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Abstract. The characteristics of urban dust aerosols and the
contributions of their natural and anthropogenic sources are
of scientific interest as well as being of substantial sociopo-
litical and economic concern. Here we present a comprehen-
sive study of dust flux, magnetic parameters, magnetic par-
ticulate morphology, and elemental compositions of atmo-
spheric dustfall originating from natural dust sources in East
Asia and local anthropogenic sources in Xi’an, China. The
results reveal a significant inverse relationship between sea-
sonal variations of dust flux and magnetic susceptibility (χ ).
By comparing dust flux and χ records, the relative contribu-
tions of dust from local anthropogenic sources are estimated.
Analyses using scanning electron microscopy (SEM) com-
bined with energy dispersive spectroscopy (EDS) indicate
that magnetic particulate from different sources has distinct
morphological and elemental characteristics. Detrital mag-
netic particles originating from natural sources are charac-
terized by relatively smooth surfaces with Fe and O as the
major elements and a minor contribution from Ti. The an-
thropogenic particles have angular, spherical, aggregate, and
porous shapes with distinctive contributions from marker el-
ements, including S, Cr, Cu, Zn, Ni, Mn, and Ca. Our results
demonstrate that this multidisciplinary approach is effective

in distinguishing dust particles derived from distant natural
sources and local anthropogenic sources and for the quantita-
tive assessment of contributions from the two end-members.

1 Introduction

Urban dust aerosols, comprising both natural and anthro-
pogenic contributions with complex morphological and
physiochemical characteristics, have become a focus of study
in global climate change and regional air pollution (Wilson
et al., 2002). Natural dust is derived primarily from long-
range transport with minor local soil contributions and often
causes dust events, including sandstorms, suspended dust,
and blown-sand weather (Sun et al., 2001; Zhang et al., 2003;
Chen et al., 2004; Kan et al., 2007; Baddock et al., 2013);
it has an adverse effect on local air quality (Wang et al.,
2004; Ginoux et al., 2004). Anthropogenic dust produced by
human activities is characterized by high concentrations of
toxic heavy metals (e.g., Pb, Zn, Co, Cr, Ni, and As), which
has a long-lasting and deleterious impact on the local envi-
ronment and human health (Zdanowicz et al., 2006; Qiao et
al., 2013; Lu et al., 2014; Lee et al., 2015).
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Airborne ultrafine particulate matter (e.g., PM2.5 and
PM1) can enter the alveolar region and blood circulatory sys-
tem, leading to health issues and even death (Brunekreef and
Holgate, 2002; Nel et al., 2006; Pickrell et al., 2009; Maher
et al., 2013; Elser et al., 2016). Moreover, anthropogenic dust
is an important medium for the formation of secondary pol-
lutants and plays a significant role in the formation of haze
events (Hanisch and Crowley, 2001; Li et al., 2001; Lee et al.,
2002; Usher et al., 2002; Finlayson-Pitts et al., 2003; Rubas-
inghege and Grassian, 2009; Takeuchi et al., 2010; Wu et
al., 2011; Huang et al., 2014). Consequently, it is important
to distinguish the characteristics and contributions of natural
and anthropogenic dust in urban aerosols to formulate effec-
tive policies for dust pollution abatement and improving air
quality.

Natural and anthropogenic contributions to urban dust
aerosols are usually assessed quantitatively using geochem-
ical and magnetic methodologies (Gorden, 1988; Xie et al.,
1999; Gomez et al., 2004; Spassov et al., 2004; Kim et al.,
2009; Feng et al., 2012). Geochemical methods typically in-
volve source apportionment and the contribution assessment
of representative heavy metal elements using statistical meth-
ods such as chemical mass balance (CMB) (Chow et al.,
2002; Gupta et al., 2007) and factor analysis (FA) (Harri-
son et al., 1997a; Salvador et al., 2004). Pb, Fe, Zn, Cr, Cd,
Ni, Ba, and Sb are frequently used as marker elements for
vehicle emissions (Huang et al., 1994; Adachi and Tainosho,
2004; Meza-Figueroa et al., 2007), while Hg, Pb, Mn, Cr, Co,
Cu, Cd, and Ni are regarded as indicators of coal combustion
(Vouk and Piver, 1983; Pacyna and Pacyna, 2001; Sushil and
Batra, 2006).

Since magnetic measurements are rapid, inexpensive, and
nondestructive, environmental magnetism is increasingly be-
ing used as an effective approach to study urban dust pol-
lution (Maher, 1998; Hoffmann et al., 1999). By combining
magnetic properties with morphological features (Muxwor-
thy et al., 2001; Urbat et al., 2004; Blaha et al., 2008a) as
well as heavy metal (Hunt et al., 1984; de Miguel et al.,
1997; Blaha et al., 2008b; Maher et al., 2008) and back-
trajectory characteristics (Wehner et al., 2008; Li et al., 2009;
Fleming et al., 2012), the provenance, transport routes, and
spatial distribution of polluted dust aerosols can be investi-
gated. This multidisciplinary approach is becoming a pop-
ular means of urban pollution monitoring and assessment
(Jordanova et al., 2014; Stein et al., 2015; Yan et al., 2015a;
Bourliva et al., 2016).

Using environmental magnetic techniques to assess pollu-
tion levels and sources, different forms of urban dust aerosols
in East Asia have been studied, including atmospheric dust-
fall, street dust, leaf dust, inhalable particulate matter, and
surface soil. For example, spatial and temporal pollution pat-
terns were quantitatively estimated from seasonal fluctua-
tions of the concentration and grain size of magnetic particles
in urban roadside dust (Kim et al., 2007, 2009). A high cor-
relation between magnetic parameters (magnetic susceptibil-

ity and saturation isothermal remanence, i.e., χ and SIRM)
and heavy metal concentrations in street dust, polluted farm-
land soil, and atmospheric dustfall was observed, indicating
that these magnetic parameters can be employed as effective
proxies to assess heavy metal pollution (Zhang et al., 2011,
2012a, b; Qiao et al., 2013). SIRM characteristics of road-
side leaves were shown to reflect spatial variations of mag-
netic particles in urban dustfall (Quayle et al., 2010; Hansard
et al., 2011, 2012; Maher et al., 2013; Kardel et al., 2012).
Although morphology, grain size, mineral, and element anal-
yses were utilized in previous works, there are no studies that
systematically compare magnetic signatures of natural dust,
urban dust aerosol, and polluted dust from source to sink.

This study systematically collected surface sediments
from potential dust sources in East Asia, urban dust aerosols
in Xi’an, including atmospheric dustfall (over five consecu-
tive years) and street dust, and typical anthropogenic pollu-
tants such as vehicle exhaust and fly ash. Morphology and
elemental compositions of magnetic particles in representa-
tive samples were analyzed to facilitate a thorough source–
sink comparison. Our results indicate that natural and anthro-
pogenic contributions to urban dust aerosols can be differen-
tiated using a combination of their magnetic, morphological,
and elemental characteristics.

2 Sampling and methods

2.1 Sampling

Surface sediments were collected in potential dust source re-
gions of East Asia, including the northern Chinese deserts
(the Badain Juran and Tengger Desert), the Taklimakan
Desert, Mongolian Gobi, and Tibetan Plateau (Fig. 1a).
Fine-grained materials were collected from alluvial fans,
dry riverbeds, lake basins, and drainage depressions within
Gobi–sandy deserts at intervals of 100 to 200 km (Fig. 2a–
d). To better understand the different sedimentary character-
istics, 48 samples from the northern Chinese deserts, 50 sam-
ples from the Taklimakan Desert, 23 samples from the Mon-
golian Gobi, and 32 samples from the Tibetan Plateau were
selected for magnetic measurements. Locations of the sam-
ples are shown in Fig. 1a. Detailed descriptions were given
in Sun et al. (2013).

A total of 68 street dust samples were collected from
parks, construction sites, commercial streets, and residential
areas in Xi’an following a 3× 4 km grid spanning approx-
imately 30 km from west to east and 20 km from north to
south (Fig. 1b). The sampling grid covers a range of differ-
ent functional areas in Xi’an, including the Industrial Dis-
trict, Commercial District, Cultural District, Ecological Dis-
trict, and Han Chang’an city ruins park. We also collected
four typical anthropogenic pollutant samples in June 2017,
including one sample of exhaust from several vehicles, one
sample of fly ash from a dust bag of electrostatic precipita-
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Figure 1. Locations of natural surface sediments in the East Asian
sources (a) and urban dust samples in Xi’an (b). NCD – northern
Chinese deserts, MG – Mongolian Gobi, TD – Taklimakan Desert,
and TP – Tibetan Plateau. Black diamonds are street dust sam-
pling sites; blue dots are samples of consecutive atmospheric dust-
fall (XA1 at the Institute of Earth Environment, Chinese Academy
of Sciences; XA2 at the Xinxinjiayuan residential community); red
triangles are typical heavily polluted sites, including the Bell Tower
in an area of high traffic density and the Baqiao thermal power plant.

tors at the Baqiao thermal power plant, one street dust sam-
ple from the Bell Tower in downtown Xi’an, which experi-
ences daily traffic jams, and one street dust sample near the
Baqiao thermal power plant where coal burning is the leading
pollution factor. The locations of these samples are shown
in Fig. 1b.

Atmospheric dustfall collectors were placed on the top
of a four-story building at the Institute of Earth Environ-
ment, Chinese Academy of Sciences, ∼ 10 m above the
ground surface, and a 15-story building inside the Xinx-
injiayuan residential community, ∼ 50 m above the ground
surface (Fig. 2e, f). The sampling sites situated in south-
west Xi’an consist primarily of commercial and residential
districts. Samples were collected using the wet-collection
method (Qian and Dong, 2004) at time intervals of 3–5 days
in spring and 6–7 days in other seasons. Detailed sampling
procedures were reported by Yan et al. (2015a, b); 733 sam-
ples were collected from March 2009 to March 2014. Dust
flux (DF, g m−2 day−1) is calculated as follows:

DF=W/(A× T ), (1)

Figure 2. Sampling sites of natural surface sediments in a dry
riverbed (a), desert margin (b), drainage depressions within sandy
desert (c) and Gobi desert (d), and atmospheric dustfall at XA1 (e)
and XA2 (f).

where W is the sample weight in g, A is the area in m2, and
T is sampling duration in days.

2.2 Methods

Low- and high-frequency magnetic susceptibilities (χlf and
χhf, respectively) are measured using a MFK1-FA Kap-
pabridge at frequencies of 976 and 15 616 Hz. Frequency-
dependent magnetic susceptibility (χfd) is calculated as
(χlf−χhf) / χlf× 100 %.

The temperature-dependent susceptibilities (χ − T ) are
measured in an argon atmosphere (the flow rate is
50 mL min−1) at a frequency of 976 Hz from room tempera-
ture up to 700◦ and back to room temperature using a MFK1-
FA Kappabridge equipped with a CS-3 high-temperature fur-
nace. The susceptibility of each sample is corrected for back-
ground (furnace tube correction) using the CUREVAL 8.0
program.

Hysteresis loops and first-order reversal curve (FORC) di-
agrams are measured by a vibrating sample magnetometer
(VSM3900) to a maximum applied field of 1 T . Hysteresis
parameters, including the saturation magnetization (Ms), sat-
uration remanent magnetization (Mrs), and coercivity (Bc),
are obtained after subtracting the paramagnetic contribution.
The remanence coercivity (Bcr) is obtained by demagnetiz-
ing samples from +1 T back to −1 T . The hysteresis ratios
Mrs/Ms vs. Bcr/Bc are used to construct a Day plot.

The FORC diagrams are measured with the averaging time
of 200 ms and produced using FORCinel software (Harrison
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Figure 3. χ − T heating (red line) and cooling (blue line) curves
(a–f) and magnetic hysteresis loops (g–l) of representative sam-
ples of natural surface sediments (MD0907), atmospheric dustfall
(2013.7.18 and 2010.4.30), street dust (L5-10), and anthropogenic
pollutants: fly ash (DCYH) and vehicle exhaust (QCWQ).

and Feinberg, 2008). A total of 18 samples are used for de-
tailed iron oxide analyses, including 2 samples from each
natural dust source with modal χlf values, 4 dustfall sam-
ples and 2 street dust samples with high χlf and low χlf, and
2 samples of vehicle exhaust and fly ash.

The magnetic components of these representative sam-
ples are separated from the bulk samples using a 1 T mag-
net sealed in a polyethylene bag. To confirm their mineral,
morphological, and elemental characteristics, direct observa-
tions and measurements of the samples and their extracted
magnetic particles are performed using a ZEISS EVO-18
scanning electron microscope (SEM) equipped with a Bruker
XFlash 6130 energy dispersive spectroscope (EDS). Samples
are mounted on the SEM stub with double-sided carbon tape
and then coated with a thin gold film. The specified resolu-
tion of the SEM is < 5 nm. The EDS detector is capable of
detecting elements with atomic numbers ≥ 5 and the detec-
tion sensitivity can reach 0.1 wt%. Bulk samples and mag-
netic extracts are characterized by randomly selecting three
to four fields of view and examining all the particles observed
within the selected fields. All the measurements are made at
the Institute of Earth Environment, Chinese Academy of Sci-
ences, Xi’an.

Figure 4. Day plot of the ratios Mrs/Ms vs. Bcr/Bc (a) and FORC
diagrams (b–e) for representative samples from natural surface
sediments (NSS), atmospheric dustfall (AD), street dust (STD),
and anthropogenic pollutant (AP). Domain boundaries and the
single-domain+multi-domain mixing line are according to Dun-
lop (2002b). Percentages in the Day plot represent the concentra-
tions of multi-domain in the single-domain+multi-domain mixture.

3 Results

3.1 Magnetic mineralogy

χ − T is used to identify magnetic mineral composition. All
the χ − T heating curves (Fig. 3a–f) are characterized by a
major susceptibility decrease at 580◦, i.e., the Curie temper-
ature of magnetite, which identifies magnetite as the major
contributor to χ . All the samples are irreversible with cool-
ing paths above heating trajectories due to the neoformation
of magnetite (Jordanova et al., 2004; Kim et al., 2009). The
χ − T heating curve of the vehicle exhaust displays a de-
creasing χ between 580 and 700◦ (Fig. 3b), suggesting the
presence of hematite.

All samples have similar slightly wasp-waisted hysteresis
loops (Fig. 3g–l). Magnetic saturation is generally reached at
a magnetic field of about 300 mT. This is a clear indication of
the predominance of low-coercivity ferrimagnetic minerals
in all samples.

3.2 Hysteresis properties

The Day plot and FORC diagram are powerful methods to
identify the domain state distribution of magnetic materials
(Day et al., 1977; Pike et al., 1999; Roberts et al., 2000;
Dunlop, 2002a, b). All the samples agree well with single-
domain+multi-domain admixture curves in the pseudo-
single-domain range of the Day plot (Fig. 4a). The FORC
diagrams for street dust (Fig. 4d) and anthropogenic pollu-
tants (Fig. 4e) have divergent contours that are characteristic
of multi-domain grains. The FORC diagram for natural sur-
face sediments (Fig. 4b) seems to be characteristic of pseudo-
single-domain and multi-domain behavior, whose outer con-
tours display a divergent pattern and inner contours are some-
what less divergent. The FORC distributions of atmospheric
dustfall (Fig. 4c) appear to have a mixed set of contours.
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Figure 5. Frequency distribution of χlf (a, c), bivariate plots of χlf
versus χfd (b, d), and average values and standard deviations of χlf
and χfd (e, f) for NSS in each source and in urban dust aerosols,
including AD, STD, and AP. Frequency distribution statistics of χlf
for NSS, AD and STD, and AP are generated using intervals of
10×10−8 m3 kg−1, 100×10−8 m3 kg−1, and 200×10−8 m3 kg−1,
respectively.

The outer contours have a divergent pattern that would be
expected for multi-domain particles, while the inner distri-
bution with closed contours represent single-domain grains.

3.3 Spatial and temporal variations of χ

The magnetic susceptibilities of all bulk samples were mea-
sured to estimate concentrations of magnetic minerals, which
are largely controlled by concentrations of ferromagnetic
minerals (Dunlop and Özdemir, 1997; Evans and Heller,
2003; Liu et al., 2012). χfd is sensitive to the superparamag-
netic component. There are virtually no superparamagnetic
grains when χfd is < 2 %, while a mixture of superparam-
agnetic and coarser grains is indicated with χfd in the range
of 2–10 % (Dearing, 1994; Dearing et al., 1996). The peak-
ing of the χlf frequency distribution curve indicates the χlf
values are most distributed in this interval. Both χlf and χfd
exhibit a distinctive distribution pattern in different sources.
χlf values from the Taklimakan Desert and northern Chi-

nese desert samples exhibit a unimodal distribution (Fig. 5a),
and those from the Mongolian Gobi exhibit a bimodal dis-
tribution. However, χlf values have a multimodal distribution
in the Tibetan Plateau (Fig. 5a). Different distribution pat-

Figure 6. Time series of magnetic susceptibility and dust flux of
atmospheric dustfall at XA1 and XA2 from 2009 to 2014.

terns and peak values of χlf (Fig. 5a) indicate that the assem-
blage of magnetic minerals may differ in these four natural
sources. Average χlf in individual sources shows a decreasing
trend from the Mongolian Gobi, to northern Chinese deserts
and the Tibetan Plateau, and then to the Taklimakan Desert
(Fig. 5e). The mean values of χfd in different natural sources
show a decreasing trend of superparamagnetic components
from the Taklimakan Desert to Mongolian Gobi and Tibetan
Plateau, and then to northern Chinese deserts (Fig. 5f).

The frequency distributions of χlf for the street dust and
atmospheric dustfall are both unimodal (Fig. 5c). The av-
erage χlf and χfd values of the street dust are higher than
those of the atmospheric dustfall and natural surface sedi-
ments (Fig. 5e). Low χlf (< 500× 10−8 m3 kg−1) occurs in
the Ecological District, Han Chang’an city ruins park, and
Cultural District, while samples with intermediate χlf values
(500–800× 10−8 m3 kg−1) are from the moderately devel-
oped Industrial District and the periphery of the Commer-
cial District. In contrast, the central areas of the Industrial
District and the Commercial District (particularly the area of
high traffic density at the Bell Tower) are characterized by
relatively high χlf values (> 800× 10−8 m3 kg−1). χlf of at-
mospheric dustfall from XA1 and XA2 exhibits significant
and consistent seasonal variations (Fig. 6). The lowest (high-
est) χlf values correspond to the highest (lowest) dust flux in
spring (autumn).

The representative anthropogenic pollutants, i.e., vehicle
exhaust, fly ash, and nearby street dust at the Bell Tower and
thermal power plant, have high χlf and χfd (Fig. 5c, d). The
χlf and χfd of vehicle exhaust and fly ash are higher than the
mean values of other sources of dust (Fig. 5e, f).

3.4 Morphology and mineralogy of the dust samples

SEM provides morphology information based on gray-scale
intensity. The elemental composition is determined by the
EDS detector. In order to compare the morphology and min-
eralogy characteristics of different dust aerosols, more than
40 fields of views of the representative bulk samples were
randomly obtained for various types of particles. The mor-
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Figure 7. Morphology and mineralogy of representative samples of the natural surface sediments (a), street dust (b), and atmospheric dustfall
with low χlf (c) and high χlf (d). Qtz – quartz, Fsp – feldspar, Cal – calcite, Dol – dolomite, Cm – clay minerals, Dmm – detrital magnetic
mineral, Irs – iron-rich sphere, As – aluminosilicate sphere, An – anomalous particles with a porous and loose structure.

phologies and mineral compositions of the natural surface
sediments, street dust, and atmospheric dustfall with low and
high χlf are illustrated in Fig. 7. The particles are typically
angular and irregularly shaped in the surface sediments, with
a broad size range (around 1–100 µm). Based on the EDS
analysis for each particle in the selected field, clay minerals,
quartz, calcite, dolomite, and magnetic grains (Fig. 7a) were
clearly identified (Welton, 1984).

The SEM–DES analysis shows that the morphology and
constituents of the particles in the street dust are complex
and heterogeneous. Three categories of particles can be mor-
phologically differentiated, including irregular and aggregate
mineral particles, spherical particles, and anomalous parti-
cles with porous and loose structures (Fig. 7b). Particles with
irregular shapes are mainly minerals and commonly present
in street dust samples. Compared to the natural surface sed-
iments, the grain size of mineral particles in the street dust
is finer and mostly ranges from 1–50 µm, with some up to
80 µm. Spherical particles are mainly amorphous silicon–
aluminum and iron-rich spheres, whose grain size varies
mostly from 1–20 µm, with some up to 50 µm. There are a
small number of anomalous particles with diameters of 10–
100 µm.

The morphology and mineral composition of atmospheric
dustfall are similar to those of the street dust, except that at-
mospheric dustfall with low χlf has a higher content of ir-

regularly shaped detrital minerals (Fig. 7c), while that with
high χlf contains more spherical and anomalous particles
(Fig. 7d).

3.5 Elemental compositions of mineral particles

Since the elemental compositions of mineral particles can
be clearly distinguished using SEM–EDS analysis (Blanco
et al., 2003; Kutchko and Kim, 2006), a street dust sam-
ple dominated by anthropogenic inputs with the highest χlf
was selected for EDS analysis. The results indicate that vari-
ous mineral particles exhibit distinct chemical compositions
(Fig. 8). The plate-like aggregates (labeled a) with high lev-
els of Si and Al and low levels of K, Ca, Mg, and Fe are
clay minerals composed of crystalline sheet-structure sili-
cates with a small particle size (Fig. 8a). The angular and
sharp-edged particle (labeled b) with high Si and O is quartz
(Fig. 8b). The angular particle consisting of Si, Al, and K is
potassium feldspar (Fig. 8c). Particles with high levels of Ca
and Mg are calcite (Fig. 8d) and dolomite (Fig. 8e).

The irregular particles (labeled f) that are abundant in Fe
are identified as magnetic grains (Fig. 8f), although some of
the particles show low levels of crustal elements, including
Si, Al, Ca, and K. Two types of spheres were observed. One
(labeled g) is an amorphous aluminosilicate particle (Fig. 8g)
with predominant Si and Al and lesser amounts of K, Mg, Na,
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Figure 8. SEM photograph and elemental spectra for a typical sample of street dust. In the subplots, the green plus symbols denote the
locations of the beam used in the EDS analysis.

Figure 9. Frequency distributions of χlf (a) and bivariate plots of
χlf versus χfd (b) of NSS, STD, AD, and AP.

and Ti. The other (labeled h) is an iron-rich sphere (Fig. 8h),
which is mainly composed of Fe. These particles exhibit var-
ious surface textures. In addition, almost all particles contain
O and C.

4 Discussion

4.1 Contributions of local anthropogenic sources
estimated by dust flux and χlf

On the bivariate plot of χlf vs. χfd, atmospheric dustfall is
intermediate between the surface sediments and street dust
(Fig. 9b), implying that atmospheric dustfall is a mixture of
distal natural dust and local anthropogenic dust, but much
closer to the latter. The local anthropogenic contribution
(LC) is mainly derived from local stable and sustained pol-
lutant sources, including vehicle emissions and fly ash. Con-
sidering that natural dust comes primarily from natural dust
sources with a minor local soil contribution (Wang et al.,
2004; Ginoux et al., 2012), we attribute the natural contri-
bution entirely to the distal natural dust.

The dust flux background can be taken as the average in-
put from the end-member of LC. The time-dependent back-

ground estimation was calculated using

x(i)bg =MEDj=i+kj=i−k (x (j)) , (2)

where i = k+ 1, . . .,n− k, x(i)bg is the background of x(i)
at time t (i). MEDj=i+kj=i−k (x (j)) is the running median with
window points of 2k+1 (k ≤ (n−1)/2) (Härdle and Steiger,
1995); cross-validation can be used to choose k. We used two
such criteria: the median criterion (Zheng and Yan, 1988) and
L1 norm (Marron, 1986; Dodge, 2012).

CVm (k)=median {|x (i) −MEDj=i+kj=i−k,j 6=i (x (j))|} (3)

CV1 (k)=

[
n∑
i=1

∣∣∣x (i)−MEDj=i+kj=i−k,j 6=i (x (j))

∣∣∣]/n (4)

MEDj=i+kj=i−k,j 6=i (x (j)) is the delete-one background estimate.
The cross-validation functions are to measure the average
performance of the delete-one estimate to predict the obser-
vation x(i). Optimal k values should minimize CVm(k) or
CV1(k) (Mudelsee, 2006).

Through the cross-validation calculation on the dust flux
series of atmospheric dustfall, we find that the cross-
validated number of window width (Eq. 3) is k = 19. On this
basis, we calculate the monthly LC using the ratio of monthly
background and total dust flux as

LCflux = x(j)bg/DF× 100%, (5)

where LCflux is the percentage of the monthly local anthro-
pogenic contribution estimated by dust flux (Fig. 10a). Note
that when the background is larger than the dust flux, LC is
taken to be 100 %.
Ms values of representative samples (Fig. 3h–m) are mea-

sured to identify the concentration of ferrimagnetic minerals.

www.atmos-chem-phys.net/19/731/2019/ Atmos. Chem. Phys., 19, 731–745, 2019
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Figure 10. The estimated local contributions by dust flux (a) and χlf (b). From bottom to top: (a) dust flux (pink) and background estimate
by the running median with a cross-validated number of window points (k = 19) (black), monthly averaged dust flux (blue) and background
(brown), average monthly local contribution (red) estimated by dust flux at XA1, and the uncertainty bounds calculated by standard deviation
(gray area). (b) χlf values (light blue), averaged χlf values of natural distant dust (green dotted lines), monthly averaged χlf values (dark red),
averaged χlf values of local street dust (orange dotted lines), monthly local contribution (violet) estimate by χlf at XA1, and the uncertainty
boundaries calculated by standard deviation (gray area).

We find that the averaged values of Ms in different sources
show a rising trend from the natural surface sediments
(0.04 Am2 kg−1) to atmospheric dustfall (0.81 Am2 kg−1)
and street dust (1.03 Am2 kg−1), and then to anthropogenic
pollutants (1.58 Am2 kg−1), which correspond to the char-
acteristics of averaged χlf in different sources. This indi-
cates that the high χlf of urban dust is caused by ferri-
magnetic minerals from a local anthropogenic source. In
consequence, the LC contribution could also be estimated
by the peak values of χlf frequency distribution, with 20–
30× 10−8 m3 kg−1 in the distant natural surface sediments
and 500–600× 10−8 m3 kg−1 in local street dust (Fig. 9a).
On this basis, we calculate the average LC using the follow-
ing equation:

LCχ = (χm− 25)/(550− 25)× 100%, (6)

where LCχ is the percentage of the monthly local contri-
bution estimated by χlf (Fig. 10b), and χm is the monthly
average χlf value in 10−8 m3 kg−1. 25× 10−8 and 550×
10−8 m3 kg−1 are the average χlf values of surface sediments
from source regions and local street dust, respectively. Note
that when χm is larger than the average χlf of the street dust,
LC is taken to be 100 %.

The LCflux and LCχ values have the same trend and
show a distinctive seasonal pattern (Fig. 10a, b), with a
maximum in autumn (92.4 %, 92.3 %), followed by win-
ter (90.8 %, 74.7 %), summer (83.5 %, 71 %), and spring
(73.0 %, 53.1 %). Both the LCflux and LCχ are the lowest in
spring, implying that distant natural dust input makes a great
contribution to atmospheric dustfall during this period.

The LC variation exhibits a similar seasonal pattern to χlf,
but an opposite trend to that of dust flux (Fig. 10a, b). This
suggests that the major sources of atmospheric dustfall var-
ied seasonally between the distant natural sources in spring
and local anthropogenic sources in other seasons. In spring,
dust is emitted from the natural sources by strong winds,
and after long-range transport it contributes to the elevated
dust flux in Xi’an and decreases the LC in atmospheric dust-
fall. However, from summer to winter, dust input from local
anthropogenic sources is low and stable as indicated by the
high LC.

4.2 Magnetic characteristics of anthropogenic particles

SEM–EDS analysis shows that the extracted magnetic par-
ticles from the street dust and atmospheric dustfall can be
divided into detrital and anthropogenic types (Fig. 11a–
c). Detrital particles are angular and characterized by rel-
atively smooth surfaces, with Fe and O as the major ele-
ments and minor amounts of Ti (Fig. 11d), indicating the
presence of magnetite, hematite, and titanomagnetite (Maher
and Thompson, 1991; Liu et al., 2015). Anthropogenic par-
ticles include angular particles with coarse surface textures,
spherules, aggregates, and porous particles with complex in-
ternal structures. The major elements identified in these par-
ticles are Fe and O, which indicate the occurrence of mag-
netite or hematite, consistent with previously identified an-
thropogenic magnetic particles (Kim et al., 2007; Koukouzas
et al., 2007; Maher, 2009). Minor concentrations of S, Zn,
Cu, and Cr were also observed in this type of particle, which
is typically attributed to anthropogenic activities (Fig. 11d).
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Figure 11. SEM images and typical elemental spectra (d) of magnetic extracts from street dust and (a) atmospheric dustfall with high χlf
(b) and low χlf (c). From left to right, the particle morphologies represent detrital particles with relatively smooth surfaces from natural
source regions, anthropogenic particles with angular shapes and coarse surface textures, aggregates, spherules, and porous features.

The relatively weaker signal intensity of Fe in the EDS spec-
tra of porous particles indicates a much lower Fe concentra-
tion (maximum less than 10 %), while their concentrations of
Si, Al, Ca, Ti, and Mn are higher.

The morphology and concentration of magnetic materi-
als in urban dust aerosols varied with sampling sites and
over time. Among more than 20 images of analyzed mag-
netic extracts from urban dust samples, angular particles with
coarse surface textures were the most frequently observed
(> 50 %, some up to 80 %), with a wide range of grain size
(1–100 µm). Spherules were also commonly observed in all
samples, ranging from 10–40 %, mainly with diameters from
10–30 µm. Aggregates with diameters of 5–30 µm account
for less than 10 %. Detrital particles characterized by smooth
surfaces range from 1–5 % and have small diameters (1–
20 µm). Porous particles are the least observed magnetic par-
ticles (< 1 %) with diameters of 30–120 µm. The SEM–EDS
data show that the morphology and concentration of mag-
netic particulates in atmospheric dustfall with high χlf values
are similar to those of the street dust, whereas atmospheric

dustfall with low χlf contains more angular–subangular mag-
netic particles of detrital origin.

4.3 Potential sources of anthropogenic magnetic
particles

Anthropogenic magnetic particles in the urban environment
are mainly derived from the combustion of fossil fuels (Flan-
ders, 1994; Matzka and Maher, 1999; Muxworthy et al.,
2001), vehicle emissions (Harrison et al., 1997b; Moreno et
al., 2003; Diapouli et al., 2008; Pant and Harrison, 2013;
Maher et al., 2013), and industrial activities (Hanesch et al.,
2003; Desenfant et al., 2004). To clarify potential sources,
microscopic and elemental investigations of magnetic ex-
tracts from anthropogenic pollutants were performed using
SEM–EDS. Compared with the magnetic particles in atmo-
spheric dustfall (Fig. 12a–d), those from vehicle exhaust con-
sist of only three types of particles, including angular parti-
cles with coarse surface textures, spherules, and aggregates
(Fig. 12e–g), while all magnetic particle types in dustfall
samples were identified in fly ash (Fig. 12h–k). The EDS
analysis showed that the major elements of the same three
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Figure 12. SEM images and elemental spectra of magnetic extracts from atmospheric dustfall (a–d), vehicle exhaust (e–g), and fly ash (h–k).
Black lines are elemental spectra of atmospheric dustfall. Blue and red lines are elemental spectra for vehicle exhaust and fly ash.

types of magnetic particles in vehicle exhaust and fly ash are
Fe and O, consistent with elemental features of those in at-
mospheric dustfall (Fig. 12l–n). This suggests that vehicle
exhaust and fly ash are the main pollutant sources in dustfall.
However, there are some differences in the compositions of
the minor elements in the three types of particles between ve-
hicle exhaust and fly ash. Angular particles with coarse sur-
face textures from vehicle exhaust contain more S, Cr, Cu,
Zn, and Mn, while those from fly ash have more Ca and Mn.
Aggregates consist of more Cr, Zn, and S in vehicle exhaust,
whereas Ca and S are enriched in fly ash. Spherules from
vehicle exhaust contain higher amounts of heavy metals (Cr,
Ni, Mn, and Zn), while those from fly ash have higher Ca and
Mn. Coarse-grained porous magnetic particles were only ob-
served in fly ash, which are relatively low in Fe and high in
crustal elements (e.g., Si, Al, K, Ca, Mg, and Ti).

The EDS elemental data clearly indicate that the mag-
netic particles from vehicle exhaust contain higher concen-
trations of a greater range of elements from anthropogenic
activities (S, Cr, Cu, Zn, Ni, and Mn) than those from fly
ash, whose EDS spectra show a substantial peak of Ca. The
χlf (925.7× 10−8 m3 kg−1) and Ms (2.5 Am2 Kg−1) values
of vehicle exhaust are significantly higher than those of fly
ash (769.9× 10−8 m3 kg−1 and 0.66 Am2 Kg−1), indicating

a higher content of ferrimagnetic contaminants. In summary,
the magnetic particles emitted by vehicle exhaust and ther-
mal power plants can be distinguished by a combination of
morphological and elemental characteristics, which indicates
that SEM–EDS can be used to trace the sources of anthro-
pogenic pollutants in Xi’an.

5 Conclusions

By comparing the magnetic properties of surface sediments
in natural dust sources in East Asia and various urban dust
samples in Xi’an, we found that distal natural dust and lo-
cal anthropogenic dust have different magnetic, morpholog-
ical, and elemental characteristics. We take natural surface
sediments as representative of distal natural dust, with back-
ground atmospheric dustfall and polluted street dust as rep-
resentative of local anthropogenic dust. Based on this end-
member configuration, the relative contributions of local an-
thropogenic sources to urban atmospheric dustfall can be
quantitatively estimated.

The results show that local anthropogenic contribution de-
creases in spring and increases in other seasons. Local an-
thropogenic contribution variation exhibits a similar seasonal
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pattern to χlf, but an opposite trend to that of dust flux with a
maximum in spring. This means that a great amount of dis-
tant natural dust input with less magnetic content makes a
great contribution to atmospheric dustfall in spring, which
results in minimum χlf and anthropogenic contributions dur-
ing this period. Hence, the local contribution is reduced as a
result of increasing natural dust flux.

SEM–EDS analysis of urban dust indicates that mag-
netic particles produced by anthropogenic activities have dis-
tinct morphological and elemental characteristics. The an-
thropogenic particles exhibit angular, spherical, aggregate,
and porous shapes and contain distinctive marker elements
such as S, Cr, Cu, Zn, Ni, Mn, and Ca. The porous parti-
cles are likely derived from the thermal power plant, while
others may be attributed to both vehicle exhaust and the ther-
mal power plant. Our results suggest that magnetic signa-
tures combined with morphological and elemental composi-
tions can be used to quantitatively estimate local and anthro-
pogenic contributions to urban dust aerosols.
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