

Supplement of

Ozone and carbon monoxide observations over open oceans on R/V *Mirai* from 67° S to 75° N during 2012 to 2017: testing global chemical reanalysis in terms of Arctic processes, low ozone levels at low latitudes, and pollution transport

Yugo Kanaya et al.

Correspondence to: Yugo Kanaya (yugo@jamstec.go.jp)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Figure S1a. Time series of observed and simulated ozone mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR12-02.

Figure S1b. Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR13-04.

Figure S1c. Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR13-05.

Figure S1d. Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR13-06 leg1.

Figure S1e. Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR13-06 leg2.

Figure S1f. Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR14-01.

Figure S1g. Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR14-02.

Figure S1h. Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR14-04 leg1.

Figure S1i. Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR14-04 leg 2.

Figure S1j. Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR14-05.

Figure S1k. Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR14-06 leg1.

Figure S11. Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR14-06 leg2.

Figure S1m. Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR14-06 leg3.

Figure S1n.Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR15-03 leg1.

Figure S10.Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR15-03 leg2.

Figure S1p.Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR15-04.

Figure S1q.Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR15-05 leg1.

Figure S1r. Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR15-05 leg2.

Figure S1s. Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR16-06.

Figure S1t. Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR16-08.

Figure S1u.Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR16-09 leg1.

Figure S1v.Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR16-09 leg3.

Figure S1w.Time series of observed and simulated ozone and CO mixing ratios and geographical distribution of observed ozone, with 5-day backward trajectories (red: ozone mixing ratios > 50 ppb, magenta: traced back to continents (<2500 m), gray: others (basically marine air masses)) during MR16-09 leg4.

Figure S2. Correlation between differences in observed and TCR-2 ozone mixing ratios and daytime residence time of air masses over 17 grids.