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Abstract. To better characterize anthropogenic emission-
relevant aerosol species, the Gridpoint Statistical Interpo-
lation (GSI) and Weather Research and Forecasting with
Chemistry (WRF/Chem) data assimilation system was up-
dated from the GOCART aerosol scheme to the Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC)
4-bin (MOSAIC-4BIN) aerosol scheme. Three years (2015–
2017) of wintertime (January) surface PM2.5 (fine partic-
ulate matter with an aerodynamic diameter smaller than
2.5 µm) observations from more than 1600 sites were assimi-
lated hourly using the updated three-dimensional variational
(3DVAR) system. In the control experiment (without assim-
ilation) using Multi-resolution Emission Inventory for China
2010 (MEIC_2010) emissions, the modeled January aver-
aged PM2.5 concentrations were severely overestimated in
the Sichuan Basin, central China, the Yangtze River Delta
and the Pearl River Delta by 98–134, 46–101, 32–59 and
19–60 µg m−3, respectively, indicating that the emissions for
2010 are not appropriate for 2015–2017, as strict emission
control strategies were implemented in recent years. Mean-
while, underestimations of 11–12, 53–96 and 22–40 µg m−3

were observed in northeastern China, Xinjiang and the En-
ergy Golden Triangle, respectively. The assimilation experi-
ment significantly reduced both high and low biases to within
±5 µg m−3.

The observations and the reanalysis data from the assim-
ilation experiment were used to investigate the year-to-year
changes and the driving factors. The role of emissions was
obtained by subtracting the meteorological impacts (by con-
trol experiments) from the total combined differences (by
assimilation experiments). The results show a reduction in
PM2.5 of approximately 15 µg m−3 for the month of January

from 2015 to 2016 in the North China Plain (NCP), but me-
teorology played the dominant role (contributing a reduc-
tion of approximately 12 µg m−3). The change (for January)
from 2016 to 2017 in NCP was different; meteorology caused
an increase in PM2.5 of approximately 23 µg m−3, while
emission control measures caused a decrease of 8 µg m−3,
and the combined effects still showed a PM2.5 increase for
that region. The analysis confirmed that emission control
strategies were indeed implemented and emissions were re-
duced in both years. Using a data assimilation approach,
this study helps identify the reasons why emission control
strategies may or may not have an immediately visible im-
pact. There are still large uncertainties in this approach, espe-
cially the inaccurate emission inputs, and neglecting aerosol–
meteorology feedbacks in the model can generate large un-
certainties in the analysis as well.

1 Introduction

Anthropogenic PM2.5 (fine particulate matter with an aerody-
namic diameter smaller than 2.5 µm) is known as a robust in-
dicator of mortality and other negative health effects associ-
ated with ambient air pollution. PM2.5 components originate
not only from primary emissions but also from secondary
formations through various precursors (e.g., SO2, NOx and
volatile organic compounds – VOCs). Regional haze with
extremely high PM2.5 concentrations (exceeding the WHO
standard tenfold) has become the primary air quality concern
in China, especially over northern China (e.g., L. T. Wang et
al., 2014; W. Wang et al., 2014; Han et al., 2015; Sun et al.,
2015). To control PM2.5 pollution and improve the overall
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air quality, a series of strict pollution control strategies have
been implemented by the government since 2010, including
the “Guiding Options on Promoting the Joint Prevention and
Control of Air Pollution to Improve Regional Air Quality”
(The Central Government of the People’s Republic of China,
2010) and the Atmospheric Pollution Prevention and Control
Action Plan (The Central Government of the People’s Re-
public of China, 2013), in which the government stated that
environmentally related equipment (for flue-gas desulfuriza-
tion, selective catalyst reduction, exhaust dust removal, etc.)
are mandatory for both industries and vehicles. In addition to
long-term pollution control strategies, different emergency
measures under different pollution alerts were also imple-
mented occasionally. For example, the production of large
industrial sources (coal burning and cement) was limited to
reduce emissions, construction sites were restricted to pre-
vent fugitive dust pollution, and traffic restrictions were im-
plemented on even- and odd-numbered license plates. These
emission control strategies were stricter and implemented
more often in northern China than anywhere else in win-
ter, when haze events occur more frequently. These control
strategies were expected to reduce both the concentrations of
significant precursors (e.g., SO2 and NOx) and the emissions
of PM2.5.

Despite these strict emission control strategies, the ambi-
ent PM2.5 concentrations in major cities still fluctuated dur-
ing the wintertime from year to year. For example, the over-
all January PM2.5 concentrations in 74 cities generally de-
creased from 2015 to 2016, but the concentrations in Jan-
uary 2017 were still higher than those in 2016 (China Na-
tional Environmental Monitoring Center “Ambient Air Qual-
ity Monthly Report 2015-01/2016-01/2017-01”, http://www.
cnemc.cn/jcbg/kqzlzkbg/, last access: 7 May 2019). While
annual emission reduction trends were expected from 2015
to 2017, the overall increase in the surface concentrations
observed in January 2017 contradicted these expectations,
thereby indicating that other factors (especially meteorolog-
ical conditions) in addition to emissions may play impor-
tant roles. Some studies have attempted to investigate the
variability of air pollution and the effects of climate change
on wintertime air pollution by using statistical data. Li et
al. (2016) indicated that wintertime fog–haze days across
central and eastern China have a close relationship with the
East Asian winter monsoon. Zuo et al. (2015) concluded that
the significant weakening and strengthening of the Siberian
high and East Asian trough, respectively, are the two main
factors for the occurrence of extreme warm and extreme cold
events over China in winter, when warm air boosts air pol-
lution. In addition to utilizing statistical methodology, it is
necessary to distinguish the roles of emissions and meteorol-
ogy to further investigate the driving factors of interannual
air pollution changes.

Regional air quality models are important tools for scien-
tifically understanding the formation of haze events, techni-
cally constructing forecasts and evaluating the effects of con-

trol strategies. For regional modeling studies, emission in-
ventories are important for reflecting the emission inputs into
the atmosphere. Generally, an emission inventory is based on
a “bottom-up” methodology, thereby relying on the statistics
of energy activity, emission factors, etc. However, uncertain-
ties in energy statistics can cause variations in the emission
estimates (Zhao et al., 2017; Hong et al., 2017; Zhi et al.,
2017). For regional modeling applications, the total emis-
sions based on statistics are spatially and temporally dis-
tributed according to relevant factors (He, 2012). Neverthe-
less, the occasional emission control strategies implemented
in winter can cause large uncertainties in not only total emis-
sion estimations but also in spatial and temporal allocations,
which leads to large biases in the model simulations.

In addition to the uncertainties in emission inventories,
deficiencies in the model chemistry can also cause model
uncertainties. Increasing numbers of observations have re-
vealed that anthropogenic emission-relevant aerosol species,
such as sulfate, nitrate and ammonium (denoted as SNA), are
the predominant inorganic species in the wintertime PM2.5
in China (Y. S. Wang et al., 2014; Yang et al., 2015). Var-
ious reaction paths during haze events have also been pro-
posed (e.g., Zheng et al., 2015; Cheng et al., 2016; Wang
et al., 2016; Li et al., 2017; Moch et al., 2018; Wang et al.,
2018; Shao et al., 2019). For example, Moch et al. (2018)
used a 1-D model and revealed the importance of aqueous-
phase chemistry of HCHO and S(IV) in cloud droplets by
forming a S(IV)-HCHO adduct, hydroxymethane sulfonate.
Shao et al. (2019) implemented four heterogeneous sulfate
formation mechanisms (via H2O2, O3, NO2 and transition
metal ions on aerosols) into GEOS-Chem model, which par-
tially reduced the modeled low bias in sulfate concentra-
tions. However, a scientific consensus regarding the impor-
tance of the reaction paths has not yet been reached, partially
due to the uncertainties in aerosol liquid water content, pH,
ionic strength, etc. The original WRF/Chem model with ei-
ther the Goddard Chemistry Aerosol Radiation and Trans-
port (GOCART; Chin et al., 2000, 2002) or the Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC)
4-bin (MOSAIC-4BIN) aerosol scheme failed to reproduce
the highest PM2.5 concentrations; it is assumed that this fail-
ure is due to missing heterogeneous and aqueous reactions. In
Chen et al. (2016; hereafter Chen16), we added three hetero-
geneous reactions (SO2-to-H2SO4 and NO2/NO3-to-HNO3
reactions) to the WRF/Chem model based on the MOSAIC-
4BIN aerosol scheme. Although the reaction paths may still
not be comprehensively understood, the new MOSAIC-4BIN
aerosol scheme significantly improved the simulation of sul-
fate, nitrate and ammonium on polluted days in terms of the
concentrations of those species and their partitioning.

Data assimilation (DA), that is, the combination of obser-
vations with numerical model output, has been proven to be
skillful at improving aerosol forecasts (e.g., Collins et al.,
2001; Pagowski et al., 2010; Liu et al., 2011, 2016; Zhang
et al., 2016). Liu et al. (2011; hereafter Liu11) implemented
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DA on aerosol optical depth (AOD) estimates within the Na-
tional Centers for Environmental Prediction (NCEP) Grid-
point Statistical Interpolation (GSI) three-dimensional vari-
ational (3DVAR) DA system coupled with the GOCART
aerosol scheme within the Weather Research and Forecast-
ing with Chemistry (WRF/Chem) model (Grell et al., 2005).
Schwartz et al. (2012; hereafter S12) and Jiang et al. (2013;
hereafter Jiang13) extended the above system to assimilate
surface PM2.5 and PM10. The evaluation results demon-
strated improved aerosol forecasts from the DA system in
studies over East Asia and the United States.

Following Liu11, S12 and Chen16, we updated the GSI–
WRF/Chem system by changing from the GOCART aerosol
scheme to the MOSAIC-4BIN aerosol scheme to better char-
acterize the complex PM2.5 pollution in China. We applied
the updated system to assimilate PM2.5 concentrations of
January 2015, 2016 and 2017 for two purposes: (1) to re-
produce the PM2.5 output by the DA system and (2) to in-
vestigate the different impacts of meteorological conditions
and emissions on the PM2.5 pollution in different years. In
this paper, Sect. 2 provides descriptions of the model, ob-
servations and methodology and addresses the updated GSI–
WRF/Chem-coupled DA system with the MOSAIC-4BIN
aerosol scheme. In Sect. 3, the assimilation results for the
PM2.5 concentrations from January 2015, 2016 and 2017 are
presented and compared with surface observations (PM2.5
total mass) to evaluate the DA system. In contrast to previ-
ous applications emphasizing the forecast skill improvement
achieved by the DA system, we fully utilized reanalysis data
to investigate the driving factors of pollution and to differen-
tiate the roles played by meteorological conditions and emis-
sions in different years by analyzing the reanalysis data and
model simulations. The results are given in Sect. 4, and the
conclusions are given in Sect. 5.

2 Model description, observations and methodology

The WRF/Chem settings are very similar to those of Chen16,
although Chen16 focused on the SNA aerosols in the North
China Plain during October 2014; in addition, several hetero-
geneous reactions were newly added to the original chem-
istry modules to improve the SNA simulation performance.
The DA system used herein was based on the NCEP GSI
system extended by Liu11 and S12. We assimilated sur-
face PM2.5 observations, and the only difference is that the
MOSAIC-4BIN aerosol scheme (32 PM species) was chosen
for the WRF/Chem model instead of the GOCART aerosol
scheme. Thus, the 3-D mass mixing ratios of those MOSAIC
species at each grid point composed the analysis (or control)
variables in the GSI 3DVAR minimization process.

Here, only a brief summary of the WRF/Chem configura-
tion is provided below, prior to a description of the updated
GSI DA system and the settings used in this work. The most

important differences are noted, e.g., the forward operator for
observations in the GSI system.

2.1 WRF/Chem model and emissions

As in Chen16, version 3.6.1 of the WRF/Chem model was
used in this study (Grell et al., 2005; Fast et al., 2006).
The physical parameterizations employed in the WRF/Chem
model were identical to those of Chen16, and they are listed
in Table 1. The Carbon–Bond Mechanism version Z (CBM-
Z) and MOSAIC were used as the gas-phase and aerosol
chemical mechanisms, respectively, in this study. The aerosol
species in MOSAIC are defined as black carbon (BC), or-
ganic compounds (OCs), sulfate (SO2−

4 ), nitrate (NO−3 ), am-
monium (NH+4 ), sodium (NA), chloride (CL) and other inor-
ganic compounds (OIN). We used four size bins with aerosol
diameters ranging from 0.039–0.1, 0.1–1.0, 1.0–2.5 and 2.5–
10 µm. The 24 variables in the first three bins (8 species
multiplied by 3 bins) consist of the PM2.5 total. The newly
added relative-humidity-dependent (RH-dependent) SO2-to-
H2SO4 and NO2/NO3-to-HNO3 heterogeneous reactions
(details are provided in Chen16) were also applied in the sim-
ulations.

The model domain with a 40 km horizontal grid spacing
covers most of China and the surrounding regions (Fig. 2),
and there are 57 vertical levels extending from the surface
to 10 hPa. The simulation started from 20 December of the
previous year; the first 11 d were treated as a spin-up period
and were not used in our analyses.

As in Chen16, the Multi-resolution Emission Inventory for
China (MEIC; Zhang et al., 2009; Lei et al., 2011; He, 2012;
Li et al., 2014) for January 2010 was used as the emission
input, as it is the only emission inventory that was publicly
available when the study was conducted. The original grid
spacing of the MEIC is 0.25◦×0.25◦, and this inventory has
been processed to match the model grid spacing (40 km). The
spatial distributions of primary PM2.5, SO2, NOx and NH3
emissions are shown in Fig. 2. The Multi-resolution Emis-
sion Inventory for China 2010 (MEIC_2010) emission in-
ventory has already been applied in other studies (e.g., L. T.
Wang et al., 2014; Zheng et al., 2015) for simulations over
China in the past few years; these recent studies found that
the MEIC provides reasonable estimates of total emissions
but is subject to uncertainties in the spatial allocations of
these emissions over small spatial scales. For our simula-
tions, uncertainties may also arise from two other sources:
the difference between the emission base year (2010) and
our simulation period (2015 through 2017) and the monthly
allocations. As the Chinese government has implemented
strict control strategies to ensure improved air quality dur-
ing the winter season since 2013, significant reductions in
emissions, including primary PM and precursor compounds
(SO2 and NOx) in regions with the strict implementation of
these policies relative to the year 2010, are expected for our
simulation period. A reduction in SO2 pollution of approx-
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Figure 1. Domain-averaged standard deviations of the background errors (µg kg−1) as a function of the height for each aerosol variable in
three bins: (a) Bin 1 – 0.039–0.1 µm, (b) Bin 2 – 0.1–1.0 µm, and (c) B in 3 – 1.0–2.5 µm.

Table 1. WRF/Chem model configuration.

Aerosol scheme MOSAIC (four bins; Zaveri et al., 2008)
Photolysis scheme Fast-J (Wild et al., 2000)
Gas-phase chemistry CBM-Z (Zavier and Peters, 1999)
Cumulus parameterization Grell 3-D scheme
Short-wave radiation Goddard Space Flight Center short-wave radiation scheme (Chou and Suarez, 1994)
Long-wave radiation RRTM (Mlawer et al., 1997)
Microphysics Single-moment 6-class scheme (Grell and Devenyi, 2002)
Land-surface model (LSM) NOAH LSM (Chen and Dudhia, 2001)
Boundary-layer scheme YSU (Hong et al., 2006)
Meteorology initial and boundary conditions GFS analysis and forecast every 6 h
Initial condition for chemical species 11-day spin-up
Boundary conditions for chemical species Averages of midlatitude aircraft profiles (McKeen et al., 2002)
Dust and sea salt emissions GOCART

imately 50 % was observed from 2012–2015 for the North
China Plain from Ozone Monitoring Instrument (OMI) satel-
lite data (Krotkov et al., 2016). National anthropogenic emis-
sion reductions of approximately 67 %, 17 % and 35 % from
2012–2017 for SO2, NOx and PM2.5, respectively, were as-
sumed by the bottom-up emission inventory (EI) methodol-
ogy (Zheng et al., 2018). However, the expansion and relo-
cation of the energy industry caused emission increases in
northwestern China (Ling et al., 2017). In addition, the un-
certainties of allocated emissions in the winter season will be
much larger than those in other seasons. For example, Zhi et
al. (2017) conducted a village energy survey and revealed an
enormous discrepancy in the amount of rural raw coal used
for winter heating in northern China, implying an extreme
underestimation of rural household coal consumption by the
China Energy Statistical Yearbooks. These changes and un-
certainties of emissions in the model would introduce errors
into the NO_DA simulation. However, the inhomogeneous
spatial changes and large uncertainties in seasonal alloca-
tions made it difficult to simply scale the original emission
inventory for our study period.

2.2 Updated GSI 3DVAR DA system

The NCEP’s GSI 3DVAR DA system was used to assimi-
late surface PM2.5 observations. The GSI 3DVAR DA sys-
tem calculates a best-fit analysis considering the observa-
tions (hourly surface PM2.5 concentrations in our case) and
background fields (a 1 h short-term WRF/Chem forecast in
our case) weighted by their error characteristics. The GSI
3DVAR DA system produces an analysis in a model grid
space through the minimization of a scalar objective function
J (x) given by

J (x)=
1
2
(x− xb)

TB−1 (x− xb)

+
1
2
[H (x)− y]TR−1 [H (x)− y

]
, (1)

where xb denotes the background vector (with dimensionm),
y is a vector of observations (with dimension p), and B and
R represent the background and observation error covariance
matrices with dimensions of m×m and p×p, respectively.
The covariance matrices determine the relative contributions
of the background and observation terms to the final anal-
ysis. H is the potentially nonlinear “observation operator”
that interpolates the model grid point values into observation
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Figure 2. Spatial distribution of primary PM2.5 (a; the sum of BC, OC, sulfate, nitrate and other unspecified PM2.5 emissions), SO2 (b),
NOx (c) and NH3 (d) emissions (units are µg m−2 s−1 for PM2.5 and mol km−2 h−1 for the other three) used in this study.

spaces and converts model-predicted variables into observed
quantities.

2.2.1 PM2.5 observation operator

In our updated DA system, GSI was used to assimilate sur-
face PM2.5 total mass observations, whereas the WRF/Chem
model predicts the PM2.5 total mass as different prognos-
tic variables depending on the chosen aerosol scheme. As
we chose the MOSAIC-4BIN aerosol scheme, the analyzed
variables here were the 3-D mass mixing ratios of the 24
MOSAIC aerosol variables at each grid point. The model-
simulated PM2.5 observations MPM2.5 were computed by
summing the 24 species as

MPM2.5 =

3∑
i=1

[
BC_i+OC_i+SO2−

4 _i+NO−3 _i (2)

+NH+4 _i+CL_i+NA_i+OIN_i
]
,

where i denotes the bin number in the MOSAIC aerosol
scheme, where the first three bins consist of the PM2.5 to-
tal, and BC, OC, SO2−

4 , NO−3 , NH+4 , NA, CL and OIN
denote black carbon, organic compounds, sulfate, nitrate,
ammonium, sodium, chloride and other inorganic com-
pounds, respectively. This formula is identical to that used
in the WRF/Chem MOSAIC scheme to diagnose PM2.5. The
WRF/Chem-simulated aerosol mixing ratios of the species
listed inside the brackets of Eq. (2) are in units of milligrams
per kilogram, and thus the dry air density ρd is multiplied to
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convert the units into µg m−3 for consistency with the obser-
vations.

Since only surface PM2.5 total mass observations were as-
similated to analyze the 3-D mass mixing ratios of 24 aerosol
variables, the 3DVAR problem was underconstrained. Due
to the lack of species and vertical information provided by
the observations, the only mathematical solution is to utilize
prior information from the model background. In the GSI
system, the distribution of the analysis increments (the dif-
ference between the analysis and background) onto the dif-
ferent species was mostly driven by the model, with the ob-
servation and background error covariance matrices acting as
the main constraints. This speciated approach to aerosol DA
within a variational system was introduced by Liu11 and fur-
ther applied by S12 and Jiang13. By using individual aerosol
species as the control variables, no assumptions were made
regarding the contribution of each species’ mass to the total
aerosol mass or to the shapes of the vertical profiles.

2.2.2 PM2.5 observations and errors

Hourly surface PM2.5 observations for January 2015–2017
were obtained from the China National Environmental Mon-
itoring Center (CNEMC). There are more than 1600 sites
in our modeling domain. As the more than 1600 monitor-
ing sites fall into 531 model grids, all observations within
the same grid are averaged (as well as the latitude and lon-
gitude) for the purpose of performing statistical calculations
and evaluation. The observation sites (Fig. 3) span mostly
northern, central and eastern China, while the sites are rela-
tively sparse in western China.

The observation error covariance matrix R in Eq. (1)
contains both measurement and representativeness errors.
Pagowski et al. (2010) used a measurement error (ε0) of
2 µg m−3. To associate higher PM2.5 values with larger mea-
surement errors, S12 defined the measurement error as ε0 =

1.5+ 0.0075×MPM2.5 , where MPM2.5 denotes an AIRNow
PM2.5 observation and the units of each term are micrograms
per cubic meter. According to the PM2.5 Auto-Monitoring
Instrument Technical Standard and Requirement (China Na-
tional Environmental Monitoring Center, 2013), three con-
tinuous online monitoring methods, namely, a beta ray plus
dynamic heating system, a beta ray plus dynamic heating
system plus light a scattering system, and a tapered element
oscillating microbalance plus filter dynamic measurement
system, are used at the national monitoring sites to satisfy
the requirements that the display resolution should be less
than 1 µg m−3, and the error should be less than 5 µg m−3

(within 24 h). To reflect the confidence in the hourly obser-
vations, the measurement error ε0 in this study is defined as
ε0 = 1.+ 0.0075×MPM2.5 , where MPM2.5 denotes a PM2.5
observational value (unit: µg m−3).

Representativeness errors reflect the inaccuracies in the
forward operator and in the interpolation from the model grid
to the observation location. Elbern et al. (2007), Pagowski et

al. (2010), S12 and Jiang13 defined the representativeness
error (εr) as

εr = γ ε0

√
1x

L
, (3)

where γ is an adjustable parameter scaling ε0 (γ = 0.5 was
used here), 1x is the grid spacing (40 km in our case) and L
is the radius of influence of an observation (set to 2 km for
urban sites). These parameter settings were based on the per-
formance of sensitivity tests. The total PM2.5 error (εPM2.5 ) is
defined as

εPM2.5 =

√
ε2

0 + ε
2
r , (4)

which constituted the diagonal elements in the R matrix. The
PM2.5 data were provided in near-real time without any data
quality control. To ensure the data quality before DA, PM2.5
observational values larger than 1000 µg m−3 (the maximum
display limit of the monitoring system) were deemed unreal-
istic in the filter process and thus were not assimilated. In ad-
dition, observations leading to innovations and/or deviations
(observations minus the model-simulated values determined
from the first-guess fields) exceeding 500 µg m−3 were also
omitted for the stability of the DA optimization step.

2.2.3 Background error covariance

Similar to Jiang13, the background error covariance (BEC)
statistics for each analysis variable required by the 3DVAR
algorithm were computed by utilizing the National Meteo-
rological Center (NMC) method (Parrish and Derber, 1992)
based on the 1 month WRF/Chem forecast for January 2015.
No cross-correlation between different species was consid-
ered. The standard deviations and horizontal–vertical cor-
relation length scales of the background errors (separated
for each aerosol species) were calculated using the method
described by Wu et al. (2002). These data were used as
constraints for the distributions of the PM components. It
is important to have phenomena-specific background error
statistics to allow for an appropriate adjustment of individ-
ual species. The domain-averaged standard deviations of the
background errors for six aerosol species (BC, OC, SO2−

4 ,
NO−3 , NH+4 and OIN) in the first three size bins are shown in
Fig. 1 as a function of the vertical model level; CL and NA
are not shown here because they are excessively small rela-
tive to the other PM species. By using the MOSAIC aerosol
scheme, the characteristics of different aerosol species in dif-
ferent size bins are more appropriate for the region of China
in the model. As shown in Fig. 1, the standard deviations of
different aerosol species errors are different in the three size
bins, the errors of NO−3 , OIN and SO2−

4 are relatively larger
than those of the other species in the three size bins, and OC
is also important, especially in the second (0.1–1.0 µm) and
third (1.0–2.5 µm) size bins. The larger background errors of
those species allowed the field to be better adjusted, which
was crucial for the aerosol analyses in this study.
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Figure 3. Observed and modeled monthly average PM2.5 concentrations (unit: µg m−3) for January 2015 (left), 2016 (middle) and 2017
(right). Regions defined in red rectangles in (a) are as follows: a – NCP (North China Plain), b – NEC (northeastern China), c – EGT (Energy
Golden Triangle), d – XJ (Xinjiang), e – FWP (Fenwei Plain), f – SB (Sichuan Basin), g – CC (central China), h – YRD (Yangtze River
Delta) – and i – PRD (Pearl River Delta).
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2.3 Experimental design

We conducted two sets of experiments (NO_DA and
CONC_DA) for January 2015, 2016 and 2017. In both cases,
the MEIC_2010 emission inventory was used. The NO_DA
experiment initialized a new WRF/Chem forecast every 6 h
starting at 00:00 UTC on 20 December of the previous year
to spin up the aerosol fields and was run through 23:00 UTC
on 31 January. Only the simulations in January were used for
the analysis. In the NO_DA experiment, the chemical and
aerosol fields were simply carried over from cycle to cycle
(similar to a continuous aerosol forecast), while the meteo-
rological initial condition/boundary condition (IC/BC) were
updated from GFS analysis data every 6 h to prevent the me-
teorological simulation from drifting. For CONC_DA, the
GSI 3DVAR system updated the MOSAIC aerosol variables
every hour starting from 00:00 UTC on 1 January. The back-
ground of the first cycle at 00:00 UTC on 1 January was ob-
tained from the NO_DA experiment, and all subsequent cy-
cles were derived from the previous cycle’s 1 h forecast. In
CONC_DA, the GFS analysis data were interpolated from a
6 h frequency to a 1 h frequency and were then used to up-
date the meteorological IC/BC in each 1 h cycle. The newly
added heterogeneous reactions were activated in both sets of
experiments.

2.4 Distinguishing the impacts of meteorological
conditions and emissions

As introduced in Sect. 1, interannual air quality changes are
strongly influenced by both emissions and meteorological
conditions. It is challenging to distinguish and quantify the
impacts of these two aspects solely based on observations or
modeling. In our case, the impacts of meteorological condi-
tions are diagnosed by analyzing the differences between two
sets of modeling simulations (with the same emission inven-
tory but different meteorology conditions). For NO_DA, the
emission inputs for January of the 3 years (2015–2017) were
all from the MEIC_2010 emission inventory, and the only
differences among the simulations of these 3 months were
the meteorological conditions, which were acquired from the
GFS 6 h analysis data. Therefore, we can assume that the dif-
ferences in the simulated NO_DA PM2.5 concentrations in
the 3 months were driven purely by differences in the mete-
orological conditions (similar to Xu et al., 2017). However,
it is difficult to distinguish the impacts of emissions by using
the same approach. As temporary emission control measures
were applied according to the pollution severity (alarm level),
the emission reduction ratios actually continued to change
during the winter season; thus, no exact emission reduction
ratios were provided for those days. Nevertheless, the simu-
lation approach with different emission scenarios is simply
impossible when lacking exact emission reduction ratios. In-
stead, we subtracted the meteorological effects from the total
effects by utilizing the reanalysis data and pure model sim-

ulations. The CONC_DA result, in which the hourly surface
PM2.5 observations from 531 groups of sites were utilized,
can be treated as a reanalysis dataset that reflects the ac-
tual conditions (very close to the observations). Therefore,
the differences in the assimilated CONC_DA PM2.5 concen-
trations in the 3 months reflect the combined effects of both
meteorological conditions and emissions. As the two experi-
ments were generated on gridded aerosol fields, we can sep-
arate the effects of emissions from the collective effect by
subtracting the NO_DA differences from the CONC_DA dif-
ferences. Hence, we can better comprehend how meteorolog-
ical conditions and emissions play different roles in driving
the changes in the 3 years. Table 2 illustrates this approach by
taking 2015 and 2016 as an example. However, some uncer-
tainties might be associated with this approach, as discussed
in detail in Sect. 4.2.

3 Evaluation of the assimilated PM2.5

This section presents the results from the NO_DA and as-
similation experiments outlined above. In slight contrast to
S12 and Jiang13, our purpose was to reproduce the spatio-
temporal variations in the surface PM2.5 within the reanaly-
sis dataset rather than to provide the inorganic carbon (IC) of
aerosol fields for improving forecasts.

Figure 3 shows the observed and modeled monthly aver-
ages of the surface PM2.5 for January 2015, 2016 and 2017.
Nine regions are illustrated as rectangles in the figure: the
North China Plain (NCP), northeastern China (NEC), the
Energy Golden Triangle (EGT), Xinjiang (XJ), the Fenwei
Plain (FWP), the Sichuan Basin (SB), central China (CC),
the Yangtze River Delta (YRD) and the Pearl River Delta
(PRD). Both the observations and the model show that high
values are mostly observed in NCP, FWP, SB and CC. In
the NO_DA case, the model results are overpredicted in SB,
NCP and CC for all 3 months, while the overestimations
are more severe in SB. The NO_DA case generally overes-
timates (underestimates) the surface PM2.5 in NCP, SB and
CC (XJ and FWP) in the 3 years, potentially indicating that
the 2010 emissions are not appropriate for the 2015–2017
simulations with overestimations (underestimations). As dis-
cussed in Sect. 2.1, the large area of overestimation is con-
sistent with the national reductions in SO2, NOx and PM2.5
anthropogenic emissions (Zheng et al., 2018); however, the
underestimations in XJ and FWP also indicate the introduc-
tion of new emission sources to these two regions.

Compared to the NO_DA case, the CONC_DA assimila-
tion experiment effectively reproduces the spatial distribu-
tion of surface PM2.5 for the 3 months in terms of the rel-
atively higher values observed in NCP, SB and CC and in
some “hotspots” (NEC, FWP and XJ), which are closer to
the observations.

Basic statistical measures, including the bias (BIAS), stan-
dard deviation (SD), root-mean-square error (RMSE) and
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Table 2. The approach used to distinguish the different impacts of meteorological conditions and emissions by calculating them from different
scenarios (taking 2015 and 2016 as an example).

Assimilated total changes (A) CONC_DA_ 2016-CONC_ DA_ 2015 Reflecting the combined effect of all driving factors,
e.g., emissions and meteorological conditions, from
2015 to 2016

Simulated changes due to
meteorological differences (B)

NO_DA_2016-NO_DA_2015 As NO_DA_2015 and NO_DA_2016 were conducted
with the same emissions but different meteorological
conditions, the differences reflect the effects due to me-
teorological differences from 2015 to 2016

Calculated changes due to
emission differences= (A–B)

(CONC_DA_2016-CONC_DA_2015) –
(NO_DA_2016-NO_DA_2015)

Mostly reflecting the effects from emission differences
between 2015 and 2016

Figure 4. Time series of the statistics between the model simulations and observations. Red lines are CONC_DA minus observations, and
blue lines are NO_DA minus observations. Statistics include the number of data pairs for comparison, the MEAN (mean bias), the SD
(standard deviation) and the RMSE (root-mean-square error). On the left is 2015, in the middle is 2016 and on the right is 2017 (units are
µg m−3 for MEAN, SD and RMSE).

correlation coefficient (CORR), were applied to evaluate the
experiments. Figure 4 shows the time series of the BIAS, SD
and RMSE for all the data used in the entire domain. The
statistics were calculated for each 1 h DA cycle. After qual-
ity control, the number of PM2.5 observations used in the DA
process differed; the number of observations was normally
approximately 500–520 but reached a minimum of 320–450
occasionally due to the data availability. From the time se-
ries, we can see that the BIAS, SD and RMSE are greatly
improved in the CONC_DA case. The maximum BIAS val-
ues are approximately 50 µg m−3 for January 2015 and ap-
proximately 80 µg m−3 for 2016 and 2017 in NO_DA, while
they are reduced to approximately ±5 µg−3 in CONC_DA.

The SD and RMSE are also reduced by at least 50 % most of
the time.

Figure 5 shows the spatial distributions of the error statis-
tics (BIAS, RMSE and CORR) at each observational site
(with more than two-thirds valid data in the month) in Jan-
uary 2015, 2016 and 2017. We start with 2015 and then ad-
dress the differences with comparisons in 2016 and 2017.
In 2015 in the NO_DA case, the surface PM2.5 concentra-
tions are generally overestimated by 20–60 µg m−3 in east-
ern China (NCP, SB, CC, PRD and YRD) but are underesti-
mated in NEC, FWP, EGT and especially XJ. The high and
low BIAS values in eastern and western China are greatly
corrected in CONC_DA. Consistent with the BIAS changes
in CONC_DA, the RMSE and CORR distributions in east-

www.atmos-chem-phys.net/19/7409/2019/ Atmos. Chem. Phys., 19, 7409–7427, 2019



7418 D. Chen et al.: Retrospective analysis of 2015–2017 wintertime PM2.5 in China

Figure 5. Spatial distributions of the statistics between the model simulations and observations for January 2015. On the top is NO_DA vs.
observations, and on the bottom is CONC_DA vs. observations. BIAS is the model minus observation (a, d), RMSE is the root-mean-square
error (b, e) and CORR is the correlation coefficient (c, f; units are µg m−3 for BIAS and RMSE).

ern China and NEC are also greatly improved; the RMSE is
reduced by at least 50 %, and the CORR increases to almost
above 0.8–0.9. The inhomogeneous distributions of the BIAS
in NO_DA in 2016 and 2017 are very similar to those in 2015
(overestimated in eastern China but underestimated in NEC,
EGT and XJ). However, the high biases in CC and PRD and
the low biases in XJ are even larger in 2016 and 2017. Simi-
lar to the comparisons between NO_ DA and CONC_DA for
the year 2015, improvements are generally achieved for al-
most all the regions in both 2016 and 2017. The statistics for
the nine regions are listed in Table 3.

4 Interannual changes during 2015 through 2017

Given reliable PM2.5 reanalysis fields produced by assimilat-
ing surface PM2.5 (CONC_DA), the changes in the 3 years

can be analyzed for not only scattered observational sites but
also for different regions. To distinguish the roles of meteo-
rological conditions and emissions in driving these changes,
an analysis based on the NO_DA and CONC_DA simula-
tions is performed. As assumed in Sect. 2.4, meteorology-
driven changes can be analyzed in the NO_DA simulations
with different meteorological conditions but the same emis-
sion inventory for different years; however, the changes in
the reanalysis data in different years are actually the com-
bination of all the driving forces, including meteorological
conditions and emissions. By analyzing both sets of simula-
tions, we can attempt to distinguish the roles of meteorology
and emissions in determining these changes.
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Table 3. Statistics of the observed and model-simulated surface PM2.5 for January 2015, 2016 and 2017 in nine regions (units are µg m−3

for BIAS and RMSE).

Statistics Sites Pairs of data BIAS RMSE CORR

NO_DA CONC_DA NO_DA CONC_DA NO_DA CONC_DA

2015

NCP 67 46 699 19.38 2.08 68.09 24.26 0.72 0.96
NEC 30 20 910 −11.94 −1.04 49.47 21.11 0.59 0.93
EGT 28 19 516 −40.43 5.28 60.62 19.45 0.37 0.90
XJ 19 13 243 −53.76 4.16 71.69 19.74 0.40 0.94
FWP 27 18 819 4.05 1.75 56.71 23.05 0.63 0.93
SB 48 33 456 98.02 0.61 125.76 20.76 0.55 0.94
CC 49 34 153 46.94 −0.38 81.31 21.18 0.46 0.93
YRD 34 23 698 32.22 −0.43 59.90 15.14 0.73 0.96
PRD 20 13 940 19.36 −0.03 47.81 9.10 0.24 0.95

2016

NCP 67 46 699 20.90 1.41 57.77 20.74 0.78 0.96
NEC 30 20 910 −11.05 0.04 40.91 16.08 0.57 0.94
EGT 28 19 516 −22.55 0.69 39.63 13.75 0.42 0.90
XJ 19 13 243 −72.92 0.25 98.19 27.16 0.51 0.96
FWP 27 18 819 −3.51 1.51 62.04 26.01 0.76 0.94
SB 48 33 456 134.63 2.77 165.38 15.49 0.51 0.92
CC 49 34 153 86.28 1.89 109.09 18.76 0.46 0.92
YRD 34 23 698 46.13 1.03 62.11 13.40 0.73 0.95
PRD 20 13 940 59.79 2.05 74.76 6.51 0.04 0.91

2017

NCP 67 46 699 25.75 2.35 82.31 28.91 0.74 0.95
NEC 30 20 910 −11.38 0.01 53.38 21.35 0.64 0.94
EGT 28 19 516 −26.88 1.40 48.83 16.96 0.41 0.90
XJ 19 13 243 −95.92 3.82 125.09 35.65 0.51 0.96
FWP 27 18 819 −6.78 −1.02 89.26 31.69 0.65 0.94
SB 48 33 456 122.82 2.33 149.08 20.08 0.56 0.93
CC 49 34 153 101.22 3.49 132.97 19.50 0.23 0.92
YRD 34 23 698 59.31 2.40 78.02 12.32 0.63 0.93
PRD 20 13 940 35.01 0.04 61.84 9.55 −0.16 0.94

4.1 Spatial distribution

The monthly mean PM2.5 differences for January in the
3 years (2015–2017) are shown in Fig. 6 in terms of the sur-
face concentrations measured at observational sites (Fig. 6a)
and those from assimilation experiments (Fig. 6b). The sur-
face observations are mostly reduced from 2015 to 2016, ex-
cept for a few sites in the southern parts of NCP and FWP and
in XJ. For the changes from 2016 to 2017, the surface obser-
vations increase at almost all the sites, especially at the sites
in the southern part of NCP; the only exceptions are the sites
along the coastline in YRD. The assimilated (CONC_DA)
differences are consistent with the surface observations inso-
much that the decreasing trend from 2015 to 2016 and the
increasing trend from 2016 to 2017 for most of the regions
are reproduced. However, for the changes in Tibet, EGT and

XJ, where observational sites are sparse, some “cold spots”
were artificially generated by CONC_DA due to the scarcity
of data and the horizontal length scale set in the assimila-
tion. As already shown in Fig. 3 and indicated here again,
January 2016 is the cleanest month in the 3 years.

4.2 The roles of meteorological conditions and
emissions

The surface PM2.5 concentrations from both the observations
and the assimilation experiments show decreases from 2015
to 2016 but increases from 2016 to 2017 for most of the re-
gions in eastern China (Fig. 6). The Chinese government has
been implementing a strict emission control strategy since
2013, especially in northern China; thus, emission reductions
are expected for each year following 2013. The ambient re-
sponse from 2015–2017 is contradictory if considering only
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Figure 6. Observed and modeled ambient PM2.5 concentration changes for January 2016–2015 (left), 2017–2016 (middle) and 2017–
2015 (right); (a) observations, (b) assimilated total changes, (c) modeled changes due to meteorological conditions and (d) calculated changes
due to emissions (units: µg m−3).
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the reductions in emissions and omitting the changes in me-
teorological conditions. There are two possible assumptions:
the first is that the emission reduction target was not achieved
from 2016 to 2017, and the second is that other factors in ad-
dition to emissions played more important roles.

The NO_DA differences in the different years are shown
in Fig. 6c, which reflects the effect of meteorological con-
dition changes (Sect. 2.4). The effect due to emissions (the
other major factor in addition to meteorological conditions)
is given by subtracting the NO_DA differences from the
CONC_DA differences (Fig. 6d). We can clearly see that the
meteorology played two different roles from 2016 to 2017.
It caused a decrease in the ambient concentrations for north-
ern China (NCP and NEC) from 2015 to 2016 but induced
a large increase for northern and central China (CC) from
2016 to 2017. This indicates that the meteorological con-
ditions might have differed from 2016 to 2017. After con-
sidering the impacts of meteorological conditions, those of
emission reductions are still confirmed for these two regions
from 2016 to 2017. The contributions from both meteoro-
logical conditions and emissions in the nine regions (defined
in Fig. 3) were calculated, and the results are listed in Ta-
ble 4. The calculations show a reduction of approximately
15–20 µg m−3 in PM2.5 for the month of January from 2015
to 2016 in northern China (NCP and NEC), but the meteo-
rology played a dominant role (contributing a reduction of
approximately 12–21 µg m−3 in PM2.5). The changes from
2016 to 2017 in NCP and NEC are completely different; me-
teorological conditions caused an increase in PM2.5 of ap-
proximately 12–23 µg m−3, and emission control measures
caused a decrease of 1–8 µg m−3 in PM2.5, while the com-
bined effects still showed a PM2.5 increase for that region. It
is reasonable to say that emissions were indeed reduced for
the northern regions from 2016 to 2017. However, the mete-
orology played an important role in offsetting those emission
reductions and leading to an increase in surface concentra-
tions in 2017.

It is worth noting that there are uncertainties in the
simulation–assimilation processes. There are three sources
of uncertainties in the NO_DA simulation. First, the emis-
sion inventories in the NO_DA simulations are obviously not
accurate, which may introduce uncertainties into the anal-
ysis. Although the basic assumption required only that the
emissions stay the same throughout the 3 years, emission
inventory uncertainty-induced errors would be offset in the
subtraction process when calculating the year-to-year differ-
ences. However, it did generate uncertainties. For example,
the emissions in SB, CC and PRD were generally overesti-
mated (Fig. 3), which means that the variations in the ambi-
ent concentration might have been artificially amplified con-
sidering the meteorology impacts (Fig. 6c). In contrast, the
emissions in XJ and FWP were underestimated (Fig. 3), and
thus the changes in the ambient concentrations due to me-
teorological conditions in these two regions might have di-
minished. From this point of view, if the fixed emissions

are more accurate in those years, the results would be more
reliable. In the case where “real” emissions are not avail-
able and the purpose is to evaluate the contribution of those
emissions, uncertainties are unavoidable and should be em-
phasized carefully. Second, the meteorological IC/BC condi-
tions in the NO_DA simulations, which were obtained from
GFS 6 h analysis data, also have uncertainties. The biases
in meteorological conditions might lead to uncertainties in
the PM2.5 analysis. Third, the deficiencies associated with
the chemistry in the model also generate uncertainties, in-
cluding missing reactions and the inaccurate parameteriza-
tion of reactions. These three aspects all originate from the
imperfections of current forward models. From another per-
spective, the accuracy of the CONC_DA assimilation exper-
iment also affects the analysis. For example, the assimila-
tion artificially made some “cold spots” in Tibet, EGT and
XJ, where observational sites are sparse; this could also in-
duce biases. Finally, the contribution of aerosol–meteorology
feedback was not considered in our calculations. As noted
by Gao et al. (2017), reduced aerosol feedbacks due to emis-
sion reductions accounted for approximately 10.9 % of the
total decrease in PM2.5 concentrations in urban Beijing in
their Asia-Pacific Economic Cooperation (APEC) study. In
our current approach, this effect is integrated into the emis-
sions in the subtracting process.

4.3 Meteorological changes in 2016 and 2017

It is interesting to see that meteorology played different roles
in each of the 3 years. Here, we compared some meteorolog-
ical parameters to explain the impacts of the meteorology.
Differences in the monthly mean planetary boundary-layer
height (PBLH), surface pressure (PSFC), 2 m temperature
(T2), 2 m relative humidity (RH2) and 10 m wind speed in
different years are given in Fig. 7. The statistics of the dif-
ferences in these parameters in the nine regions are listed in
Table 5, which shows that the changes in the PSFC and T2
for the periods 2015–2016 and 2016–2017 are different over
the whole region. Comparing the parameters between 2015
and 2016, the pressure system is stronger, the temperature is
lower and the wind speed is larger in most regions in 2016;
these conditions are favorable for the dispersion of pollution.
However, there are some unfavorable conditions, including
a lower PBLH and a higher relative humidity (RH; and thus
more heterogeneous reactions with the high RH) in northern
and southern China, which may offset the impacts of high-
pressure systems and low temperatures. Therefore, the com-
bined impacts of these meteorological parameters caused a
decrease in the ambient concentration in northern China and
an increase in southern China from 2015 to 2016, as shown in
Fig. 6. The meteorological changes are different from 2016
to 2017, with a weaker pressure system, higher temperature,
smaller wind speed and lower PBLH in most regions, which
caused the pollution to accumulate. As suggested by recent
studies, climate change has had important impacts on ex-

www.atmos-chem-phys.net/19/7409/2019/ Atmos. Chem. Phys., 19, 7409–7427, 2019



7422 D. Chen et al.: Retrospective analysis of 2015–2017 wintertime PM2.5 in China

Table 4. Modeled ambient PM2.5 concentration changes for 2016–2015, 2017–2016 and 2017–2015 in nine regions, and the contributions
of the meteorology (MET) and emissions (EMIS) calculated according to Table 2 (units: µg m−3).

2016–2015 2017–2016 2017–2015

Total MET EMIS Total MET EMIS Total MET EMIS

NCP −15.23 −12.52 −2.71 +14.91 +23.16 −8.25 −0.31 +10.65 −10.96
NEC −20.09 −21.23 +1.14 +11.44 +12.61 −1.18 −8.66 −8.62 −0.04
EGT −21.69 1.68 −23.37 +4.86 +3.81 +1.05 −16.83 +5.48 −22.31
XJ +3.69 +0.07 +3.63 +1.85 +0.28 +1.57 +5.54 +0.34 +5.20
FWP −7.05 −10.19 +3.13 +22.95 +25.62 −2.66 +15.90 +15.43 +0.47
SB −18.75 +8.72 −27.48 +10.31 +4.02 +6.29 −8.45 +12.74 −21.19
CC −21.80 +14.73 −36.54 +9.35 +19.36 −10.01 −12.45 +34.09 −46.54
YRD −10.43 −3.03 −7.40 −11.45 −2.93 −8.52 −21.88 −5.96 −15.92
PRD −23.48 13.02 −36.50 +12.71 −6.12 +18.83 −10.77 +6.90 −17.67

Table 5. Statistics of the meteorological differences by region for January 2015, 2016 and 2017.

PBLH (meter) PSFC (Pa) T2 (degree) RH2 (%) WS10 (m s−1)

2016– 2017– 2017– 2016– 2017– 2017– 2016– 2017– 2017– 2016– 2017– 2017– 2016– 2017– 2017–
2015 2016 2015 2015 2016 2015 2015 2016 2015 2015 2016 2015 2015 2016 2015

NCP 27.9 −26.7 1.2 138.5 −30.2 108.4 −4.9 3.3 −1.6 3.0 5.1 8.1 1.15 −0.78 0.37
NEC 22.7 35.3 58.0 117.0 −58.7 58.3 −4.9 4.4 −0.5 −5.7 3.1 −2.6 0.96 −0.38 0.57
EGT 13.6 1.1 14.7 28.0 −8.4 19.7 −4.0 4.0 0.0 10.0 −14.9 −4.9 0.14 −0.50 −0.36
XJ −0.9 −13.8 −14.7 151.3 −43.1 108.1 −1.3 −0.8 −2.1 5.5 −2.1 3.4 0.36 −0.14 0.22
FWP 67.7 −51.6 16.1 64.6 −12.2 52.4 −3.8 3.4 −0.4 2.8 −0.8 2.0 1.05 −1.00 0.06
SB 9.8 −13.2 −3.4 −15.9 15.9 0.1 −2.4 2.5 0.2 3.9 −1.8 2.0 0.43 −0.02 0.41
CC 34.8 −56.6 −21.9 82.8 −53.2 29.6 −2.5 2.1 −0.3 10.8 0.7 11.5 0.60 −0.07 0.53
YRD 64.7 −22.0 42.7 77.1 −27.8 49.2 −1.7 1.9 0.2 7.8 2.5 10.3 0.89 −0.40 0.49
PRD −36.1 8.2 −27.9 −16.2 −60.1 −76.3 −0.5 2.4 1.9 11.9 −8.7 3.2 0.94 −0.48 0.46

treme haze events in northern China based on historical sta-
tistical approaches or climate models. Those studies (e.g., Li
et al., 2016; Zuo et al., 2015) revealed that wintertime fog–
haze days across central and eastern China have a close re-
lationship with the East Asian winter monsoon; in addition,
significant weakening of the Siberian high and East Asian
trough are closely correlated with warm events which boost
air pollution. Consistent with our study, Zhao et al. (2018)
noted that a stronger Siberian high period in January 2016
produced a significant decrease in PM2.5 concentrations rela-
tive to those during weaker periods in other years. The above-
mentioned studies emphasized that climate change factors
and the impacts of emission changes are still difficult to eval-
uate. Our study used the DA technique in combination with
regional models and surface observations to distinguish the
impacts of emissions and meteorological conditions to fur-
ther investigate the year-to-year changes at the regional scale.

5 Conclusions

To analyze the complex PM2.5 pollution in China, the GSI–
WRF/Chem aerosol data assimilation system was updated
from the GOCART aerosol scheme to the MOSAIC-4BIN
scheme, which is more appropriate for characterizing an-

thropogenic emission-relevant aerosol species. Three years
(2015–2017) of wintertime (January) surface PM2.5 obser-
vations from more than 1600 sites were assimilated hourly
using the updated 3DVAR system in the CONC_DA assimi-
lation experiment. A parallel control experiment that did not
employ DA (NO_DA) was also performed.

Both the control and the assimilation experiments were
evaluated against the surface PM2.5 observations. In the
NO_DA experiment, in which the 2010_MEIC emission in-
ventory was used, the modeled PM2.5 concentrations were
severely overestimated in the Sichuan Basin (SB), central
China (CC), the Yangtze River Delta (YRD) and the Pearl
River Delta (PRD) by 98–134, 46–101, 32–59 and 19–
60 µg m−3, respectively, which indicated that the emission
estimates for 2010 are not appropriate for 2015–2017, as
strict emission control strategies were implemented in recent
years. Meanwhile, underestimations of 11–12, 53–96, and
22–40 µg m−3 were observed in NEC, XJ and EGT, respec-
tively. The assimilation experiment significantly reduced the
high biases of surface PM2.5 in SB, CC, YRD and PRD and
the low biases in NEC and XJ with biases within±5 µg m−3.

Both the observation and the assimilation experiments
showed decreasing ambient concentrations from 2015 to
2016 but increasing concentrations from 2016 to 2017 for
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Figure 7. Modeled meteorological changes for 2016–2015 (left), 2017–2016 (middle) and 2017–2015 (right). (a) PBLH, (b) PSFC, (c) T2,
(d) RH2 and (e) 10 m wind speed.
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most of the regions. To distinguish the important factors driv-
ing these changes, the reanalysis data from the assimilation
experiment and the modeling results from the control experi-
ment were analyzed. The results showed a reduction in PM2.5
of approximately 15–20 µg m−3 for the month of January
from 2015 to 2016 in northern China (NCP and NEC), but
meteorology played the dominant role (contributing approx-
imately 12–21 µg m−3 of the PM2.5 reduction). The changes
from 2016 to 2017 in NCP and NEC were different; me-
teorological conditions caused an increase in PM2.5 of ap-
proximately 12–23 µg m−3, while emission control measures
caused a decrease of 1–8 µg m−3, and the combined effects
still showed a PM2.5 increase for that region. The analysis
confirmed that meteorology played different roles in 2016
and 2017: the higher pressure system, lower temperatures
and higher PBLH in 2016 (compared with 2015) were fa-
vorable for pollution dispersion, whereas the situation was
almost the opposite in 2017 (compared with 2016) and led
to an increased PM2.5 from 2016 to 2017, although emission
control strategies were implemented in both years. After con-
sidering the impacts of the meteorology, the analysis showed
that emissions were indeed reduced from 2015 to 2016 and
2017, especially in NCP for the year 2017 (although the sur-
face concentrations increased that year). The analysis also
showed that emissions increased in XJ and FWP.

There are still large uncertainties in this approach, such
as the deficiencies of forward models (including inaccurate
emission inputs, uncertainties in the meteorological IC/BC
and the chemistry mechanism) and the assimilation process,
and the imperfection of the aerosol–meteorology feedbacks
in the model simulation generated large biases in the anal-
ysis. The most straightforward approach is thus to directly
estimate the emissions by data assimilation, which will be
the topic of a separate study.
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