, v, w), potential tem-
perature and turbulent kinetic energy (TKE), which were ob-
tained from the CCAM model. LPDM simulates atmospheric
transport by releasing particles from the observational sites
and tracking these particles backward in time. These particle
counts were used to derive the elements of the Jacobian ma-
trix H as originally described by Seibert and Frank (2004)
and subsequently used in several inversion studies (Lauvaux
et al., 2012; Lauvaux et al., 2016; Wu et al., 2013; Ziehn et
al., 2014; Oda et al., 2017; Nickless et al., 2015b, 2018).

Previously, we modified the approach of Seibert and Frank
(2004) to use particle counts – as produced by our LPDM –
instead of mass concentrations that were output by the atmo-
spheric transport model FLEXPART in their study (Ziehn et
al., 2014). The elements of the matrix H corresponding to the
surface fluxes in s were calculated as follows:

∂csf

∂sin
=
1Tg

1P

(
Nin

Ntot

)
44
12
× 103, (7)

where csf is a volume mixing ratio (receptor) expressed in
ppm and sin is a mass-flux density (source), Nin the number
of particles in the receptor surface grid from source pixel i
released at time interval n, 1T is the length of the time in-
terval,1P is the pressure difference in the surface layer, g is
the acceleration due to gravity, and Ntot the total number of
particles released during a given time interval.

The spatial resolution of the surface flux grid boxes was
set to be the same as that of the high-resolution subregion

of the atmospheric transport model, resulting in a gridded
domain consisting of 101× 101 grid boxes (a resolution
of 1 km× 1 km). The units of the surface fluxes are given
in kg CO2 m−2 week−1 and are transformed through H into
contributions to the concentration at the measurement site in
units of ppm. To solve for the concentrations at the boundary
Ziehn et al. (2014) showed that the Jacobian can be calcu-
lated as follows:

∂cb

∂sB
=
NB

Ntot
, (8)

where sB are the concentrations at the domain boundary, cb is
the volume mixing ratios, NB is the number of particles from
the domain boundary, and B and Ntot are the total number of
particles viewed at the receptor site from any of the domain
boundaries. The contribution to the observed concentration
at the receptor site can be written as follows:

cb =HBsB, (9)

where HB is the Jacobian with respect to the domain bound-
ary concentrations, sB is the domain boundary concentra-
tions and cb is the contributions from the boundary to the
observed concentration at the measurement site in units of
ppm. The row elements of HB sum to one. Therefore, the
elements of cb represent a weighted average of the concen-
trations at the domain boundaries and provide a basis concen-
tration to which the contributions from the surface fluxes are
added. Each inversion solves for weekly domain boundary
concentrations at the northern, eastern, southern and western
borders of the inversion domain box, separated by day and
night.

2.1.6 Inventory of anthropogenic emissions

The inventory analysis carried out for CT subdivided the an-
thropogenic emissions into road transport, airport and har-
bour, residential lighting and heating, and industrial point
source emissions (Nickless et al., 2015a). Road transport
emissions were derived from modelled values of vehicle
kilometres for each section of the road network, based on
observed vehicle count data. The vehicle kilometres were
scaled for each hour of the day and separated into weekdays
and weekend days, leading to distinctive vehicle emissions
for the weekday–weekend and day–night periods. Airport
emissions were derived from landing and takeoff cycles, as
reported by Airports Company South Africa for each month.
The IPCC average emission factors for domestic and inter-
national fleets (IPCC, 2000) were used to convert the air-
port activity data into emissions of CO2. Harbour emissions
were derived from gross tonnage of vessels that docked at the
CT port during each month published by the South African
Ports Authority and emissions derived as described in DE-
FRA (2010). Residential emissions for lighting and heating
were derived from population count data obtained for each of
the municipal wards in 2011 (Statistics South Africa, 2011).
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The South African government reports on the fuel used for
domestic heating and lighting (South African Department
of Energy, 2009). This was divided between the total pop-
ulation and then allocated pro rata to each ward. It was as-
sumed that 75 % of the annual energy consumed was used
for heating, 20 % for cooking and 5 % for lighting. The ma-
jority (75 %) of the emissions for heating were allocated to
the winter months. CT provided monthly fuel use for the
largest industrial emitters. These were converted directly into
CO2 emissions by multiplying the fuel amount with the DE-
FRA greenhouse gas emission factors (DEFRA, 2013). The
fuel types that were considered included heavy fuel oil, coal,
diesel, paraffin and fuel gas, which was divided into liquid
petroleum gas and refinery fuel gas.

Based on this inventory analysis, the percentage contribu-
tion of industrial point sources to the total fossil fuel emis-
sion was 12.0 % for CT, 34.6 % from vehicle road transport,
51.0 % from the residential sector, and 2.4 % from airport
and harbour transport. Residential emissions are a large con-
tributor to the fossil fuel emission budget, as well as one of
the largest contributors to the uncertainties in the fossil fuel
flux. This is due to the dependency that many people living in
CT have on raw fossil fuel burning for heating and lighting.
Emissions from power stations are a small component of the
total fossil fuel flux from CT, as the bulk of the direct emis-
sions from power stations occur elsewhere in the country.

The total fossil fuel CO2 emissions for the domain
were within the range of CO2 emissions reported in the
EDGAR (Emission Database for Global Atmospheric Re-
search) (v4.2) database (Nickless et al., 2015a). EDGAR is a
global product on a 0.1◦× 0.1◦ grid, which provides the to-
tal anthropogenic emissions of CO2 as estimated from proxy
data such as population counts and information on the road
transport network (Janssens-Maenhout et al., 2012). The to-
tal emissions from the inventory for 2012 were 22 % higher
than the EDGAR emissions reported for 2010. The emis-
sions in the inventory tended to be concentrated over specific
sources, such as over an oil refinery or along the road net-
work, whereas the EDGAR emissions were smoothed over
the city region.

2.1.7 Biogenic emissions

CCAM was dynamically coupled to the land surface model
CABLE (Kowalczyk et al., 2006), which allows for feed-
backs between land surface and climate processes, such as
leaf area feedback on maximal canopy conductance and la-
tent heat fluxes (Zhang et al., 2013). This also has the con-
sequence that the spatial resolution of the biogenic fluxes
were at the same spatial resolution of 1 km× 1 km as for
the transport model. The model produces hourly estimates
of net ecosystem exchange (NEE), which were aggregated
into weekly (day and night) flux estimates in units of
kg CO2 m−2 week−1 and used as the prior estimate of bio-
genic fluxes over the land surface.

The natural areas within the target domain of the inver-
sion are dominated by the fynbos biome. This is a biodi-
verse biome with many endemic species, and it covers a
relatively small area in South Africa but a large proportion
of the area within the domain of the inversion. The fynbos
biome is poorly represented by dynamic vegetation models
(Moncrieff et al., 2015) and their ability to simulate biogenic
fluxes in the fynbos region is largely untested. CABLE was
selected as the land–atmosphere exchange model to couple
with CCAM due to its development for regions in Australia
that are similar to the savanna biome in South Africa. In ad-
dition to the natural vegetation, a large agricultural sector is
within the proximity of CT, particularly vineyards and fruit
orchards. The CT region experiences a Mediterranean cli-
mate with winter rainfall, hot and dry summers, and mild and
wet winters. Significant NEE fluxes take place during both
winter and summer periods, as biogenic activity in this re-
gion is limited by the amount of water availability, whereas
temperatures are usually sufficiently high for plant produc-
tion and respiration. The CO2 fluxes over the ocean were
obtained from a study that characterized the seasonal cycle
of air–sea fluxes of CO2 in the southern Benguela upwelling
system off the South African west coast (Gregor and Mon-
teiro, 2013).

2.1.8 Domain boundary concentrations

The presence of the Cape Point GAW station provided a
source of background CO2 concentrations for the inversion.
The Cape Point station is located approximately 60 km south
of CT within a nature reserve situated on the southernmost
tip of the Cape Peninsula at a latitude of 34◦21′12.0′′ S and
longitude of 18◦29′25.2′′ E. The inlet is located on top of the
30 m measurement tower mounted on a cliff 230 m above
sea level (m a.s.l.). The station observes background mea-
surements of CO2 when observing maritime air advected di-
rectly from the south-western Atlantic Ocean – an extensive
region stretching from 20◦ (sub-equatorial) to 80◦ S (Antarc-
tic region) (Brunke et al., 2004). Therefore, maritime mea-
surements at Cape Point from the Southern Ocean are rep-
resentative of the background CO2 signal influencing the
Cape Peninsula, which are the concentrations expected at the
boundary of the inversion domain. The background signal
at Cape Point, represented by a subset of the measurements
obtained from a percentile filtering technique (Brunke et al.,
2004), was used as the prior estimate of the concentrations at
each of the four domain boundaries. The percentile filtering
technique removes data influenced by the continent or an-
thropogenic emissions. When applied to the Cape Point CO2
measurements, approximately 75 % of the data are selected.
The percentile-filtering technique has been shown to com-
pare well with the more robust method of using contempora-
neous radon (222Rn) measurements to differentiate between
marine and continental air (Brunke et al., 2004).
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The Cape Point measurements of the background CO2 lev-
els meant that we were not dependent on the atmospheric
transport model to produce estimates of CO2 concentrations
at the domain boundary, which are prone to large errors (Lau-
vaux et al., 2016). The mean weekly background concentra-
tions, separate for day and night, were determined from the
percentile filtered measurements at the site and were used
as the prior domain boundary concentrations for each of the
four cardinal directions. The prior uncertainty assigned to
the boundary concentrations was set at the standard devia-
tion of the measured hourly concentrations for that period,
which resulted in a tight constraint on the prior background
CO2 concentrations. Large adjustments by the inversion to
the domain boundary concentrations were not expected, in-
cluding the terrestrial boundaries. The standard deviation in
the hourly background CO2 concentrations ranged between
0.32 and 0.90 ppm, with a mean of 0.62 ppm.

The boundaries of the domain were deliberately set to be
far from the measurement sites so that contributions to the
CO2 concentration at a measurement site were dominated by
the surface fluxes within the domain, rather than by the do-
main boundary concentrations.

2.1.9 Prior uncertainty covariance matrix: Cs0

Error propagation techniques, as described in Nickless et al.
(2015a) and Nickless et al. (2018), were used to estimate the
relative uncertainties for each of the sector-specific fossil fuel
estimates. The relative uncertainties were scaled by a value
of 2, in order to ensure that the elements of the covariance
matrix were statistically consistent with the assumptions of
the inversion (Tarantola, 2005). The resulting uncertainty es-
timates (expressed as standard deviations) ranged between
6.7 % to 71.7 % of the prior fossil fuel emission estimate,
with a median percentage of 34.9 % to 38.4 % depending on
the month. These values were more conservative compared
with uncertainties of Bréon et al. (2015) for the AirParif in-
ventory, which were set at 20 % throughout. Since we solved
for weekly, rather than daily fluxes, we used a strong as-
sumption that fossil fuel fluxes within the same week were
homogeneous over this time. To allow the inversion to react
to local conditions within a given week, no temporal uncer-
tainty correlation was assumed between weekly fluxes. Since
fossil fuel emissions were expected to be localized in space,
we also assumed no spatial uncertainty correlation between
fossil fuel fluxes.

The uncertainty in the biogenic prior fluxes was set at the
absolute value of the net primary productivity (NPP) as pro-
duced by CABLE. Therefore, the uncertainties assigned to
the NEE estimates were large, but there is a great deal of
uncertainty in both the productivity and respiration fluxes
contributing to the NEE flux (Archibald et al., 2009; Wang
et al., 2011). The estimates of NEE are strongly depen-
dent on the assumed model forms selected for different pro-
cesses in the CABLE model. For example, the model forms

used for the soil temperature–respiration function and the
soil moisture-respiration function have large impacts on the
NEE estimates, with resulting NEE estimates differing by
over 100 % compared with eddy-covariance measurements
(Exbrayat et al., 2013). The approach of assigning either the
productivity or respiration component of NEE as the uncer-
tainty has been used by Chevallier et al. (2010). We wished
to avoid assigning fixed proportional uncertainty to the NEE
estimates as, for semi-arid regions in particular, small NEE
fluxes could occur as a result of both large productivity
and respiration fluxes. Proportional uncertainties would lead
to unrealistically low estimates of the uncertainty in NEE
fluxes. This is different to the approach used by Bréon et al.
(2015), where an uncertainty level of 70 % was assigned to
biogenic fluxes, but in their case absolute NEE estimates
were usually large in summer and expected to be small in
winter. For the ocean fluxes, the standard deviations in the
daily CO2 fluxes from Gregor and Monteiro (2013) were as-
signed as the uncertainties.

To estimate spatial uncertainty covariances in the NEE
fluxes, we assumed an isotropic Balgovind correlation model
as used in Wu et al. (2013). The off-diagonal covariance ele-
ments for sNEE;i and sNEE;j were calculated as follows:

Cs0;NEE

(
sNEE;i,sNEE;j

)
=√

Cs0;NEE

(
sNEE;i

)√
Cs0;NEE

(
sNEE;j

)(
1+

h

L

)
exp

(
−
h

L

)
, (10)

where sNEE;i and sNEE;j are NEE fluxes in pixels i and j,
Cs0;NEE

(
sNEE;i

)
and Cs0;NEE

(
sNEE;j

)
are the corresponding

variances in the NEE flux uncertainties in pixels i and j, the
characteristic correlation length L was assumed to be 1 km,
and h is the spatial distance between the centres of pixels i
and j.

2.1.10 Uncertainty covariance matrix of the
observations: Cc

The observation uncertainties represented in Cc contain both
the measurement error and the error associated with mod-
elling the concentrations. We assigned a minimum uncer-
tainty variance of 4 ppm2 for daytime observations and
16 ppm2 for night-time observations. These values were as-
signed as baseline (i.e. minimum) errors and accounted for
measurement errors, atmospheric transport modelling errors,
aggregation errors and representation errors. These minimum
errors are smaller than those for city-scale inversions con-
ducted in the Northern Hemisphere. We justify the use of
these values in our application since CT is a smaller city
compared with the cities considered in the megacity applica-
tions, such as Paris or Indianapolis. Measurements of back-
ground CO2 in the Southern Hemisphere have smaller vari-
ability compared with measurements in the Northern Hemi-
sphere. For example, for the years 2012 to 2013 the standard
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deviation between the monthly CO2 means for the Mauna
Loa GAW station in the Northern Hemisphere was 2.3 ppm
(Tans and Keeling, 2016), whereas for the same time period
at Cape Point the standard deviation between the monthly
means was 1.6 ppm.

We added additional error estimates to these minimum ob-
servation errors. We assumed errors in modelled CO2 con-
centrations due to the transport model would be larger when
the wind speed was lower (Bréon et al., 2015), and this would
be compounded at night when the planetary boundary layer
height was shallower and more stable (Feng et al., 2016). Ad-
ditional error, ranging between 0 and 1 ppm2, was added to
the daytime uncertainty variance of 4 ppm2, linearly scaled
depending on the wind speed, with 0 ppm2 added when wind
speeds were high (20 m s−1 or higher) and 1 ppm2 when the
wind speed was close to zero. At night the additional uncer-
tainty ranged between 0 and 16 ppm2. We also accounted for
the standard deviation of the measured CO2 concentrations
during each hour. We assumed that variability within the in-
stantaneous measurements at the site during an hour would
be associated with larger errors in the atmospheric transport
model. The variance of the observed instantaneous CO2 con-
centrations within an hour was added to the overall uncer-
tainty. Therefore, each hour had a customized observation
error dependent on the prevailing conditions at the measure-
ment site. Therefore, the total observation uncertainty vari-
ance for hour k is given as follows:

Cc(k,k)= Cc;base
2
+Cc;wind

2
+Cc;obs

2, (11)

where Cc;base is the baseline observation error of 2 ppm dur-
ing the day and 4 ppm during the night, Cc;wind is the ad-
ditional error due to the wind speed conditions that ranged
between 0 and 1, and Cc;obs is the standard deviation of the
observed concentrations within that hour. The final observa-
tion uncertainties reached up to 15 ppm at night, reducing the
weight of these measurements in the estimation of the prior
fluxes.

The off-diagonal elements of Cc were calculated, based on
the Balgovind correlation model as used in Wu et al. (2013),
as follows:

Cc

(
ci,cj

)
=

√
Cc (ci)

√
Cc

(
cj
)(

1+
h

L

)
exp

(
−
h

L

)
, (12)

where ci and cj are the average concentrations during hours
i and j, Cc(ci) and Cc(cj ) are the corresponding error vari-
ances for the concentrations in hours i and j, the characteris-
tic correlation length L was assumed to be 1 h, and h is the
length in time between observations i and j. The impact of
this (albeit short) correlation length was assessed in a sensi-
tivity tests discussed in the next section. No consensus has
yet been reached on how these observation uncertainty cor-
relations should be treated in city-scale inversions (Lauvaux
et al., 2016).

2.1.11 Model assessment

In order to assess the appropriateness of the uncertainty co-
variance matrices Cc and Cs0 , the χ2 statistic, as described
in Tarantola (2005), was calculated as follows:

χ2
= (Hs0− c)T (HCs0HT

+Cc)
−1(Hs0− c), (13)

with degrees of freedom equal to ν, the dimension of the data
space, in this case the length of observations in the inversion.

The squared residuals from the inversion (squared dif-
ferences between observed and modelled concentrations)
should follow the χ2 distribution with degrees of freedom
equal to the number of observations (Michalak et al., 2005;
Tarantola, 2005). The expected value of χ2/ν is one. Val-
ues lower than one indicate that the uncertainty is too large,
and values greater than one indicate that the uncertainty pre-
scribed is lower than it should be. The error in the assignment
of the uncertainty could be in either Cc or Cs0 (or both). In
order to ensure the suitability of Cs0 , the prior uncertainty
variances were multiplied by a factor of 2. This ensured that
the χ2/ν statistic was close to a value of one for almost all
months of the inversion. These details are provided in Nick-
less et al. (2018). Due to the length of time it takes to run a
single inversion, we did not calculate an individual scaling
parameter for each month.

2.2 Sensitivity tests

2.2.1 Alternative biogenic flux product

As part of a project assessing the carbon sinks of South
Africa (DEA, 2015), monthly 1 km× 1 km estimates of ter-
restrial carbon stocks and fluxes were produced (Scholes
et al., 2013). To estimate these fluxes, a distinction was made
between carbon stocks in natural to semi-natural areas and
those on transformed land, such as annually cropped cul-
tivated land, plantation forests and urban areas (which was
based on the IPCC 2006 value for closed urban forests). As
a sensitivity test, the NEE and NPP from CABLE estimates
used for the biogenic flux priors and their uncertainties were
replaced with NEE and NPP from the carbon assessment
product and the inversion rerun with these priors (inversion
S1).

To estimate gross primary productivity (GPP), 10 years
(2001 to 2010) of monthly climatologies (temperature, rain-
fall, relative humidity) and satellite products for photosyn-
thetically active radiation (PAR) and fraction of absorbed
photosynthetically active radiation (FAPAR) were assimi-
lated. Autotrophic respiration (Ra) was calculated based on
the inputs for temperature, above-ground biomass, below-
ground biomass and FAPAR. NPP could then be calculated
as NPP=GPP–Ra. The heterotrophic component (Rh) of
ecosystem respiration (Re) was based on estimates of soil
organic carbon stocks and above-ground litter. The basic cal-
culation to obtain NEE was NEE=GPP–Re, and additional
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losses of CO2 through biomass burning and export and im-
port fluxes from harvest and trade-related activities were ac-
counted for.

To disaggregate the monthly products into day and night
fluxes, it was assumed that all GPP took place during the
day, and that half of Re occurred during the day and half at
night. Therefore, the weekly NEE and NPP estimates used
for the prior information in the inversion were based on the
GPP and respiration products from the assessment. The car-
bon assessment estimated the GPP flux for the year in the
fynbos biome to be 521 g CO2 m−2 yr−1, with a standard de-
viation of 492 g CO2 m−2 yr−1 across pixels with 1 km2 res-
olution. Therefore, as for the CABLE estimates used in the
reference inversion, we assign uncertainties to the prior NEE
estimates equal to the NPP estimate. A map of the prior day-
time NEE fluxes in May 2012 from the CABLE and carbon
assessment products is provided in Fig. 1. The prior estimates
from the two products are deliberately plotted on the same
scale to illustrate how much more homogeneous the carbon
assessment estimates are compared with those from CABLE.
For the CABLE product, regions with the highest productiv-
ity are associated with the largest uncertainties.

The homogeneity of the biogenic CO2 fluxes across the
domain from the carbon assessment product can be explained
by the products used as inputs for the estimation of the
carbon stock components, such as FAPAR. These products
would not be expected to differ considerably from pixel to
pixel in this domain. CABLE predicts greater CO2 uptake.
The average CO2 flux over the course of the study period
and across the domain was −41 g CO2 m−2 week−1 accord-
ing to the carbon assessment and −172 g CO2 m−2 week−1

according to CABLE. Both these estimates can be consid-
ered small. The true flux is likely to be highly variable but
close to carbon neutral over a long period of time (several
years).

2.2.2 Alternative fossil fuel emissions product

As an alternative to the inventory analysis of the fossil fuel
fluxes, we used current estimates of anthropogenic fossil fuel
emissions from the 1 km× 1 km ODIAC (Open-source Data
Inventory for Anthropogenic CO2 product) product for the
years 2012 and 2013 (ODIAC2017; Oda and Maksyutov,
2011; Lauvaux et al., 2016; Oda et al., 2017, 2018; inversion
S2). The product provides monthly emissions of CO2 in kt
of carbon. The original ODIAC product (Oda and Maksyu-
tov, 2011) made use of global energy consumption statistics
and distributed the emissions from these activities based on
known point source emitters, such as power plants, and based
on a global nightlight distribution satellite product. Emis-
sions from point sources, such as those from power plants,
were estimated separately from the diffuse emissions, for ex-
ample those due to transport. These emissions were disaggre-
gated onto to a 1 km× 1 km grid. The updated product has
further disaggregated the diffuse emissions to a 30 m× 30 m

grid by making use of global road network data, a satellite
product of surface imperviousness, and population census
data (Oda et al., 2017, 2018). This 30 m× 30 m diffuse emis-
sion product together with the point source emission product
were aggregated back up to the 1 km× 1 km grid. ODIAC
has been shown to give comparable flux estimates when used
in an inversion as a prior product in place of the ultra-high-
resolution inventory product Hestia (Gurney et al., 2012),
carried out for Indianapolis, Indiana (Oda et al., 2017).

The ODIAC monthly estimates were rescaled according
to the day of the week and to the hour of day using scal-
ing factors for South Africa as estimated by Nassar et al.
(2013). These estimates were re-aggregated into day and
night and working week and weekend fossil fuel fluxes in
units of kg CO2 m−2 week−1. These estimates for the fos-
sil fuel fluxes were used as prior estimates for the inversion
in place of the inventory-based estimates used for the refer-
ence inversion. The daytime fossil fuel fluxes produced by
the inventory analysis and the ODIAC product are provided
in Fig. 2.

The ODIAC product gave similar fossil fuel fluxes over
pixels in the CBD area compared with the inventory esti-
mates. The inventory estimates were concentrated over the
road network, point sources and areas of high population
density, whereas the ODIAC product dispersed emissions
over the domain, with an area of high concentration over the
CT metropolitan area and decreasing emissions away from
this region. The average fossil fuel flux for the domain over
the study period was 134 g CO2 m−2 week−1 according to
the inventory and 274 g CO2 m−2 week−1 according to the
ODIAC product.

2.2.3 Alternative covariance structures

The specification of the prior uncertainty covariance struc-
tures has been shown to have a substantial impact on the
pixel-level flux estimates, the total flux estimate for the do-
main, and on the spatial distribution of the fluxes (Wu et al.,
2013; Lauvaux et al., 2016). For example, in the Indianapo-
lis inversion, assuming correlation lengths of 4 or 12 km in
the prior uncertainty covariance matrix of the fluxes resulted
in total flux estimates for the city that were 17 % and 25 %
larger than the total flux estimate, assuming no correlation
(Lauvaux et al., 2016). The effect of changing the correla-
tion length had a larger impact on the total flux estimate than
changing the prior emission product from Hestia to ODIAC.

To assess the sensitivity of the posterior flux estimates,
their uncertainties and their distribution in space to the spec-
ification of the uncertainty correlations, we ran inversions
where the non-zero off-diagonal elements of Cs0 and Cc in
the reference inversion were systematically set to zero. We
considered an inversion, which assumed no temporal obser-
vation uncertainty correlation in the specification of Cc (in-
version S3), an inversion where no spatial uncertainty corre-
lations were assumed for Cs0 (inversion S4), and an inver-
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Figure 1. Spatial distribution of the prior daytime NEE fluxes produced by CABLE (a) and the carbon assessment product (b) for
May 2012, as well as the uncertainty estimates assigned to these fluxes (c, d). The scale for the prior NEE estimates is set between
−0.11 and 0.01 kg CO2 m−2 week−1, whereas the scale for the uncertainties, determined from NPP estimates, ranges between 0.00 and
0.30 kg CO2 m−2 week−1.

sion, which assumed no uncertainty correlations in the spec-
ification of Cs0 and Cc (inversion S5).

We tested what would happen if observation error correla-
tions were set at 7 h (inversion S6) instead of 1 h, as was set
for the reference inversion. A 1 h observation error correla-
tion length results in nonzero off-diagonal covariance terms
for up to approximately 7 h from the observations. Assigning
a 7 h correlation length resulted in non-zero covariances ex-
tending through to at least a day away from the observation.

We also considered inversions where the prior fossil fuel
flux uncertainty was doubled (inversion S7) and where it was
halved (inversion S8), and similarly for the NEE flux uncer-
tainties (inversions S9 and S10). By doubling or halving the
uncertainty of the fossil fuel or NEE component of the total
flux, we changed the relative uncertainty contribution each of
these made to the total uncertainty when compared with the
reference inversion.

Due to the large impact that the estimation of the do-
mestic fossil fuel emissions had on the temporal profile of
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Figure 2. Spatial distribution of the prior fossil fuel fluxes produced from the Cape Town inventory analysis (a) and the ODIAC fossil fuel
product (b) in May 2012. The prior estimates are plotted on a log scale, which ranges between 0.00 and 3.39 kg CO2 m−2 week−1.

the total fossil fuel fluxes, we considered a modification of
the estimated domestic emissions in the inventory product.
In the reference inversion, 75 % of the domestic emissions
from heating were assumed to take place during the 6 win-
ter months. We tested the impact of this assumption by al-
tering the domestic emissions so that they were distributed
uniformly through time but still spatially distributed accord-
ing to the population size. This changed the prior estimates
of the fossil fuel fluxes and their distribution through time,
as well as their uncertainties, which were set at 60 % of the
domestic emission estimate (inversion S11).

Due to the large uncertainty in the modelling of NEE
(Zhang et al., 2013; Moncrieff et al., 2015), particularly over
the fynbos biome, we considered that perhaps the average of
the NEE estimates from CABLE over the domain may be a
more reliable representation of the true flux compared with
the pixel-level estimates. Therefore, we averaged the NEE
and NPP estimates from CABLE over the inversion domain
and assigned this average NEE (and NPP for its uncertainty)
as the prior biogenic flux estimates (inversion S12).

We considered an inversion where the uncertainties in Cc

were set at 2 ppm during the day and 4 ppm at night (inver-
sion S13), excluding the additional components for the er-
ror due to wind speed and observation variability that were
used in the reference inversion. In this case all the errors in
the modelled concentrations are contained within these val-
ues, and we disregard the climatic conditions under which
the measurements were taken. We tested the impact of in-
creasing the night-time uncertainty in the observation errors
to 10 ppm (inversion S14). We further simplified Cc by us-
ing the simplified uncertainties of 2 ppm during the day and

4 ppm at night and also set the temporal observation uncer-
tainty correlation to zero (inversion S15).

2.2.4 Alternative control vectors

As a sensitivity analysis we examined two alternative ap-
proaches to the control vector. If we assumed that neither
the NEE nor fossil fuel flux would change very much from
week to week, an option would be to solve for the mean of
the six individual fluxes over the 4 weeks in a given month.
We therefore considered a sensitivity test where the inversion
solved for one average day and one average night NEE flux
within each pixel and four fossil fuel mean weekly fluxes
(day and night working week, day and night weekend) (in-
version S16). We also considered performing a separate in-
version for each week, i.e. four separate weekly inversions
in place of each of the monthly inversions (inversion S17).
In this case only the concentration measurements for 1 week
were used and the individual weekly fluxes (two NEE and
four fossil fuel) were solved for, and this was repeated for
each of the 4 weeks in the month. The benefit of these two
alternative control vectors is that for each individual inver-
sion the resulting Cs0 matrix is much smaller compared with
the reference case.

When solving for only 1 week, or a mean weekly flux for
a particular month, the number of surface sources reduced to
10 201× 6= 61 206. Solving for individual weeks required
4× 2 additional boundary concentrations to be added to the
control vector, and when solving for the mean weekly flux
for the month, we allowed the boundary concentrations to
differ for each week, and therefore we still solved for the 32
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boundary concentrations as in the reference case. Therefore,
the Cs0 for these two alternative control vectors is 16 times
smaller than that of the reference inversion.

The benefit of these two alternative approaches is a sub-
stantial reduction (at least a 75 % reduction) in the time taken
to perform the inversion. If the results are similar to that of
the reference inversion, this type of saving in the computa-
tional time and resources would allow more components of
the inversion to be tested in a shorter period of time.

2.2.5 Sensitivity analysis approach

A description of the sensitivity tests is presented in Table 1.
The modelled concentrations from each inversion were

compared with the observations by assessing the bias and
standard deviation of the prior and posterior modelled con-
centration residuals. Residuals in the prior modelled concen-
trations were calculated as follows:

cres prior = c− cmod prior. (14)

Residuals in the posterior modelled concentrations were
calculated as follows:

cres post = c− cmod post, (15)

where cmod prior are the CO2 concentrations modelled from
s0, cmod post are the CO2 concentrations modelled from the
posterior estimate of s, and cres prior and cres post are the re-
spective residuals in the modelled concentrations. The bias,
calculated as the mean of these residuals, and standard devi-
ation of these residuals were provided for each inversion. We
plotted the time series of the observed and modelled concen-
trations to assess the skill of the inversion for reproducing the
observed concentrations, particularly “local events”, which
were periods of larger than normal spikes in the observed
concentration signal. These are presented in the Supplement
(Sect. S1.3) for all the sensitivity tests.

The posterior fluxes from each inversion were compared
with those of the reference inversion in a number of ways.
The posterior flux estimates and their spatial distribution
were assessed for each inversion by mapping the mean to-
tal weekly flux within each pixel for 2 months (May and
September 2012). We calculated the total flux over the do-
main and plotted these weekly total fluxes over time together
with the uncertainty bounds. We also considered the total flux
over the domain for each month. These total flux estimates
are the net flux resulting from the fossil fuel and NEE flux
estimates solved for by the inversion. The inversion induces
negative correlations between the fossil fuel and NEE flux
components from the same week and pixel. When the total
flux is considered in a particular pixel, the uncertainty for
the total flux will be lower than the sum of the uncertainties
for the individual components due to the negative covariance
terms. The size of these negative covariances will depend on
the prior information specified in the inversion framework.

The total estimate gives an indication of the central tendency,
which we can compare between inversions, and allows us to
assess, for example, if the inversion is predicting the region
to be a net source or a net sink. The uncertainties of these
posterior total estimates allow us to assess the confidence we
can place around these totals, and how this compares to the
estimate itself.

In order to assess the suitability of the prior uncertainty es-
timates contained in Cc and Cs0 , the χ2 statistic as described
in Tarantola (2005) was calculated (see Eq. 13). We com-
pared these statistics between the different inversions to as-
sess the suitability of the uncertainties prescribed to the prior
fluxes. Due to the adjustments made, particularly in cases
where the uncertainty covariance matrices were simplified,
it was expected that some of the inversions would have χ2

statistics that deviated from 1. We chose not to make addi-
tional changes to the sensitivity test inversions to improve
these statistics, as it would then not be possible to attribute
the sensitivity of the inversion solution between the adjust-
ment tested and the additional adjustment made to the co-
variance parameters to improve the statistical consistency of
the inversion. The number of degrees of freedom of the χ2

statistic can be divided into the degrees of freedom for sig-
nal (DFS) and degrees of freedom for noise (Rodgers, 2000).
The DFS describes the number of independent pieces of in-
formation provided by the measurements. The DFS were cal-
culated for the first week of March 2012 for the reference and
sensitivity test inversions. These statistics are provided in the
Supplement Sect. S1.1 Fig. S1.

3 Results

3.1 Reference inversion

The results of the reference inversion (S0) are explained in
detail in Nickless et al. (2018) and are briefly summarized
here. The inversion was able to substantially improve the
agreement between the modelled and observed concentra-
tions. The inversion made larger changes to the biogenic
fluxes than to the fossil fuel fluxes. Over the Cape Peninsula
region, where observations made at Robben Island viewed
CT central business district (CBD) and harbour emissions,
as well as biogenic fluxes from the Table Mountain and Cape
Point National Park regions, fossil fuel fluxes were adjusted
by less than 10 %, for example an adjustment from 1.00
to 0.91 kg CO2 m−2 week−1. An exception is the change to
a pixel over a petrol refinery where the inversions made a
relatively large change, reducing the total emission in the
pixel from 9.43 to 6.62 kg CO2 m−2 week−1 for May 2012
and from 9.38 to 7.24 for September 2012. Biogenic fluxes
were made more negative over the CBD region, with a max-
imum adjustment from −0.04 to −0.37 kg CO2 m−2 week−1

in May 2012 and from −0.08 to −0.29 in September 2012,
and made more positive over the natural areas but with much
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smaller adjustments, a maximum adjustment from −0.04 to
0.04 kg CO2 m−2 week−1 in May and from −0.11 to 0.08 in
September 2012.

The direction of the adjustments to the prior biogenic
fluxes indicated that the CABLE model was overestimating
the amount of biogenic carbon uptake over natural areas.
Dynamic vegetation models have not been able to simulate
fluxes over the fynbos biome well (Moncrieff et al., 2015),
and so this result was not surprising. Adjustments to the bio-
genic fluxes were usually small – ranging between −0.001
and 0.003 kg CO2 m−2 week−1. The inversion was able to
make larger changes to the biogenic fluxes than to the fossil
fuel fluxes because the prior biogenic flux uncertainties were
made large and because uncertainty correlations were speci-
fied between the biogenic fluxes, whereas fossil fuel flux un-
certainties were assumed to be independent.

Large uncertainty reductions were made over the natu-
ral areas bordering on the CBD, particularly over the Table
Mountain National Park, and to natural areas near the Hangk-
lip measurement site, where the uncertainty was lowered by
over 50 %. Large uncertainty reductions also occurred over
agricultural areas to the north of the CBD region. Uncertainty
reductions of up to 60 % occurred over a few central CBD
pixels but were generally smaller compared with the uncer-
tainty reductions over natural areas, which reached as high as
92 %. When aggregating the fluxes over the domain, uncer-
tainties in the prior aggregated fossil fuel fluxes ranged be-
tween 1.3 and 1.5 kt CO2 week−1, whereas the posterior un-
certainties ranged between 0.9 and 1.5 kt CO2 week−1. Un-
certainties in the prior aggregated biogenic fluxes ranged be-
tween 23.6 and 57.3 kt CO2 week−1 and were reduced to 15.8
and 47.1 kt CO2 week−1 after the inversion. The median per-
centage uncertainty reduction in the aggregated weekly flux
was 28.0 % and ranged between 2.3 and 50.5 %, with the
largest reduction occurring in March 2012.

By assigning spatial correlation between biogenic flux un-
certainties of neighbouring pixels and assuming independent
fossil fuel flux uncertainties, we attempted to provide the in-
version with additional information to allow it to better dis-
tinguish between these fluxes. The inversion-induced nega-
tive correlation between fossil fuel and biogenic flux uncer-
tainties in the same pixel. We demonstrated that the posterior
uncertainty of any linear combination of terms from the con-
trol vector of the fluxes (including the difference between
fluxes from the same pixel and the sum of fluxes from the
same pixel) will always be unchanged or smaller compared
with the prior uncertainty of the same linear combination
of elements (Jackson, 1979; Jackson and Matsu’ura, 1985).
This means that although negative correlation between the
flux components may be introduced through the inversion,
the uncertainty in both the difference between fluxes from the
same pixel and the total flux within a pixel will be reduced.
When we sum all fluxes within the same pixel, the negative
correlations created by the inversion resulted in the poste-
rior uncertainty of the total flux being less than the sum of

the posterior uncertainty of the individual fluxes. Therefore,
there is an advantage to solving for these fluxes separately.

Clearly, the inversion result was strongly dependent on the
assumptions regarding the prior fluxes and their uncertain-
ties. The results of the sensitivity tests in subsequent sections
explore to what degree these assumptions affected the inver-
sion solution.

3.2 Sensitivity tests

To assess the sensitivity of the inversion, we have calcu-
lated the aggregated posterior flux across the study period
and over the full spatial domain, together with the posterior
uncertainty and uncertainty reduction for each of the sensi-
tivity tests, which are presented in Fig. 3. The bar charts, also
referred to tornado plots, revealed that changing the prior
had the largest impact on the resulting posterior fluxes and
their uncertainties. Changing to either the ODIAC fossil fuel
product or the carbon assessment biogenic fluxes resulted in
prior and posterior flux estimates that were much more posi-
tive than those for the reference inversion. The inversion ap-
peared to pull the aggregated fluxes towards an ideal position.
The reference posterior fluxes were made more positive com-
pared to the priors, whereas for the alternative prior products,
the inversion drove the posterior fluxes to be less positive. It
is hence likely (though not certain) that the true flux is sand-
wiched between these alternative posterior flux solutions.

The aggregated fluxes were strongly sensitive to the un-
certainty spatial correlations specified between the biogenic
fluxes. Uncertainty correlations in the biogenic fluxes had a
large impact on the spatial distribution of the resulting fluxes,
and on the degree to which the inversion was able to make
changes across the full domain (Fig. 3). Eliminating these
uncertainty correlations substantially reduced the inversion’s
ability to make deviations from the prior fluxes. Therefore,
under these sensitivity tests, posterior fluxes were very simi-
lar to the prior fluxes and uncertainty reductions were small.

A short temporal correlation length in the observation un-
certainties did not have a large impact on the inversion. In-
creasing these to 7 h led to greater DFS (see Supplement
Sect. S1.1 Fig. S1) but without having an impact on the flux
solution or uncertainty reduction. The statistical consistency
also fluctuated much more strongly from month to month
when the temporal observation error correlation was larger
compared to a 1 h correlation length or assuming independent
observation uncertainties. With a correlation length of 1 h,
non-zero off-diagonal elements persisted for approximately
7 h, whereas these off-diagonal elements persisted for much
longer when the correlation was set at 7 h. Long correlation
lengths are likely not realistic as wind fields observed at the
measurement station during the day may be very different to
those observed in the evening, reducing the chance of con-
sistent errors in concentration.

The sensitivity test with the smoothed prior biogenic flux
over the full domain produced the only posterior flux solu-
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tion that was corrected to be further from the reference inver-
sion posterior. This inversion did not assume any knowledge
about the spatial variability in the surface fluxes, but it ap-
pears that providing at least some prior knowledge of where
biogenic fluxes are likely to occur – at least separating the
ocean and terrestrial fluxes – was important for a sensible
posterior flux solution. The domain is not fully or represen-
tatively sampled by the observations. By providing a blanket
biogenic flux prior across the domain, areas with large ex-
pected biogenic fluxes, which were well sampled by the ob-
servation network, had priors that were too carbon neutral,
and thus biogenic fluxes were made more negative, which
was propagated through to neighbouring biogenic fluxes, re-
sulting in a posterior aggregated flux solution that was more
negative than the prior. A blanket uncertainty estimate was
also used, which meant that the uncertainty associated with
the ocean fluxes was much larger compared with the ref-
erence inversion, allowing the inversion to make relatively
large changes to oceanic pixel fluxes close to the measure-
ment sites.

3.3 Alternative prior information products

While all the sensitivity test inversions produced prior mod-
elled concentrations that did not track the observations well
(see Supplement Sect. S1.3 Figs. S10 to S27), the carbon as-
sessment and ODIAC prior product inversions (S1 and S2)
produced prior modelled concentrations that were on aver-
age too large compared with the observed concentrations at
both sites, whereas the reference inversion (S0) underesti-
mated the concentrations at Hangklip and overestimated the
concentrations at Robben Island (Figs. 4 and 5) (also Sup-
plement Sect. S1.5 Figs. S37 and S38). The average bias of
the prior modelled concentrations from the reference inver-
sion was smaller than the bias for these sensitivity test cases
at both sites (see Supplement Sect. S1.3 Figs. S11 and S12).

The carbon assessment total prior fluxes were notably
different to those from ODIAC or the reference inversion.
There was little seasonal variation, with fluxes remaining net
positive throughout the study period. The uncertainty bands
were very narrow, based on the carbon assessment NPP. The
mean χ2 statistic for the S1 inversion of 4.1 (see Supple-
ment Sect. S1.2.1 Table S1) indicated that the uncertainties
assigned to the fluxes were too small when compared to the
uncertainties assigned to the CABLE NEE fluxes in the ref-
erence inversion (χ2 statistic of 1.5 on average), which were
closer to being statistically consistent with the assumptions
of the inversion. The time series of the prior and posterior
fluxes from the S0 and S2 inversions were more similar to
each other over time than to S1 but with the S2 inversion
generally having more positive fluxes compared with the
reference inversion (Fig. 6). These time series indicate that
the prior biogenic fluxes drove the temporal variation in the
fluxes, whereas the prior fossil fuel fluxes dictated the verti-
cal shift in the flux time series.

The reference inversion generally made fluxes more pos-
itive, except for a few winter months when the innovations
made fluxes more negative. The S2 inversion had innovations
that made the fluxes more negative compared to the priors,
except for September 2012. S1’s innovation was to make the
fluxes more negative for each month. The magnitudes of the
innovations were smaller compared to those made to S0 and
S2 prior fluxes, limited by the uncertainty placed on the prior
biogenic fluxes. For the S1 inversion, both the biogenic flux
uncertainties and the correlation lengths were smaller com-
pared to those for S0, and therefore the posterior fluxes were
not allowed to differ much from the prior, leaving the mod-
elled concentration residuals before and after the inversion
to be very similar, and posterior fluxes almost as uncertain as
the prior fluxes.

The spatial pattern in the fluxes (Supplement Sect. S1.6
Figs. S56 and S57), as reflected in the time series pattern in
the weekly fluxes (Fig. 6), indicates that prior and posterior
fluxes were more positive for the S1 inversion than those of
S0 (see also Supplement Sect. S1.2.2, Table S2). The spatial
heterogeneity in the S1 fluxes was driven by the fossil fuel
fluxes, whereas for S0 and S2 this was driven by the bio-
genic fluxes. The S1 posterior fluxes were largely unchanged
from the prior fluxes, except for a notable change made in
the September 2012 fluxes where a region of more negative
fluxes was created to the east of the petrol refinery pixel. For
the S2 inversion, the ODIAC fossil fuel emissions were high-
est over the CBD and diminished at distances further from
this centre. The spatial distribution of the S0 inversion fos-
sil fuel fluxes were strongly dependent on the transport net-
work and several point sources. The posterior fluxes around
the CBD of the S2 inversion were less radial than those in the
prior, taking on a spatial pattern more similar to the reference
inversion.

With regards to the uncertainty reduction, the S0 inver-
sion was able to obtain higher reductions than either S1 or
S2 (Figs. 6 and 3, 25.6 % reduction compared to 11.0 % and
23.6 %, respectively). The spatial pattern of uncertainty re-
duction was similar between S0 and S2, whereas S1 showed
no uncertainty reduction across much of the domain (see
Supplement Sect. S1.6 Figs. S54 to S59).

Altering the domestic fossil fuel emissions to be the same
over time in S11 had little impact on the inversion results
when compared with the wholesale change in the prior prod-
uct. On the other hand, smoothing the biogenic emissions
over space in the extreme manner where it was assumed NEE
fluxes were the same throughout the domain (S12) had a
large impact on the inversion. This resulted in the only in-
version where the aggregated fluxes became more negative.
The uncertainty reduction was also small (Fig. 3). This rep-
resents a fairly extreme change to the assumption regard-
ing the spatial distribution of the NEE fluxes and illustrates
the sensitivity of the inversion to the prior information on
where fluxes are taking place. In the Supplement we include
time series plots of the concentration contributions attributed
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Figure 3. (a) Difference between the reference and sensitivity aggregated posterior fluxes over the domain (100 km× 100 km) for the full
study period (16 months), ordered from most positive to most negative difference in posterior estimates. The reference inversion posterior
aggregated flux was−317 kt CO2. (b) Prior and posterior uncertainties in the aggregated fluxes from reference and sensitivity test inversions.
The percentage uncertainty reduction is overlaid over each bar. S0 is the reference inversion; S1 is the carbon assessment inversion; S2 is the
ODIAC fossil fuel inversion; S3 has correlation for NEE fluxes only; S4 has correlation for observation errors only; S5 is where no correlation
is specified in prior covariance matrices; S6 has 7 h observation error correlation length; S7 has doubled fossil fuel uncertainties; S8 has halved
fossil fuel uncertainties; S9 has doubled NEE uncertainties; S10 has halved NEE uncertainties; S11 has domestic emission homogenized over
the year; S12 has NEE fluxes averaged over the domain; S13 has a simple specification for the observation error covariance matrix; S14 has
a simple observation error covariance matrix with larger night-time error; S15 has a simple observation error covariance matrix with no
correlation; S16 is the inversion solving for mean weekly fluxes over the month; S17 is the separate inversions for each week.

to the fossil fuel and biogenic fluxes for all the sensitivity
test inversions during the month of May 2012 (Supplement
Sect. S1.4). Robben Island sees far less of the biogenic influ-
ence than Hangklip, so in order to make the modelled con-
centrations more consistent with the observations, the fossil
fuel fluxes were adjusted by the inversion, leading to similar
contributions to the concentration from biogenic fluxes be-
fore and after the inversion. This was the case for the refer-
ence inversion S0 and all other inversions except S12, where
the inversion made adjustments to the biogenic fluxes instead
of the fossil fuel fluxes in order to reduce the modelled con-
centrations for Robben Island.

Due to the small number of observations relative to the
number of sources solved for in the inversion, it is unsur-
prising that the posterior solution is strongly dependent on
the prior information. The results do show that the inversion
brings these different prior estimates closer to each other, and
therefore the inversion does assist in taking any selected prior
closer to the true state, but this is limited by the assumed un-
certainty limits placed on the priors, as demonstrated in the
S1 inversion.

3.4 Uncertainty covariance matrices

The inversion solution was sensitive to the uncertainty spa-
tial correlations assigned to the prior biogenic fluxes. This
impacted on the spatial distribution of the fluxes, the mag-
nitude of the total aggregated flux, and the uncertainty re-
duction achieved by the inversion. By not accounting for the
spatial correlations in the biogenic flux uncertainties, this led
to uncertainties that were too small, illustrated by average
χ2 statistics above 2 for inversions S4 and S5, which set the
spatial correlation of the uncertainties in the biogenic fluxes
to zero (see Supplement Sect. S1.2.1 Table S1). These inver-
sions also showed little innovation or uncertainty reduction
in comparison to the reference, leaving the posterior fluxes
to be similar to the priors (Fig. 7). This is also reflected in
the aggregated fluxes over the study period for S4 and S5, as
posterior fluxes were similar to the prior aggregated fluxes
and uncertainty reductions in these aggregated fluxes were
small. Aggregating over the study period led to posterior flux
estimates of −317 and −310 kt CO2 for S0 and S3, whereas
S4 and S5 had estimates of −1281 and −1287, respectively,
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Figure 4. Prior and posterior modelled concentrations for the Hangklip site for the month of May 2012 for the reference inversion (a), carbon
assessment inversion (b) and ODIAC fossil fuel flux product inversion (c).

close to the prior estimate of −1336 kt CO2. Uncertainty re-
ductions were reduced from 26.6 % to 7.6 % when biogenic
flux uncertainty correlations were removed.

In comparison, the removal of the temporal correlation in
the observation errors in S3 only had a small penalty in the
χ2 statistic. The spatial distribution of the fluxes and un-
certainty reductions achieved remained similar to the refer-

ence inversion S0 as well. Increasing the temporal correlation
length in the observation errors from 1 to 7 h for the S6 in-
version had little impact on the posterior flux estimates or the
uncertainty reduction achieved, with a posterior aggregated
flux over the study period of −497 kt CO2 compared with
−317 for S0. The χ2 statistic was substantially increased to
7.3 on average and varied more between months compared
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Figure 5. Prior and posterior modelled concentrations for the Robben Island site for the month of May 2012 for the reference inversion (a),
carbon assessment inversion (b) and ODIAC fossil fuel flux product inversion (c).

to all other inversions. Simplifying the observation errors so
that they no longer included terms that depended on the mete-
orological conditions at the site or on how variable the high-
frequency measurements were during a given hour (S13 to
S15) had very little impact on the inversion results.

As the flux uncertainties had already been scaled for the
reference inversion to improve the statistical consistency of

the uncertainty covariance matrices, it was expected that the
χ2 statistic would be too large for inversions where the un-
certainties were halved. This was particularly the case for
the biogenic flux uncertainties (S10), as these fluxes were
throughout the domain whereas the fossil fuel fluxes were as-
signed to a smaller part of the domain. Halving or doubling
the prior biogenic flux uncertainty (S9 and S10, respectively)
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Figure 6. Prior and posterior aggregated weekly fluxes over the inversion domain from March 2012 to June 2013 for the reference, carbon
assessment and ODIAC inversions. The dashed line represents prior flux estimates and the solid line represents posterior flux estimates.

led to posterior uncertainties that were roughly half or double
the total posterior uncertainty of the S0 inversion, whereas
halving or doubling the fossil fuel flux uncertainties (S7 and
S8, respectively) made little change to the uncertainty reduc-
tion. On the other hand, changing the fossil fuel uncertainties
(S7 and S8) had a larger impact on the aggregated posterior
flux (−423 kt CO2 when halved and −151 when doubled),
compared with changing the biogenic flux uncertainties (S9
and S10), where posterior fluxes remained similar to those
obtained by S0. Doubling the fossil fuel flux uncertainty led
to generally more positive fluxes across all months.

The spatial distributions of the posterior fluxes in this
group of sensitivity tests (S7 to S10) were similar to that of
the reference inversion S0. A notable feature in the Septem-
ber 2012 posterior fluxes is that when NEE uncertainties
were doubled the inversion was able to reduce the aggre-
gated flux with respect to the priors by creating a region of
negative flux in an area close to the oil refinery point source
to the north of the CBD region (see Supplement Sect. S1.6
Fig. S73).

3.5 Alternative control vectors

S0 and S17, where separate weekly inversions were per-
formed, had similar aggregated fluxes (Fig. 3). For S16,
which forced the fossil fuel and biogenic fluxes to be constant
over the month, the general pattern over time was similar to
S0. For most months the posterior weekly flux was above or
below the prior weekly flux to the same degree as S0, but the
estimates, as expected, were smoother over time (see Sup-
plement Sect. S1.2.3 Fig. S9). The monthly aggregated fluxes

were generally very close to those from S0 except for August,
September and November 2012 (see Supplement Sect. S1.2.2
Table S2). These are summer months and there was a great
deal of variation in the aggregated fluxes from week to week
in the S0 inversion during these months. S16 generally had
aggregated fluxes that were closer to zero than S0 or S17.
This had a large impact on the aggregated flux over the full
measurement period, due to these less negative posterior ag-
gregated fluxes during the summer months. The aggregated
flux for S16 was 662 kt CO2 compared with the−317 kt CO2
for S0. S17 had an aggregated flux of −687 kt CO2. This
discrepancy is partly due to some weeks with missing ob-
servations. In S0 these fluxes would have been adjusted by
the available observations for neighbouring weeks but were
completely unconstrained by the observations in S17. The
uncertainty reduction in the aggregated estimates was almost
double for S16 compared with S0 and S17.

The spatial distribution of the posterior fluxes was very
similar for S0 and S17 (see Supplement Sect. S1.6 Fig. S89)
but was distinctly different for S16. Notably, the area around
the oil refinery pixel was adjusted to negative fluxes for the
month of September (Fig. 8). Other areas were made closer
to zero compared with S0. The uncertainty reductions at
the pixel level were large for the S16 compared with S0,
with more areas of large uncertainty reduction. In particu-
lar, the areas of uncertainty reduction above 90 % that were
restricted to the area over Table Mountain National Park in
S0 were now extended over the CBD area.

Consequently, the aggregated fluxes for S16 had uncer-
tainty reductions that were twice as large as those for S0 and
uncertainties in the aggregated fluxes were much smaller. For
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Figure 7. Spatial distribution in the pixel-level uncertainty reduction achieved by the inversion to the prior fluxes in May 2012 for the
reference inversion (S0) (a) and to the no correlation inversion (S5) (b).

the aggregated flux over the full period, the posterior uncer-
tainty was 66 kt CO2 for S16, compared with the uncertainty
of 189 and 186 kt CO2 from S0 and S17, respectively (Fig. 3).

4 Discussion

4.1 Alternative prior information products

As Robben Island is dominated by fossil fuel influence from
the Cape Town metropolitan area, and Hangklip is dominated
by biogenic sources from natural and agricultural areas in its
vicinity, the discrepancy in the modelled concentrations rel-
ative to the observations suggested that the fossil fuel fluxes
provided by the prior products are too large in magnitude,
and CABLE estimated too much carbon uptake by the biota
around the Hangklip site. In the case of the carbon assess-
ment inversion, the bias in the prior modelled concentrations
was positive compared with the negative bias of the reference
inversion, indicating that the carbon assessment product was
underestimating the uptake by the biota. The direction of the
correction to the prior fluxes made by the inversion using
NEE fluxes from the carbon assessment product suggested
that the amount of carbon uptake was insufficient. The NEE
fluxes were also smaller compared to those from CABLE,
leading to uncertainties that were too small and thus an ill-
specified inversion. The inversion could not correct the fluxes
sufficiently so that modelled concentrations could match bet-
ter with observed concentrations, and therefore certain lo-
calized events (i.e. spikes in the CO2 signal) were not well

represented in posterior fluxes from the carbon assessment
inversion.

The comparison of inversion results using different prior
products provides useful information regarding which direc-
tion the true flux estimates are likely to be. A pixel within
the CBD limits had similar fossil fuel flux estimates from the
ODIAC product compared with the reference inventory prod-
uct, but the ODIAC product had emissions that were more
widespread across the domain away from the CBD. This led
to aggregated estimates that were larger under the ODIAC
inversion than the reference inversion. Compared to the ref-
erence, the ODIAC inversion attempted to reduce the aggre-
gated flux for most months – and to a greater degree – to
better match the observations, indicating that compared with
the reference inventory, the ODIAC prior was most likely
overestimating the amount of fossil fuel emissions from Cape
Town to a greater extent for most parts of the study period.
When the two prior information products provide divergent
prior flux estimates, such that the inversion reduced the flux
for one product but increased the flux for the other, it sug-
gests that the true flux lies somewhere between the posterior
flux estimates from these two inversions. When the poste-
rior aggregated flux was made smaller than the ODIAC prior
but larger than the reference prior aggregated flux, such as
during February and March 2013, the true aggregated flux
should lie between these two posterior estimates. When the
posterior flux was made smaller than the prior for both inver-
sions, we could deduce that the true aggregated flux must be
below the minimum of these two posterior estimates, and if
we have accurate uncertainty estimates, the true flux should
be no smaller than the lower uncertainty limit. Making use
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Figure 8. Spatial distribution of the posterior fluxes and uncertainty reductions achieved by the reference inversion S0 and mean monthly
flux inversion S16 for September 2012.

of the posterior uncertainties and the direction away from the
prior in which the inversions made corrections, a region is
suggested where the true flux is most likely to lie (Fig. 9).
For the CT domain, the inversion results suggest that over the
spatial domain investigated the flux is close to carbon neutral
for the majority of the year.

4.2 Uncertainty covariance matrix structure: Cs0 and
Cc

From the analysis of the reference inversion (Nickless et al.,
2018), the χ2 statistics indicated that the reference inversion
could be improved by small increases to the uncertainty spec-
ified in Cs0 , either through accounting for a larger correlation
length or increasing the pixel-level uncertainties. Removal of
the observation error correlations had a very small impact on
the goodness-of-fit statistics or on the posterior flux estimates
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Figure 9. Using the posterior estimates of the reference and ODIAC inversions (S0 and S2) and the direction of change from the prior
estimate, a region is inferred showing where exactly the true aggregated flux is expected to lie (indicated by the shaded pink area).

and uncertainty reduction achieved by the inversion. To en-
sure that our reference inversion did not deviate too far from
conventions for city-scale inversions where observation er-
ror correlations are ignored, we assigned a very short error
correlation length to the observations of 1 h. Although, even
with only an hour correlation length, off-diagonal error cor-
relations would have been non-zero for observations at least
half a day apart. We considered a longer correlation length in
S6, but this had little impact on the inversion and increased
the size of the χ2 statistic, indicating that either the obser-
vation errors or flux uncertainties needed to be increased as
well to improve statistical consistency. Lauvaux et al. (2009)
have shown that observation errors up to 24 h apart may be
strongly correlated. To adequately account for these correla-
tion lengths, a more sophisticated correlation structure may
be required where non-zero error correlations are only spec-
ified between hours in similar periods of the day, such as af-
ternoon periods for consecutive days, which would be ex-
pected to have similar meteorology. The specification of the
most suitable observation error length is still under investi-
gation, but the results of these sensitivity tests suggest that
this parameter is of less importance than the flux uncertainty
correlation lengths.

The impact of the inversion on the posterior fluxes and
their uncertainties strongly depended on the specification of
the correlation between the uncertainties in the NEE fluxes.
In particular, the aggregated fluxes were distinctly different
between the reference and test cases ignoring covariances be-
tween NEE flux uncertainties, which tended to have aggre-
gated fluxes closer to the priors and uncertainty reductions
achieved by the inversion that were much lower (7.6 % com-
pared with 26.6 % on average by the reference inversion).

This indicates that advantage should be taken of knowledge
related to the correlation induced by homogeneity of bio-
genic productivity in subregions of the domain. If this corre-
lation is correctly specified in Cs0 , then the inversion is able
to make larger adjustments to the prior fluxes and achieve a
larger uncertainty reduction in these fluxes.

Specification of the uncertainties in the prior flux estimates
is one of the most challenging tasks in an atmospheric in-
version exercise. There is little consensus on the correct ap-
proach to follow, and it is difficult to ensure that the most
important sources of uncertainty are accounted for. The χ2

statistics indicated that for this Cape Town application fur-
ther increasing either the uncertainty in the fossil fuel fluxes
or in the NEE fluxes led to statistics closer to one. Increasing
the fossil fuel flux or NEE uncertainty led to a lower number
of DFS. The degree to which the inversion is constrained by
the prior fluxes is inversely related to the specified prior un-
certainty. If either the uncertainty in the fossil fuel fluxes or
in the NEE fluxes was increased, this led to aggregated flux
estimates that were more positive as the inversion was appar-
ently attempting to compensate for the overestimation of the
NEE uptake by the CABLE model. When the uncertainties
were made smaller, the degree to which the inversion could
increase the fluxes was restricted, and the resulting aggre-
gated fluxes were more negative compared with the reference
inversion.

An inversion will nudge the flux solution closer to the truth
and will always result in reduced uncertainty compared to
that which was placed on the prior. If the prior estimates
for the fluxes are far from the truth and the uncertainties
are made small, the modelled concentration residuals will be
similar before and after the inversion, and uncertainty reduc-
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tion will be small. Therefore, the uncertainties need to be
correctly specified to allow the inversion to correct the fluxes
as close as possible to the true fluxes. Ideally, large enough to
give the inversion the freedom to correct the fluxes towards
the truth but small enough so that the posterior uncertainty is
within the required limits. This motivates for the hierarchi-
cal Bayesian approach where a distribution is assigned to the
uncertainty estimates. It can be shown that in the absence of
observation error, doubling or halving the prior uncertainty
in the fluxes results in a respective doubling or halving of the
posterior uncertainty (see Supplement Sect. S1.7). Therefore,
it us unsurprising that if a prior uncertainty is made larger
with respect to a reference inversion specification that the
posterior uncertainty of this inversion will be larger than the
posterior uncertainty of the reference.

Normally when an inversion framework is assessed, we
are interested in how much uncertainty reduction can be
achieved by the available observation network. The uncer-
tainty reduction is dependent on the influence of the observa-
tions and on how well the prior information is specified. This
set of sensitivity tests demonstrated that if we wish to ensure
that the uncertainty bounds around the posterior fluxes are
within a prespecified margin, say 10 % of the aggregated flux
estimate, then we have to ensure that we know enough about
the sources such that the prior uncertainty we begin with is
sufficiently small. Assuming no large shifts in the mean esti-
mate, it can be shown that if we wish to obtain an uncertainty
estimate that is within 10 % of the aggregated flux estimate,
and we are able to reduce the uncertainty by 25 % through
the inversion as we have achieved in the Cape Town inver-
sion, then the prior uncertainty estimate would need to be
within 13.3 % of the prior aggregated flux estimate.

Simplifying the Cc had very little impact on the inversion
results. Increasing the night-time observation errors caused
the aggregated flux to be more negative. Assigning an uncer-
tainty in the night-time modelled concentrations of 10 ppm
effectively led to the inversion ignoring most of the informa-
tion available at night, leaving the posterior night-time fluxes
(which are mostly affected by the night-time observations)
to be similar to their prior estimates. If the inversion tended
to make large corrections to the daytime fluxes and is now
unable to make large corrections to the night-time fluxes, it
implies that the aggregated fluxes will be more in error than
if the inversion could be constrained by the observations –
provided the constraint is good. The analysis of the misfits
in the modelled concentrations from the reference inversion
(Nickless et al., 2018) demonstrated that the errors in the day-
time and night-time atmospheric transport modelling were
not very different, and therefore it is unlikely that assigning
errors as large as 10 ppm to all the night-time observations is
necessary.

4.3 Alternative control vectors

The separate weekly inversions obtained similar results to
those of the reference inversion. Therefore, if necessary, for
example due to computational costs, the separate weekly in-
versions could have been performed in place of the monthly
inversions used in the reference case. In addition to the reduc-
tion in computation resources required, this allows additional
features of the inversion to be tested more easily.

The large uncertainty reduction achieved by the solving
for a mean weekly flux is expected, as a mean weekly flux
estimate over 4 weeks has 4 times as many observations to
constrain this estimate as separate weekly estimates. The es-
timates from the inversion solving for a mean weekly flux
were consistent with those from the reference inversion, ex-
cept in the summer months. During these months observa-
tions were often missing. We would expect smaller discrep-
ancies between mean weekly and separate weekly fluxes if
data were complete during these periods.

An alternative control vector, which could improve on all
three of the alternative control vectors used in this study,
would be to solve for separate components of fossil fuel and
NEE fluxes. For example, if fossil fuel fluxes were split into
those fluxes from sectors that change slowly and those that
change more quickly, the inversion could solve for a mean
weekly flux over the month for the slow fluxes, and for sec-
tors with faster changes, the inversion could solve for individ-
ual weekly fluxes. This would allow greater uncertainty re-
ductions for those fluxes for which a mean weekly flux could
be solved, which would in turn reduce the overall uncer-
tainty in the aggregated fossil fuel flux. The NEE flux could
also potentially be split into a slow and fast component. The
fast component responds to local climate conditions and this
component could be tightly constrained by the available cli-
mate data. The inversion could solve for the slower compo-
nent, which is much harder to model, allowing this estimate
to be constant for a relatively long period, thereby allowing
for stronger constraint from the observations.

4.4 Inversion sensitivity

If we consider the aggregated posterior fluxes, the variability
between flux estimates across those inversions that used the
reference control vector is 1962 kt CO2. This is largely driven
by the inversions using different prior products, and this vari-
ability drops to 469 if these two inversions are removed. It
drops further to 375 if the inversions with the transformed
prior information are removed. This represents the variabil-
ity in the aggregated flux estimate across all inversions that
used the same prior information products. If we compare this
to the uncertainty in the aggregated fluxes, which is approx-
imately 185 kt CO2, it shows that variability between pos-
terior flux estimates from different inversion frameworks is
still very large when compared with the uncertainty we ex-
pect around the posterior flux estimates. If the inversions with
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no error correlation between biospheric fluxes are removed,
then the variability between inversions drops to 117 kt CO2 –
now below the expected uncertainty around the posterior flux
from a single inversion. All the inversions that we removed
from the estimate of variability were those which had a large
influence on the error correlations of the NEE fluxes, either
because they were specifically manipulated or because they
were affected by the choice of prior product. This demon-
strates the important role uncertainty correlations in the prior
fluxes have on the posterior flux estimates obtained from an
inversion.

Exceptions are the inversions that changed the prior esti-
mates of the fossil fuel fluxes. The fossil fuel fluxes were
not assigned uncertainty correlations. Those inversions that
altered the prior estimates of the fossil fuel fluxes also had
aggregated fluxes that differed when compared with the ref-
erence inversion. This is due to the inversion having limited
ability to make large changes to the fossil fuel fluxes. The
ensemble of posterior fluxes obtained from inversions with
alternative prior fluxes allowed us to determine in which di-
rection the inversion was attempting to adjust these fluxes
and provided us with an interval in which we could deduce
the true aggregated flux would most likely be located. Chang-
ing the control vector also had a large influence on the aggre-
gated flux, but this was largely due to periods with low data
completeness.

5 Conclusions

Sensitivity tests have shown that to improve the inversion re-
sults for the Cape Town inversion, two important advance-
ments should be made to the inversion framework. Firstly
the NEE estimates need to be improved. The results from the
reference inversion and from these sensitivity tests clearly in-
dicate that CABLE is generally overestimating the amount of
CO2 uptake in the domain. Where there is more confidence
in the estimation of the biogenic fluxes, either from CABLE
or an alternative land–atmosphere exchange model, these re-
duced uncertainties should be incorporated into the prior in-
formation, rather than applying a blanket uncertainty equal
to the NPP as done for the reference inversion. For exam-
ple, over agricultural areas, where the biogenic fluxes may be
more reliably modelled, uncertainties may be substantially
reduced.

Solving for mean weekly fluxes over a month produced
much larger uncertainty reductions. Using an alternative con-
trol vector that solves for separate components of the fossil
fuel and NEE fluxes that can be split into slow and fast com-
ponents could take advantage of the larger uncertainty reduc-
tion achieved from solving for a mean weekly flux for each
month. This could potentially allow the inversion to better
distinguish between NEE and fossil fuel fluxes, allowing the
inversion to apply corrections to the right flux component
(fossil or biogenic) and at the same time obtain aggregated

flux estimates with smaller uncertainties than those obtained
for the reference inversion. The estimates of the aggregated
fluxes were shown to be more reliable in the reference inver-
sion than those for the individual fossil fuel and NEE fluxes
(Nickless et al., 2018).

The posterior uncertainties are highly dependent on the
prior uncertainties. Of more concern is the large impact that
the uncertainty correlation assumed for the NEE fluxes had
on the aggregated flux estimates and on the spatial distribu-
tion of the posterior fluxes. This has been observed in pre-
vious inversions (Lauvaux et al., 2016). Of all the specifica-
tions made, the correlation lengths are the most arbitrary but
changing this parameter can entirely alter the distribution of
the posterior fluxes. The sensitivity tests suggested that cor-
relations between observation errors were of less importance
to the inversion result.

Approaches that allow the data to inform the estimates
of the uncertainties and correlation lengths are likely to be
more successful at obtaining estimates of the true uncertainty
bounds around the inversion posterior flux estimates. Micha-
lak et al. (2005) proposed a maximum likelihood approach
to solve for the parameters, and Ganesan et al. (2014) and
Wu et al. (2013) proposed a hierarchical Bayesian approach
to solve for hyper-parameters of the inversion, including the
covariance terms. These approaches have required simplify-
ing assumptions in order to use iterative methods to solve for
the parameters, such as assuming the uncertainty is the same
across all fluxes or groups of fluxes, or solving for a scaling
parameter of the fluxes rather than the fluxes themselves.

These sensitivity analyses performed for this paper did
not consider alternative atmospheric transport models. Sen-
sitivity tests on previous city-scale inversions have shown
this to be an important source of variation between inver-
sion results (Lauvaux et al., 2016; Staufer et al., 2016; Kar-
ion et al., 2019). Future work on the Cape Town inversion
will consider alternative regional climate models, such as
the WRF (Weather Research and Forecasting model coupled
with Chemistry) regional climate model and alternative at-
mospheric transport models (Karion et al., 2019).

Data availability. The hourly CO2 concentration data from
Robben Island and Hangklip used for this study are available
at https://doi.org/10.17605/OSF.IO/RCFQ4 (Nickless, 2019). Data
from Cape Point are available at https://www.esrl.noaa.gov/gmd/
aero/net/cpt.html (last access: 12 March 2016).

Supplement. The supplement related to this article is available
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