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Abstract. Bootstrap analysis is commonly used to capture
the uncertainties of a bilinear receptor model such as the
positive matrix factorization (PMF) model. This approach
can estimate the factor-related uncertainties and partially as-
sess the rotational ambiguity of the model. The selection of
the environmentally plausible solutions, though, can be chal-
lenging, and a systematic approach to identify and sort the
factors is needed. For this, comparison of the factors be-
tween each bootstrap run and the initial PMF output, as well
as with externally determined markers, is crucial. As a re-
sult, certain solutions that exhibit suboptimal factor separa-
tion should be discarded. The retained solutions would then
be used to test the robustness of the PMF output. Meanwhile,
analysis of filter samples with the Aerodyne aerosol mass
spectrometer and the application of PMF and bootstrap anal-
ysis on the bulk water-soluble organic aerosol mass spec-
tra have provided insight into the source identification and
their uncertainties. Here, we investigated a full yearly cycle
of the sources of organic aerosol (OA) at three sites in Esto-
nia: Tallinn (urban), Tartu (suburban) and Kohtla-Järve (KJ;
industrial). We identified six OA sources and an inorganic
dust factor. The primary OA types included biomass burning,
dominant in winter in Tartu and accounting for 73 %± 21 %
of the total OA, primary biological OA which was abundant
in Tartu and Tallinn in spring (21 %± 8 % and 11 %± 5 %,

respectively), and two other primary OA types lower in mass.
A sulfur-containing OA was related to road dust and tire
abrasion which exhibited a rather stable yearly cycle, and an
oil OA was connected to the oil shale industries in KJ prevail-
ing at this site that comprises 36 %± 14 % of the total OA
in spring. The secondary OA sources were separated based
on their seasonal behavior: a winter oxygenated OA domi-
nated in winter (36 %± 14 % for KJ, 25 %± 9 % for Tallinn
and 13 %± 5 % for Tartu) and was correlated with benzoic
and phthalic acid, implying an anthropogenic origin. A sum-
mer oxygenated OA was the main source of OA in sum-
mer at all sites (26 %± 5 % in KJ, 41 %± 7 % in Tallinn and
35 %± 7 % in Tartu) and exhibited high correlations with ox-
idation products of a-pinene-like pinic acid and 3-methyl-1,
2, 3-butanetricarboxylic acid (MBTCA), suggesting a bio-
genic origin.

1 Introduction

Particulate matter of an aerodynamic diameter smaller than
10 µm (PM10) has been extensively explored at many sites
around the globe due to its various adverse effects on hu-
man health and climate. In Europe, several monitoring net-
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works have been measuring PM10 for long time periods, and
an increasing trend in concentrations from north to south
was noticed (Fuzzi et al., 2015; Putaud et al., 2010). De-
spite this, some northern European countries are still suf-
fering from PM10 daily limit exceedances (European Envi-
ronment Agency report No 13/2017, 2017), and according to
modeling studies following the “current legislation” scenar-
ios, some of these sites will remain exposed to high PM10
standards until 2030 (Kiesewetter et al., 2015). Therefore,
understanding the origins of the pollutants can play a crucial
role in future abatement policies.

While large efforts have been devoted to the investigation
of the sources and the chemical composition of PM10, and
in particular the organic fraction in western and central Eu-
rope, measurements in eastern Europe and the Baltic region
are scarce. More specifically, the organic aerosol (OA) com-
position in Estonia has received little attention so far. PM2.5
organic aerosol source apportionment was extensively stud-
ied by Elser et al. (2016), who performed mobile lab mea-
surements during March 2014 at two different sites, Tallinn
and Tartu. They found similar sources of OA at both sites
where residential biomass burning, traffic and long-range
transported OA were the major sources of OA. They also
found a localized residentially influenced OA factor, which
was connected to cooking activities and possibly to coal and
waste burning. While the long-range transported OA domi-
nated during nighttime and during several events when pol-
luted air masses were transported from northern Germany,
the remaining factors were important during daytime. These
results provided insights into the spatial resolution of OA.
Nevertheless, they were limited to short time periods; hence,
the seasonal variation of the pollutants remains unknown.
Residential wood combustion and traffic were also presented
as important sources of PM in previous long-term air pollu-
tion studies in Estonia (Urb et al., 2005; Orru et al., 2010).
However, they did not provide any quantitative source appor-
tionment for OA.

The offline aerosol mass spectrometer (AMS) technique
was recently developed by Daellenbach et al. (2016), where
aqueous filter extracts are measured after nebulization with
an Aerodyne high-resolution time-of-flight aerosol mass
spectrometer (HR-ToF-AMS; Canagaratna et al., 2007), and
the resulting organic mass spectra are analyzed with posi-
tive matrix factorization (PMF; Paatero, 1997). This tech-
nique has significantly increased our capability to investigate
and identify the seasonal behavior of OA sources at several
sites around the globe (Huang et al., 2014; Daellenbach et
al., 2017; Bozzetti et al., 2017a). In addition, this technique
allows for OA measurements of different size fractions over-
coming the limitation given by the transmission window of
the AMS, resulting in quantifying sources from the coarse
mode, such as primary (i.e., OA directly emitted in the atmo-
sphere), biological (Bozzetti et al., 2016) or sulfur-containing
primary OA sources (Daellenbach et al., 2017).

PMF is widely used to analyze ambient aerosol measure-
ment data by decomposing the input aerosol mass spectra
into factor concentration time series and factor profiles. To
do so, PMF iteratively solves the bilinear Eq. (1), where Xi,j
represents the measured input data matrix in which i is the
number of samples and j is the chemical species measured,
Gi,k represents the concentration time series matrix in which
k is the number of factors, Fk,j represents the factor pro-
file matrix, and E represents the residual matrix. The goal
of PMF is to solve Eq. (1) such that the object function Q
(Eq. 2) is minimized. In Eq. (2), U represents the correspond-
ing error matrix:

Xi,j =
∑
k

Gi,kFk,j +Ei,j , (1)

Q=
∑
i

∑
j

[
E/U

]2
. (2)

Bilinear models suffer from rotational ambiguity, that is, a
mathematically similar goodness of fit (Henry, 1987), lead-
ing to uncertainties in extracting the contributions of differ-
ent OA sources. Additional modeling errors may occur due to
the user subjectivity in analyzing natural phenomena, when,
for example, selecting the number of interpretable factors or
estimating the error matrix.

The bootstrap analysis (Davison and Hinkley, 1997), a re-
sampling technique of the original data and error matrices,
has been widely adopted to assess, to a certain extent, the
rotational ambiguity related to PMF analysis (Brown et al.,
2015). For each bootstrap iteration a random number of sam-
ples are selected with repeats from the original input matri-
ces (base case) to recreate new input matrices with the same
dimensions (bootstrap iteration) that will be analyzed with
PMF. As a result, the bootstrap analysis results in a great
number of solutions whose environmental representativeness
has to be assessed, which requires a systematic approach in
relating the separated factors to specific sources. This factor
classification has been typically based on the contributions
of certain markers (e.g., C2H4O+2 to identify biomass burn-
ing OA or CO+2 to identify secondary OA; Daellenbach et al.,
2017, 2018; Bozzetti et al., 2017a; Vlachou et al., 2018) in
the case of the application of PMF to AMS data. However,
in datasets with similar factor profiles, for example two oxy-
genated OA factors or more, this type of sorting can become
challenging, especially when a bootstrap iteration does not
provide the expected factors. To assess the quality of the dif-
ferent bootstrap solutions, users typically compare the factor
time series to external marker measurements, when available,
and discard suboptimal solutions using a set of acceptance
criteria (Ulbrich et al., 2009; Q. Zhang et al., 2011; Norris et
al., 2014; Bozzetti et al., 2017a, b; Y. L. Zhang et al., 2017).

In this study, we propose a novel technique for evaluat-
ing the selection of the PMF solutions generated through a
large number of bootstrap iterations. The method is based on
the examination of the correlation matrix between the base
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case and bootstrap iterations for both time series and pro-
files, without setting a priori a defined threshold in the cor-
relation coefficient. We assess the performance of the tech-
nique (accuracy and probability of false positive and false
negative results) by comparing the factors’ time series to
the available specific markers. We applied the technique to
an unprecedented dataset of 150 PM10 filter samples from
three sites in Estonia covering a full year (September 2013–
September 2014), where anthropogenic and natural emis-
sions of primary and secondary organic aerosols could be
extracted.

2 Methods

2.1 Sampling sites

The samples were collected at three different sites in Estonia:
Tallinn, Tartu and Kohtla-Järve (KJ). Tallinn is the capital
and the largest city of Estonia located on the northern coast
facing the Gulf of Finland. The measurement station is lo-
cated about 9 km from the city center, in the sub-district Õis-
mäe (59◦24′50.927′′ N, 24◦38′57.207′′ E; 8.5 m a.s.l.). Tartu
is the second largest city of Estonia, located in the southeast-
ern part of the country, in the valley of the Emajõgi River, a
location that favors temperature inversions and the trapping
of air pollutants. The measurement station (58◦22′14.183′′ N,
26◦44′5.517′′ E; 39.5 m a.s.l.) is positioned in the city cen-
ter. According to Orru et al. (2010) traffic and local heat-
ing are important sources of air pollution at these sites. In
both cities the fleet of cars increases in contrast to the limited
street network capacity. Moreover, the local heating is more
pronounced in Tartu compared to Tallinn. KJ is a coastal
industrial city located in the northeastern part of Estonia
(59◦24′34.513′′ N, 27◦16′43.166′′ E; 55.5 m a.s.l.). The main
industries are related to large production of petroleum prod-
ucts, oil shale processing and electricity generation. As it is
not a highly populated area, residential heating or traffic is
not as important as in the other two cities.

The measurements were performed with 24 h integrated
PM10 quartz fiber filter samples from KJ (31 August 2013 to
25 August 2014), Tallinn (5 September 2013 to 1 Septem-
ber 2014) and Tartu (5 September 2013 to 31 Septem-
ber 2014; see Tables S1 and S2 and Fig. S1 in the Supplement
for details). PM was collected onto 15 cm diameter quartz
filters, using a high volume sampler (500 L min−1). After ex-
posure, the filter samples were wrapped in lint-free paper,
sealed in polyethylene bags and stored at −20 ◦C.

2.2 Major ionic species, sugar and acid analyses

The additional filter measurements, performed to corroborate
and support the source apportionment, are listed in Table 1.

2.3 Offline AMS technique

The offline AMS technique was established by Daellenbach
et al. (2016) and is briefly described in the following. From
each filter sample, four punches of 16 mm in diameter were
extracted in 15 mL of ultrapure water (18.2 M� cm at 25 ◦C
with total organic carbon < 3 ppb). The liquid extracts were
inserted into an ultrasonic bath for 20 min at 30 ◦C. The
ultrasonicated samples were then filtered through a nylon
membrane syringe of 0.45 µm. Out of the resulting solutions,
aerosols were generated in Ar (≥ 99.998 % volume, Carba-
gas, Gümligen, Switzerland) via an apex Q nebulizer (Ele-
mental Scientific, Inc., Omaha, NE, USA) operating at 60 ◦C
and subsequently directed into the AMS after being dried by
a Nafion dryer.

The technique was performed on 150 filter samples in to-
tal: 39 from KJ, 69 from Tallinn and 42 from Tartu (Tables S1
and S2). The resulting organic spectra were analyzed by PMF
with the use of the multilinear engine 2 (ME-2; Paatero,
1999). The interface for the data processing was provided
by the source finder toolkit (SoFi version 4.9; Canonaco et
al., 2013) for Igor Pro (WaveMetrics, Inc., Portland, Oregon,
USA).

The NH4NO3 artifact on the CO+2 signal (Pieber et al.,
2016) was also accounted for. For a thorough description of
the artifact and the correction procedure, the reader is re-
ferred to Pieber et al. (2016) and to Daellenbach et al. (2017).

2.4 PMF input and uncertainties

As stated in the introduction, the input data matrix for the
PMF is the organic mass spectrum data matrix Xi,j which
consists of a combination of factor profiles, and time series
and the input error matrix U include the blank variability and
the measurement uncertainties. Before using the PMF algo-
rithm, all the fragments with a signal-to-noise ratio (SNR)
below 0.2 were removed from the input matrix, and the ones
with SNR below 2 were down weighted according to the rec-
ommendations of Paatero and Hopke (2009). Note that the
PMF input matrix Xi,j included the data from all three sites.

To obtain quantitative results, both data and error matri-
ces were multiplied by the externally measured water-soluble
OC (WSOC) times the OM : OC ratio retrieved from the fac-
tor profiles of the matrix Xi,j .

Even though traffic is expected to be one of the primary
sources of air pollutants, especially in Tallinn and Tartu, a
clear hydrocarbon-like OA (HOA) which mainly contains
non-water-soluble compounds could not be identified due the
extraction procedure used. To assess a potential effect of the
water-soluble HOA (WSHOA) on the PMF results, we esti-
mate the WSHOA contribution to the different fragments in
the data matrix. The calculation was based on the time se-
ries of the concentration of elemental carbon (EC) and the
averaged high-resolution HOA reference factor profiles from
Crippa et al. (2013) and Mohr et al. (2012) multiplied by
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Table 1. Detailed overview of the additional measurements.

Method Compounds Number of filters

Ion chromatography (Jaffrezo
et al., 1998)

K+, Na+, Mg2+, Ca2+,
NH+4 , Cl−, NO−3 , SO2−

4 and
methanesulfonic acid

All
(150)

Liquid chromatography-
electrospray ionization mass
spectrometry (Jacob et al.,
2019)

Organic acids (e.g., benzoic
acid and pinic acid)

69
(Tallinn)

High-performance liquid chro-
matography with pulsed amper-
ometric detection (Waked et al.,
2014)

Anhydrous sugars (e.g.,
levoglucosan and mannosan)
and sugar alcohols (e.g., ery-
thritol and mannitol)

150

Enzymatic conversion of cel-
lulose (Kunit and Puxbaum,
1996)

Cellulose 69
(Tallinn)

Sunset EC–OC analyzer (Birch
and Carry, 1996) with the EU-
SAAR 2 protocol (Cavalli et al.,
2010)

Organic carbon (OC) and ele-
mental carbon
(EC)

150

Total organic carbon analyzer
(Piot et al., 2012) with the
use of catalytic oxidation and
detection of CO2 with a non-
dispersive infrared detector
thermal–optical transmittance
using Sunset EC–OC analyzer
(Karanasiou et al., 2011)

Water-soluble OC (WSOC)
CO2−

3

150
19 (from all sites)

the HOA : EC ratio (which is 0.4) reported by El Haddad et
al. (2013) multiplied by the recovery RHOA = 0.11 reported
by Daellenbach et al. (2016; see Sect. 4 for more informa-
tion on the recoveries). The calculated WSHOA data matrix
was then subtracted from the original data matrix. The PMF
output did not change with the subtraction of WSHOA, even
though the calculated concentration of the latter was a high
estimate due to the assumption that EC only originates from
traffic. A thorough apportionment of EC and the calculation
of HOC will be discussed in Sect. 4.1.

The variability in the AMS input dataset was best de-
scribed by a seven-factor solution, which will be thoroughly
described in Sect. 3.1 below. To assess the stability of
the PMF solution and the sensitivity of the model for the
WSHOA subtraction, we performed 250 bootstrap runs by
perturbing the HOA : EC and RHOA parameters within their
errors (1 standard deviation, σ ), assuming a normal distribu-
tion. Note that this number of runs was restricted by compu-
tational limitations.

The sorting of the factors and the concomitant selection of
the retainable solutions out of the 250 runs was based on the
correlation (R Spearman – Rs) of the time series between the
base case (which is the PMF result before bootstrapping) and

each bootstrap iteration n as well as the correlation (Rs) of
each factor profile between the base case and each iteration
n. In the following, the sorting based on the time series is
denoted as “ts”, and the sorting based on profiles is denoted
as “pr”. The criteria, followed for the selection or rejection
of each solution, are described in Sect. 3.2.

3 Source apportionment

3.1 Interpretation of PMF factors

As already mentioned, the variability in the water-soluble or-
ganic mass spectra was best explained by a seven-factor so-
lution, which we refer to as the base case. The factors found
were as follows:

1. An oil-related OA was found that was rich in hydro-
carbons (Fig. 1a) and showed elevated concentrations,
mainly in KJ (Fig. 1b).

2. A sulfur-containing OA (SCOA) factor was found with
a pronounced peak at m/z 79 (CH3SO+2 ; Fig. 1a) and
rather stable contributions at all sites (Fig. 1b). As this
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factor was significantly enriched in the coarse mode
(Vlachou et al., 2018), mainly found in urban areas in-
fluenced by traffic at other European sites (Daellenbach
et al., 2017) and clearly associated with fossil carbon
(Vlachou et al., 2018), we have previously related it to
asphalt abrasion or tire wear.

3. A summer oxygenated OA (SOOA) was found with
enhanced m/z 43 (C3H2O+) and 44 (CO+2 ) peaks
(Fig. 1a), which was highest during summer at all sites
(Fig. 1b).

4. A winter oxygenated OA (WOOA) was found with en-
hanced peaks at m/z 28 (CO+) and 44 (CO+2 ; Fig. 1a),
dominating in winter at all sites (Fig. 1b). Both of
these oxygenated factors (SOOA and WOOA) were also
found in different European sites and were connected
to non-fossil sources, biogenic and anthropogenic, re-
spectively (Vlachou et al., 2018; Daellenbach et al.,
2018). Such a distinction was also found in Canonaco
et al. (2015), where an online ACSM was used.

5. A factor with a significantly pronounced peak atm/z 44
(CO+2 ; Fig. 1a) and elevated concentrations in summer
(Fig. 1b) was found, which was identified as dust. This
factor will be more thoroughly examined in Sect. 4.

6. A primary biological OA (PBOA) was found which ex-
hibited high contributions of the fragment C2H5O+2 (at
m/z 61; Bozzetti et al., 2016; Fig. 1a) and increased
concentrations during late spring and summer at all sites
(Fig. 1b).

7. A biomass burning OA (BBOA) was found with a char-
acteristic peak atm/z 60 (C2H4O+2 ; Alfarra et al., 2007;
Fig. 1a) and elevated concentrations during late fall and
winter in Tallinn and especially in Tartu (Fig. 1b).

3.2 PMF uncertainty analysis: factor sorting and
solution selection

The framework for factor sorting and solution selection pro-
ceeded as follows:

1. A correlation matrix was composed, including all the
correlations between base-case factor time series (pro-
files) represented in rows and bootstrap iteration n time
series (profiles) represented in columns, demonstrating
the Rs per correlation (Fig. 2).

2. Factors were sorted according to the highest correlation
of their time series (profiles) with the base-case factor
time series (profile).

3. Solutions were discarded if any of the correlation coef-
ficients occurring in the matrix diagonal were not sta-
tistically significantly higher than at least one of the co-
efficients in the respective column or row (significance

level α = 0.05). These selection criteria have two im-
plications: (1) every factor separated in a bootstrap run
should correspond to a unique factor of the seven factors
separated in the base case, and (2) all factors that could
be identified in the base case have one unambiguous
corresponding factor in the bootstrap run. We have sta-
tistically evaluated the comparison between the Spear-
man coefficients by treating them as if they were Pear-
son coefficients (Myers et al., 2006) and by applying the
standard Fisher’s z transformation and subsequent com-
parison using a t test. This approach was reported to be
more robust with respect to the type I error (false posi-
tive) than ignoring the non-normality and using Pearson
instead of Spearman coefficients.

An example of the correlation matrix of a retained solution
is shown in Fig. 2a for time series and Fig. 2b for profiles.
Meanwhile, Fig. 2c and Fig. 2d represent examples of a boot-
strap iteration (n= 140) where the solution was rejected be-
cause SCOA was not resolved, based on both ts and pr anal-
ysis, respectively. In Fig. 2c, the highest correlation between
the time series of factor 2 and the factors of the base case was
found with dust instead of SCOA, yet it was much weaker
(Rs = 0.34) than the correlation between factor 7 and dust
(Rs = 0.79). Therefore, factor 7 could be identified as dust,
and factor 2 could not be identified as an interpretable factor.
In Fig. 2d, factor profile 2 correlated most with the base-case
SCOA profile; however this correlation was not significantly
higher than the correlation between factor 2 and dust. More-
over, base-case SCOA correlated better with factor 6, which
was related to SOOA, indicating that SCOA could not be un-
ambiguously related to factor 2.

To validate the selection of the solutions, we compared
the factors of each bootstrap iteration with an externally
measured marker, more specifically BBOA with levoglu-
cosan, PBOA with cellulose, WOOA with phthalic acid
and SOOA with 3-methyl-1,2,3-butanetricarboxylic acid
(MBTCA). The retained solutions exhibited the highest cor-
relations between the external markers and the respective fac-
tors (red markers in Fig. 3). To seal the validity of the retained
solutions, we also compared the Rs between the base-case
factors and their respective external marker with the Rs be-
tween the bootstrap iteration factors and their respective ex-
ternal markers. We performed the bootstrap technique for a
second time on the time series of the base-case factors and
the respective external markers 1000 times. The resulting
Rs coefficients are represented in probability density func-
tions (PDFs) indicated as red curves in Fig. 3, centered at
0.8 for BBOA (Fig. 3a), 0.7 for WOOA (Fig. 3c) and 0.9 for
SOOA (Fig. 3d) and a broader one centered at 0.45 for PBOA
(Fig. 3b). In all four cases, the retained solutions, either com-
ing from the ts or the pr approach, spanned around the cen-
ter of each PDF (Fig. 3 and Fig. S2 for the pr), and most
of the solutions where at least one factor was not resolved
(black markers in Fig. 3) were not included within the PDF
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Figure 1. Factor profiles (a) and time series (b) of the seven-factor solution: industrial or oil combustion OA (OilOA), sulfur-containing OA
(SCOA), summer oxygenated OA (SOOA), winter oxygenated OA (WOOA), dust-related OA (Dust), primary biological OA (PBOA) and
biomass burning OA (BBOA). Note that the water-soluble parts are illustrated here.

Figure 2. Explanatory tables for the factor sorting based on the time series: (a) accepted bootstrap iteration where all highest correlations
(Rs) lay in the diagonal, and (c) failure to resolve SCOA, as for this bootstrap iteration, both factors 2 and 7 showed the highest correlation
with dust factor. The respective tables for the case of profiles are in (b) and (d). Note the different scales of Rs for the profiles.
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boundaries. The general agreement between the PDFs and
the retained solutions ratified the solution selection approach;
however, there were still some cases of possible misallo-
cation of retained or rejected solutions (for example, a few
black markers appearing at the center of the PDF; Fig. 3c).

To assess whether the retained bootstrap solutions share
the same quality with the base-case solution with regard to
correlations between factors and markers, we calculated the
probability of type I (false positive) and type II (false neg-
ative) errors associated with the solution selection approach
(Fig. 4). The analysis entailed a quantitative comparison of
the Spearman coefficients obtained between markers and fac-
tor time series from the bootstrap iterations, Rsboots, with the
respective Spearman coefficients obtained between markers
and factor time series from the base case Rsbase, consider-
ing the same samples as in the corresponding bootstrap iter-
ations. The comparison between Rsboots and Rsbase was per-
formed by applying a Fisher transformation followed by a t
test. We defined true positive and false negative as the red
(retained solutions) and black (non-resolved factors) points,
respectively, lying within the PDF boundaries with regard
to the total number of red and black points within the PDF
boundaries. True negative and false positive were defined as
the black and red points lying outside the PDF boundaries
with respect to the total number of red and black points out-
side the PDF boundaries. The limits between false positive
and false negative were set by 2 standard deviations from
the one-to-one line. The percentages of the accuracy and the
probability of false positive or false negative cases are com-
piled in Table S3. Sorting based on profiles seemed less reli-
able and is more prone to false negative solutions (Tables S3
and S4), as the profiles often look similar, and therefore the
Rs exhibits high values for all factors (Fig. 2b and d). On the
contrary, sorting based on time series showed clearer results,
as the Rs spanned over a greater range of values (Fig. 2a
and c). Still the ts method produced false negative solutions,
for example 53 % for PBOA due to the combination of (i) a
limited number of points available for cellulose and (ii) the
representativeness of the marker time series after the resam-
pling (bootstrap analysis). Note that PBOA was important
only during a few days in spring, and therefore it is possible
that these days were not always selected in the resampling
process. The SOOA on the other hand exhibited 0 % false
negative and 16 % false positive cases, always demonstrating
high Rsboots and Rsbase values.

However, in either of the two methods ts and pr, the Fisher-
transformed correlation coefficient rendered the selection of
the solution evident, and eventually the two sorting meth-
ods yielded a very similar retained solution space (Figs. 4
and 5). Figure 5 depicts the correlation between the averaged
common retained solutions and the averaged retained solu-
tions coming from either the ts or the pr sorting method for
the example of BBOA (correlations for the other factors are
shown in Fig. S3). There is a minor deviation from the one-
to-one line for the standard deviation scatterplot (Fig. 5b)

for the ts sorting method. However, as soon as the solutions
were weighted according to the correlation between external
marker and bootstrap run time series, then the deviation de-
creased (blue markers in Fig. 5). The weighting factorwi was
calculated as

wi =
1√∑

i

(SE)2
, (3)

where SE is the standard error resulting from the regression
between the external marker and bootstrap iteration.

4 Investigation of sources and discussion

4.1 Estimation of traffic contribution to EC and OC

We estimated above that the traffic contribution to WSOA
(< 1 %) can be neglected and has little effect on the PMF out-
puts. However, traffic might be an important source of EC
and OA, which is assessed in the following.

To estimate the percentage of EC coming from traf-
fic (ECtr), we used the ME-2 model (with SoFi standard
version 6.399; Canonaco et al., 2013), assuming that the
sources of EC are biomass burning, resuspension of road
dust, industrial emissions from the oil shale factories and
traffic. Here the input data matrix included the time series
of water-soluble biomass burning OA (WSBBOA), water-
soluble sulfur-containing OA (WSSCOA), water-soluble oil
OA (WSOilOA) and EC. PMF was conducted 1000 times,
varying the initial seed to solve Eq. (4):

EC=ECtr+ECbb+ECoil+ECrrd = ECtr+ a ·WSOAbb

+ b ·WSOAoil+ c ·WSOAsoil. (4)

Here, ECbb, ECoil and ECrrd represent the EC concentration
time series related to the primary sources biomass burning,
oil shale industry, and resuspension of road dust and tire
wear, respectively, while a, b and c are the EC :WSOA ra-
tios characteristic of the emissions from the same sources and
were obtained as outputs of the model. This new methodol-
ogy, based on PMF, is especially pertinent, as unlike other
inversion techniques, it sets positive constraints on a, b and
c and offers the possibility of resolving the contributions of
factors for which no constraints are available, here ECtr.

We found that ECtr contributed 57 %± 5 % to the total EC
(on a yearly average), while 36 %± 5 % of EC was attributed
to biomass burning, 4 %± 1 % to road dust resuspension and
3 %± 1 % to the oil shale emissions (Fig. S4). The contri-
bution of EC from fossil fuel combustion (ECff) measured
at a site similar to Tartu, i.e., an Alpine valley in Maga-
dino, southern Switzerland, in 2014 (Vlachou et al., 2018),
was in agreement with our ECtr contribution, with a yearly
average of 55 %± 7 %. Also, in Zurich, an urban site, ECff
ranged from 40 % to 55 % during the winter of 2012 (Zotter
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Figure 3. Solution space per factor, defined by investigation of the correlation (Rs) between base-case time series and bootstrap runs (bottom
x axis) and external markers and bootstrap runs (y axis): BBOA with levoglucosan (a), PBOA with cellulose (b), WOOA with phthalic
acid (c) and SOOA with MBTCA (d). The retained solutions are indicated in red, and the rejected ones are indicated in grey. The points in
black represent the runs where the specific factor was not resolved at all. Each PDF (top x axis) includes the range of R coming from the
correlations between the time series of the base-case factors with their respective markers.

et al., 2014). From the ECtr contribution, we estimated that
the HOC (obtained by multiplication of the ECtr time series
with the HOC : EC ratio) contributed 4 % to the total OC on
a yearly average.

4.2 Scaling to organic carbon

All the retained solutions (in total 62 %) were averaged per
factor, and their seasonal behavior as well as their correla-
tions, with the external markers, are presented in Sect. 4.4.
Note that all the water-soluble factors were recovered fol-
lowing the method described in Daellenbach et al. (2016) and
Vlachou et al. (2018). The recoveries were calculated by fit-
ting Eq. (5):

OCi,n =
∑

k

WSOCi,n,k
Rk

, (5)

where OCi,n is the OC concentration per bootstrap run n per
sample i, Rk is the recovery R per factor k, and WSOCi,n,k
is the water-soluble OC concentration calculated based on
the measured WSOC and the OM : OC per factor. From the
OCi,n the part of hydrocarbon-like OC and the inorganic car-
bon related to dust were removed. The carbonate-carbon in-
vestigation and calculation is discussed in Sect. 4.3. To define

the recoveries, we used a non-negative multilinear fit. The
starting points of the fitting for each Rk with the exception of
Roil were obtained from the literature (Bozzetti et al., 2016;
Daellenbach et al. 2016; Vlachou et al., 2018) and were ran-
domly varied within their literature range with an increment
of 10−4. The final distributions of the recoveries are shown in
the Supplement (Fig. S5). The recoveries in this study were
all shifted to the lower end of the recoveries reported in the
literature. While the reason remains unclear, the water solu-
bility of OA is specific to the dataset; therefore we can expect
differences to other datasets. Moreover, we re-measured, in a
different laboratory, the OC concentrations from a subset of
21 samples covering all sites and all seasons. The agreement
between the two differently determined OC concentrations
was excellent (Fig. S6; slope= 0.93, R2

= 0.99).

4.3 Exploration of the dust factor

Mineral dust can contain a significant amount of inorganic
carbon in the form of CO2−

3 . The water extracts used in the
offline AMS technique have a pH that is always < 8. There-
fore, the CO2−

3 in our samples is all solubilized into HCO−3
(pKa (HCO−3 /CO2−

3 )= 10.33; Bruice, 2010). This is shown
to release CO2 when it undergoes thermal decomposition on

Atmos. Chem. Phys., 19, 7279–7295, 2019 www.atmos-chem-phys.net/19/7279/2019/



A. Vlachou et al.: Development of a versatile source apportionment of organic aerosol in Estonia 7287

Figure 4. Scatterplots of Rsboots between markers and bootstrap runs and Rsbase between markers and base cases per factor: BBOA with
levoglucosan (a), PBOA with cellulose (b), WOOA with phthalic acid (c) and SOOA with MBTCA (d) for the ts sorting method. The black
points that lie below the 1σ line (in solid dark red) indicate true negative solutions, whereas the black points within 2σ indicate false negative
solutions. The red points below 1σ represent the false positive solutions, while the red points above are the true positive solutions. The
respective scatterplots for the pr method are shown in (e), (f), (g) and (h). Note the different Rs scales per factor.
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Figure 5. (a) Scatterplots between BBOA time series averaged (avg) over the common solutions coming from both the time series (ts) and
profile (pr) sorting method plotted in the x axis, and plotted in the y axis the BBOA time series averaged over the solutions coming from the
ts method in red, from the pr in black cross and from the weighted average based on the marker (here levoglucosan, in blue). The respective
scatterplot for the standard deviation (SD) is shown in (b).

the AMS vaporizer (at 600 ◦C; Bozzetti et al., 2017b). Thus,
the contribution of CO+2 to organic aerosols is overestimated
and the fraction coming from the inorganic carbon should be
removed from the OA spectra.

To remove the influence of the inorganic dust, we es-
timated the carbonate-carbon concentrations [C_CO3] cor-
rected for the relative ionization efficiency, as discussed in
the Supplement. This estimated C_CO3 concentration was
compared to measured carbonate on a subset of 19 filter
samples. While the agreement between measured and esti-
mated concentrations is poor for Tartu, a decent agreement
was found for KJ and Tallinn, especially given the large un-
certainties in both variables (Fig. S7). On an absolute basis,
PMF seems to overestimate the C_CO3 concentrations by
∼ 20 % compared to the measured concentrations.

Ca2+ is one of the most common constituents of min-
eral dust and can therefore be used to trace this source. The
time series of C_CO3 and Ca2+, available for the entire set
of samples, displayed in Fig. 6, show that the two variables
exhibit similar trends (except for Tallinn). Despite the large
errors in the [C_CO3] estimates, an uncertainty weighted
correlation analysis (Supplement and Fig. S8) shows that
[C_CO3] and [Ca2+] correlate statistically significantly (R =
0.4, p < 10−5) with a slope of 0.2, consistent with C_CO3
and Ca2+ being in the form of calcium bicarbonate.

We have validated the identity of the dust factor even fur-
ther by measuring the same subset of 19 filters with the
offline AMS technique before and after fumigation with HCl
(as described in Zhang et al., 2016). The comparison of the
mass spectra of fumigated and non-fumigated samples is il-
lustrated in Fig. 7 for two samples: with high and low con-
tribution of dust. In the example of KJ (5 June 2014), where
the dust factor exhibited the highest contribution, f 44 was
substantially decreased after fumigation (Fig. 7a). In the case
of Tallinn (19 January 2014), where the dust factor concen-
tration was negligible, f 44 remained stable after fumiga-
tion (Fig. 7b). Overall, the comparison of the1f 44 modeled
(= f 44total–f 44org) from the initial dataset of 150 filters and
the1f 44 measured (= f 44non_fum–f 44fum) from the subset

Figure 6. Time series of the inorganic dust factor [C_CO3] with
interquartile ranges (Q25 and Q75) and of Ca2+ per site.

of 19 filters showed consistent results (Fig. 8). Taken together
these results provide strong confidence on the nature of the
dust factor extracted by PMF.

4.4 Seasonal variation of organic aerosol sources

The sources were quantified after removing the contribution
of the dust factor from the total OA. All the factor concen-
trations with their uncertainties averaged per season are pre-
sented in Table S3. In general, the relative uncertainties de-
creased with increasing concentrations per factor (Fig. S9).
For concentrations above ∼ 1 µg m−3 the percentage error
became more important than the error related to noise and
was thus more stable for all factors. Consistent with the fac-
tor separation and uncertainty analysis above, the factors that
were well separated, such as SOOA, exhibited low relative
uncertainty (0.15), while the factors that were more difficult
to extract, such as BBOA, exhibited higher relative uncer-
tainty (0.45).

BBOA exhibited high concentrations in Tallinn
during winter (on average 3.7± 2.7 µg m−3) and
fall (1.2± 0.9 µg m−3) and in Tartu (8.4± 3.9 and
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Figure 7. Example mass spectra from two fumigated and non-fumigated samples, with a high (KJ on 5 June 2014; a), and a low dust
concentration (Tallinn on 19 January 2014; b).

Figure 8. Scatterplot between the calculated 1f 44 and the mea-
sured 1f 44 coming from dust.

3.8± 1.9 µg m−3, winter and fall, respectively; Fig. 9a;
Table S5). In both cities BBOA and the marker levoglucosan
correlated very well (Fig. 9b) confirming the identity of the
factor. For KJ the concentrations of BBOA were lower in
winter (1.3±0.8 µg m−3) as expected, due to the low number
of residents and low biomass burning activities in the region.
At all sites the levoglucosan-to-BBOA ratio (0.08 for KJ,
0.05 for Tallinn and 0.05 for Tartu) assessed in this study was
consistent with the one reported in the neighboring country,
Lithuania (Bozzetti et al., 2017a). Potassium (K+), which
is often used as a wood-burning marker, especially for ash,
also correlated well with BBOA for Tallinn (R2

= 0.80) and
Tartu (R2

= 0.58). Different BBOA : K+ ratios were used in
the past to describe burning conditions (Zotter et al., 2014;
Daellenbach et al., 2018), and higher values were linked to
inefficient burning conditions. Here, the BBOA : K+ ratio
(14.3 for Tallinn and 18.1 for Tartu) was in agreement with
the one found at southern Alpine valley sites (Magadino and
San Vittore, Switzerland; Daellenbach et al., 2018) where
older stoves are still used. In Estonia more than 80 % of
households use old types of stoves for heating purposes
(Maasikmets et al., 2015); therefore, BBOA could be linked
to inefficient residential wood burning.

The recognition of PBOA as described in Sect. 3.2 was
also supported by the high correlations of this factor with

cellulose and erythritol (Fig. 9d). Cellulose is related to plant
debris and is typically used as a marker for primary biolog-
ical aerosols (Bozzetti et al., 2016), while erythritol, among
other sugar alcohols, reflects airborne biogenic detritus (Gra-
ham et al., 2002). The seasonal behavior of PBOA was very
similar to the respective behavior of both markers (Fig. 9c),
with average spring concentrations of 0.2± 0.2 µg m−3 for
KJ, 1.2± 0.8 µg m−3 for Tallinn and 0.7± 0.4 µg m−3 for
Tartu.

SOOA exhibited a clear yearly cycle at all sites, with
the highest concentrations witnessed in summer and early
fall (in summer on average 1.8± 0.7 µg m−3 for KJ,
2.8± 0.6 µg m−3 for Tallinn and 2.1± 0.4 µg m−3 for Tartu;
Fig. 9e). In previous studies this factor showed an exponen-
tial increase (Fig. S10) with temperature and was linked to
terpene oxidation products (Daellenbach et al., 2017; Leaitch
et al., 2011). In another study in an Alpine valley site,
this factor was also found to be 79 % non-fossil, support-
ing the connection to biogenic secondary OA (Vlachou et
al., 2018). Here, SOOA not only correlated with temperature
(Rs = 0.77; Fig. S10) but also with two oxidation products of
a-pinene, i.e., with pinic acid and even better with MBTCA
(Fig. 9f). The latter was shown to be produced by reaction of
pinonic acid with the OH radical (Müller et al., 2012).

WOOA was more pronounced during fall and win-
ter at all sites, with average concentrations in winter of
1.4± 0.5 µg m−3 for KJ, 2.2± 0.8 µg m−3 for Tallinn, and
1.5± 0.5 µg m−3 for Tartu (Fig. 9g). In earlier studies
WOOA was characterized as non-fossil (Vlachou et al.,
2018) and was identified based on its correlation with NH+4
coming mainly from NH4NO3 in the wintertime (Lanz et
al., 2007; Daellenbach et al., 2017). It was also related
to long-range transported oxygenated OA stemming from
anthropogenic emissions during winter, such as biomass
burning. Also, WOOA demonstrated high correlations with
two anthropogenic organic acids, benzoic and phthalic acid
(Fig. 9h), formed via the photo-oxidation of aromatic hydro-
carbons such as toluene and naphthalene and therefore sug-
gested to be tracers for anthropogenic sources (Kawamura
and Yasui, 2005; Deshmukh et al., 2016). Recently, Bruns
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Figure 9. Factor median and external marker concentration time series for all three sites: (a) BOOA and levoglucosan (note the change of the
scale for KJ); (c) PBOA, cellulose and erythritol (note the change of the scale for KJ); (e) SOOA, pinic acid and MBTCA; and (g) WOOA,
benzoic and phthalic acid, with the respective scatterplots between factors and external markers in (b), (d), (f) and (h). The colors red, green
and blue denote the site (KJ, Tallinn and Tartu), and the markers in light and dark grey denote the concentrations of the external markers.
The shaded areas represent the first (Q25) and third (Q75) quartiles.
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et al. (2016) found that aromatic compounds, such as ben-
zene and naphthalene emitted by wood combustion, can in-
deed produce highly oxygenated SOA. Taking all the above
into account, it was concluded that WOOA might be linked
mostly to aged wood-burning OA.

Figure 10 illustrates the relative contributions per factor
per site to the total OA (all averaged contributions per sea-
son per factor with their uncertainties shown in Table S6).
Out of the primary sources, the major contributor was BBOA
during winter and fall (on average and 1 standard deviation:
39 %± 16 % and 27 %± 13 % in Tallinn and 73 %± 21 %
and 53 %± 14 % in Tartu). However, in KJ during winter
and fall, WOOA was the dominant source (36 %± 14 % and
39 %± 13 %, respectively), indicating that for this site, re-
gional transport of OA is important. In spring, PBOA was the
major source in Tartu (21 %± 8 %), while in Tallinn BBOA
and SOOA were the dominating sources during that season
(30 %± 14 % and 18 %± 5 %, respectively). This could be
due to the fact that temperatures in early spring are still low
(2 ◦C on average in Tallinn in March) and the wood burn-
ing for residential heating is still widely used. Towards the
end of spring (15 ◦C on average in Tallinn in May) the rising
temperature favors the biogenic emissions. In KJ, the most
important source was oil OA (36 %± 14 % in spring), most
possibly coming from the oil shale industries in the region.
The presence of the oil factor at the other two sites could
be an indication that this factor is mixed with coal or waste
burning, as also found by Elser et al. (2016). Besides this, the
oil OA profile resembled the coal profile identified in the city
of Cork, Ireland (Dall’Osto et al., 2013). During the sum-
mer months and early fall, SOOA prevailed over all sources
at all sites, with 26 %± 5 % in KJ, 41 %± 7 % in Tallinn
and 35 %± 7 % in Tartu. Even though KJ is highly indus-
trialized, SOOA can still be related to the production of sec-
ondary OA from biogenic volatile organic compounds. The
least-significant source, especially in Tartu, with rather stable
seasonal behavior, was SCOA. The yearly average contribu-
tion of SCOA was 12 %± 4 % in KJ, 14 %± 5 % in Tallinn
and 4 %± 2 % in Tartu. Although it is generally found that
the secondary sources prevail over the primary ones, here
the primary sources seem to dominate the secondary ones.
This is also observed at other European sites such as Payerne
(Bozzetti et al., 2016, for coarse particles) or Magadino, es-
pecially in winter (Vlachou et al., 2018, for PM10), as well
as in Beijing, China (Zhang et al., 2017, for PM1).

5 Conclusions

The offline AMS technique was applied to a set of 150 filter
samples covering a yearly cycle at three sites in Estonia. The
uncertainties of the PMF solution were assessed by bootstrap
analysis. In order to identify the factors, the SpearmanR (Rs)
coefficients between base-case time series and bootstrap run
time series (ts) as well as base-case profiles and bootstrap

Figure 10. Seasonally averaged relative contributions of each fac-
tor to the total OA per site. The red and black boxes indicate the
contributions of primary and secondary OA, respectively.

run profiles (pr) were monitored. The results showed that the
retained solution space if one follows the ts or the pr sort-
ing method is very similar. Weighting with the Rs between
external markers and bootstrap run increased our confidence
towards the solution space. The source apportionment results
revealed four primary OA sources, two secondary OA and a
dust factor. The dust factor was identified by measurements
of calcium carbonate as well as by acidification with HCl of
a selected batch of filters. Out of the primary sources, three
had an anthropogenic influence. BBOA was mainly present
in winter and autumn in Tallinn and Tartu, the two largest
cities of Estonia, where residential heating activities are com-
mon. SCOA was mostly important in winter in Tallinn and
KJ, in contrast to Tartu. The third anthropogenic primary fac-
tor was oil OA, which exhibited the highest concentrations
in KJ, as expected. The reason why this factor was evident
in Tallinn and Tartu could be that it may include coal com-
bustion for residential heating purposes. PBOA was the only
primary OA not related to anthropogenic emissions and pre-
vailed in spring at all sites. The two oxygenated OA factors
were separated according to their seasonal behavior: WOOA
was linked to anthropogenic wood-burning activities, as it
dominated in winter and autumn at all sites and also cor-
related with phthalic and benzoic acid. SOOA was signifi-
cant during summer at all sites and was related to biogenic
emissions and strong aging, as it was highly correlated with
a second-generation oxidation product of a-pinene.

Data availability. The data of each figure are available here:
https://doi.org/10.5281/zenodo.3218429 (Vlachou et al., 2019).
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