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Abstract. Here we present results from an evaluation
of model simulations from the International Hemispheric
Transport of Air Pollution Phase II (HTAPII) and Chemistry
Climate Model Initiative (CCMI) model inter-comparison
projects against a comprehensive series of ground-based, air-
craft and satellite observations of ozone mixing ratios made
at various locations across India. The study focuses on the
recent past (observations from 2008 to 2013, models from
2009–2010) as this is most pertinent to understanding the
health impacts of ozone. To our understanding this is the
most comprehensive evaluation of these models’ simulations
of ozone across the Indian subcontinent to date. This study
highlights some significant successes and challenges that the
models face in representing the oxidative chemistry of the
region.

The multi-model range in area-weighted surface ozone
over the Indian subcontinent is 37.26–56.11 ppb, whilst the
population-weighted range is 41.38–57.5 ppb. When com-
pared against surface observations from the Modelling At-
mospheric Pollution and Networking (MAPAN) network of
eight semi-urban monitoring sites spread across India, we
find that the models tend to simulate higher ozone than that
which is observed. However, observations of NOx and CO
tend to be much higher than modelled mixing ratios, sug-
gesting that the underlying emissions used in the models do

not characterise these regions accurately and/or that the res-
olution of the models is not adequate to simulate the photo-
chemical environment of these surface observations. Empir-
ical orthogonal function (EOF) analysis is used in order to
identify the extent to which the models agree with regards
to the spatio-temporal distribution of the tropospheric ozone
column, derived using OMI-MLS observations. We show
that whilst the models agree with the spatial pattern of the
first EOF of observed tropospheric ozone column, most of
the models simulate a peak in the first EOF seasonal cycle
represented by principle component 1, which is later than the
observed peak. This suggests a widespread systematic bias
in the timing of emissions or some other unknown seasonal
process.

In addition to evaluating modelled ozone mixing ratios,
we explore modelled emissions of NOx , CO, volatile organic
compounds (VOCs) and the ozone response to the emis-
sions. We find a high degree of variation in emissions from
non-anthropogenic sources (e.g. lightning NOx and biomass
burning CO) between models. Total emissions of NOx and
CO over India vary more between different models in the
same model intercomparison project (MIP) than the same
model used in different MIPs, making it impossible to diag-
nose whether differences in modelled ozone are due to emis-
sions or model processes. We therefore recommend targeted
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experiments to pinpoint the exact causes of discrepancies be-
tween modelled and observed ozone and ozone precursors
for this region. To this end, a higher density of long-term
monitoring sites measuring not only ozone but also ozone
precursors including speciated VOCs, located in more rural
regions of the Indian subcontinent, would enable improve-
ments in assessing the biases in models run at the resolution
found in HTAPII and CCMI.

1 Introduction

The issues of increasing levels of surface ozone (O3) and
its impacts on human health, the biosphere and climate are
of major concern globally. Recent reports from the Health
Effects Institute (2017) highlight that ambient ozone con-
tributes to the global health burden through its impact on
premature deaths and disabilities from chronic obstructive
pulmonary disease (COPD). Nearly 4.5 million people die
prematurely each year due to exposure to outdoor pollution,
254 000 of which are due to ozone exposure and its impact on
chronic lung disease; the remaining majority are attributed to
particulate matter below 2.5 µm in diameter (PM2.5). Around
half of these premature deaths are in China and India Cohen
et al. (2017). However, a recent study using updated risk es-
timates suggests that previous analyses have underestimated
the long-term health impacts of tropospheric ozone, and the
true global disease burden could be over 1 million premature
deaths per year, 400 000 of which occur in India (Malley et
al., 2017). India and its neighbouring countries, China, Pak-
istan and Bangladesh, have experienced the largest increase
in seasonal average population-weighted ozone concentra-
tions over the last 25 years (Health Effects Institute, 2017),
with India alone accounting for 67 % of the global increase
in ambient-ozone-attributable deaths due to COPD between
1990 and 2015.

The ill effects of ozone are not only limited to human
health. Ghude et al. (2008) calculated relative agricultural
yield loss using accumulated ozone exposure exceedances
over a threshold of 40 ppb from the analysis of 7 years of data
of hourly surface ozone concentrations over India (1997–
2004) during the pre-monsoon season. They estimated yield
losses of 22.7 %, 22.5 %, 16.3 % and 5.5 % for wheat, cot-
ton, soya bean and rice respectively, sufficient to feed about
94 million people and an economic value of more than a bil-
lion USD per year.

Identifying the sources and sinks of tropospheric ozone
and its precursors, and in turn identifying the ways to reduce
ambient ozone exposure, remains a key challenge. Ozone
is a secondary pollutant, meaning it is not directly emitted
into the atmosphere. The tropospheric chemistry of ozone
and its precursor species, such as volatile organic com-
pounds (VOCs), carbon monoxide (CO) and nitrogen oxides
(NOx = NO+NO2), is complex and involves a large num-

ber of species that participate in a cascade of NOx-catalysed
chemical reactions that ultimately oxidise VOCs to H2O and
CO2, generating ozone as a by-product (Jenkin and Clemit-
shaw, 2002; Monks et al., 2015). India is experiencing a rapid
growth in its industrial and economic sectors with increasing
emissions of pollutants and trace gases associated with this
development (Ghude et al., 2008, 2013). An increasing trend
in tropospheric ozone over most parts of India has been ob-
served in long-term decadal trend analysis (1979–2000) us-
ing satellite-based approaches to determine the tropospheric
ozone residual (TOR), with the strongest trends observed
over the Indo-Gangetic Plain (The IGP region – a region to
the north of India, at the foothills of Himalayas) (Lal et al.,
2012).

Meteorological parameters also play an important role in
driving tropospheric ozone chemistry, as has been demon-
strated in many studies in the last few years. Central to the
production of ozone is photolysis (photo-dissociation). The
presence of clouds can greatly impact the rates of photolytic
reactions and so act as a limit for ozone production (Voul-
garakis et al., 2009). Ozone also tends to have a positive
correlation with temperature and a negative correlation with
relative humidity (Camalier et al., 2007). Increases in water
vapour directly lead to ozone loss through the reaction of ex-
cited oxygen atoms, formed from ozone photolysis, with wa-
ter, and indirectly through the wet scavenging of compounds
which act as reservoirs and precursors for ozone (Monks et
al., 2015). These meteorological factors are of particular im-
portance for the Indian subcontinent, where the seasonal cy-
cle is dominated by the monsoon season, lasting for 4 months
from June to September and characterised by high precipita-
tion rates, cloudy days, seasonal reversal of prevailing wind
directions, and mixing of the clean marine boundary layer air
from the south-west with the continental air. Ground-based
studies on ozone cycles at various sites in India report that the
minimum ozone values observed during the monsoon season
are likely attributed to high relative humidity, low solar radia-
tion, cloudiness conditions and wet scavenging of ozone pre-
cursors. In contrast, the high temperatures, high solar radia-
tion and low humidity during the pre- and post-monsoon sea-
sons provide favourable conditions for photochemical pro-
duction of O3. During winter, low temperatures, low solar
radiation and fog limits the photochemical O3 production in
most parts of India (Beig et al., 2007; Sinha et al., 2015; Ya-
dav et al., 2016). An exception is the Mt. Abu site in north-
ern India. Due to the unique meteorology at this high altitude
site, the seasonal variation in surface ozone shows a maxi-
mum in late autumn and winter (Naja et al., 2003).

Owing to the complex interplay between emissions, chem-
istry and the unique meteorology that impacts the Indian sub-
continent, and the limited coverage of surface observations,
three-dimensional numerical models are required to estimate
the health burden of ozone exposure and predict how ozone
levels will respond to future changes in emissions and cli-
mate. Three-dimensional numerical models include meteo-
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rology, emissions and complex photo-chemical mechanisms
to simulate ozone concentrations (Keeble et al., 2017; Suren-
dran et al., 2015). But these models need to be evaluated with
as many observations of as many species that contribute to
ozone production and loss as possible. The ability of a model
to accurately predict the present state of species gives us the
confidence to rely on them for future projections as well as
to predict the levels of pollutants in regions where observa-
tions are limited. Many previous studies have evaluated the
ability of chemistry-transport models to simulate levels of
ozone and other key species for tropospheric chemistry over
North America and Europe, where dense, long-term and reli-
able measurements are available (Im et al., 2015; O’Connor
et al., 2014; Tilmes et al., 2015). Owing to the sparsity of in
situ data, these kinds of studies are limited over the Indian
subcontinent. Evaluation of models and their agreement as
well as disagreement over this region will enhance our un-
derstanding about the production of ozone and the factors
controlling it. An improvement in our fundamental ability to
simulate the processes which control ozone will ultimately
enable the best policy decisions to mitigate the impacts of
ozone on human health and crops in the region.

In this paper, we have evaluated model simulations from
the international Hemispheric Transport of Air Pollution
Phase II (HTAPII) and Chemistry Climate Model Initiative
(CCMI) model inter-comparison projects against a compre-
hensive series of ground-based, aircraft and satellite observa-
tions of ozone, NOx and CO across India. To our knowledge,
this represents the most exhaustive evaluation of ozone for
these models in this region and enables us to characterise
seasonal biases and errors between the models. Section 2 de-
scribes the models that we have used in these analyses and
the observations we used to evaluate the models against. In
Sect. 3 we present the results of our evaluation, including em-
pirical orthogonal function (EOF) analysis to identify sim-
ilarities and differences in the spatio-temporal distribution
of the tropospheric ozone column simulated in the models
and retrieved from the OMI-MLS instruments (Ziemke et al.,
2011). In Sect. 4, we discuss the results and suggest possible
future research needed to understand ozone chemistry over
the Indian subcontinent.

2 Methodology

2.1 Datasets for evaluation

2.1.1 Ground-based observations

The model simulations have been validated against measure-
ments of surface ozone from eight stations located across In-
dia in Delhi, Patiala, Udaipur, Jabalpur, Pune, Hyderabad,
Guwahati and Chennai. Figure 4 shows the geographical lo-
cations of these stations. Details of all the ground-based sta-
tions have been summarised in Table 1. The coordinated

Table 1. Details of the locations of in situ ozone monitoring stations
used in this study. All stations are categorised as semi-urban sites.
All data were collected at an hourly resolution throughout the year
2013. For more details see Sect. 2.1.1.

Stations Lat. Long. Elevation Institutes
(◦ N) (◦ E) (m a.s.l.)

Delhi 28◦41′ 77◦12′ 253 IMD, Lodhi Road
Patiala 30◦21′ 76◦22′ 257 Thapar University
Udaipur 24◦35′ 73◦43′ 255 M.L.S University
Jabalpur 23◦9′ 79◦58′ 420 Govt. Model

Science College
Pune 18◦32′ 73◦48′ 590 IITM, Pune
Hyderabad 17◦31′ 78◦24′ 609 INCOIS
Guwahati 26◦9′ 91◦39′ 56 Gauhati University
Chennai 13◦2′ 80◦8′ 20 Sri Ramchandra

University

measurements of trace gases and aerosols at these locations
of India are carried out under the Indian Institute of Tropical
Meteorology (IITM), Pune, India, and Ministry of Earth Sci-
ences (MoES) as part of the “Modelling Atmospheric Pol-
lution and Networking” (MAPAN) programme. The Lodhi
Road station in Delhi is designated as being an urban back-
ground site. All other monitoring stations are designated as
semi-urban, indicating that the stations are away from down-
town areas where the influence of local emissions may be
very high. However, as we show in Sect. 3, these are far
from pristine measurement locations and appear to be influ-
enced by high levels of NOx and CO. Observations at these
stations were made with the Air Quality Management Sys-
tem (AQMS). The AQMS is comprised of US Environmental
Protection Agency approved analysers housed inside walk-
way shelters and have a sampling height of 3 m above ground
level (Beig et al., 2013).

The measurements of surface O3, NOx and CO were
made continuously at hourly time resolution during the
year 2013. Ozone measurements were conducted using an
Ecotech Ozone analyser (model number EC 9810B), which
combines the benefits of microprocessor control with ultravi-
olet (UV) photometry at 254 nm to accurately measure ozone
mixing ratios in ambient air. The analyzer provides accurate
measurements of ozone in the range of 0–20 ppmv with a de-
tection limit of 0.5 ppbv and has a linearity error of less than
3 %.

The measurements of NOx were made by using an Ecotech
Nitrogen Oxides Analyzer (model number EC 9841B). This
analyzer works on the chemiluminescence technique for ac-
curate and reliable measurements of NO, NO2 and NOx
mixing ratios. The technical limitations (artifacts) of the
chemiluminescent-based methods have been well reported
(Fuchs et al., 2009; Winer et al., 1974). CO was measured
using an Ecotech model EC 9830 analyzer based on the in-
frared (IR) photometry. Information on the maintenance and
calibration of these instruments has been reported before
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(Chakraborty et al., 2015; Yadav et al., 2014). Monthly mean
values for O3, NOx and CO were calculated from the 24 h
averages of the hourly data. Days with fewer than 15 h of
observations were excluded from the analysis.

2.1.2 CARIBIC observations

The CARIBIC project (Civil Aircraft for the Regular In-
vestigation of the atmosphere Based on an Instrument Con-
tainer; http://www.caribic-atmospheric.com/, last access:
4 April 2018) aims to investigate the spatial and temporal dis-
tribution of a wide-range of compounds. It is based on the use
of a fully automated scientific instrument package in a 1.5 t
container aboard a passenger aircraft which is equipped with
an advanced multi-probe inlet system (Brenninkmeijer et al.,
2007). In the region of interest, flights operated monthly from
April to December 2008 aboard a Lufthansa Airbus A340-
600 passenger aircraft flying from Frankfurt to Chennai. The
total number of flights during this period was 16. Usually
one set of flights consisted of four consecutive flights, i.e. two
round trips from Frankfurt to Chennai within 3 days, with the
exception of July and October, when only one round trip was
performed. The ascents and descents of the flights took place
during night, with landing times around 23:30 local time and
take off times around 02:00 and 03:40 local time the next
morning (Ojha et al., 2016).

The ozone measurements were made by a dry chemilu-
minescence (CL) instrument, which at typical ozone mixing
ratios between 10 and 100 ppb and a measurement frequency
of 10 Hz has a precision of 0.3 %–1.0 %. The absolute ozone
concentration is inferred from a UV photometer designed in-
house which operates at 0.25 Hz and reaches an accuracy of
0.5 ppb. The CL instrument has been discussed in detail by
Zahn et al. (2012).

CO is measured with an AeroLaser AL 5002 resonance
fluorescence UV instrument modified for use on board the
CARIBIC passenger aircraft. The instrument has a precision
of 1–2 ppbv at an integration time of 1 s and performs an in-
flight calibration every 25 min. Technical details of the CO
instrument can be found in Scharffe et al. (2012).

The CARIBIC observations taken during ascent as well
as descent of the flight have been considered in this study.
These observations are averaged into vertical bins of 25 hPa.
For monthly mean vertical profiles, averages of all the as-
cending and descending profiles during that month have been
considered. For comparison, monthly mean model-simulated
profiles over Chennai are also averaged into vertical bins of
25 hPa and have been interpolated to the CARIBIC pressure
levels.

2.1.3 OMI/MLS tropospheric column ozone (TCO)
measurements

Tropospheric column ozone (TCO) for the year 2010 is de-
rived using the TOR method, which is the residual of total

column ozone from the Ozone Measuring Instrument (OMI)
and stratospheric column ozone from the Microwave Limb
Sounder (MLS) with the spatial resolution of Aura/MLS
(Ziemke et al., 2011; Schoebert et al. 2007). TOR is an in-
tegrative product which accounts for changes in ozone not
only at the surface, where it is most detrimental to human
and crop health, but also in the free troposphere, where it has
a longer lifetime and so is influenced by more sources and
has a larger climate impact (Stevenson et al., 2013).

OMI and MLS are two out of four instruments on board
the Aura satellite, which orbits the Earth in sun-synchronous
polar orbit at 705 km altitude and 98.2◦ inclination. OMI is a
nadir-viewing instrument which detects back-scattered solar
radiance from Earth at visible (350–500 nm) and UV (270–
314 nm, 306–380 nm) wavelengths to measure total column
ozone with a spatial resolution of 13 km× 24 km. The MLS
instrument detects microwave thermal emissions from the
limb of Earth’s atmosphere to measure mesospheric, strato-
spheric and upper tropospheric temperature, ozone and other
constituents. MLS measurements are taken about 7 min be-
fore OMI views the same location during ascending (day-
time) orbital tracks. Details of these instruments are dis-
cussed elsewhere (Waters et al., 2006).

2.2 Model description

In this work we aim to evaluate how a range of models per-
form over the Indian subcontinent to understand what the
level of agreement in ozone modelling is, in this observation-
ally sparse region. We focus here on global models as these
are increasingly used in assessments of the health impacts of
air pollution (e.g. Malley et al., 2017; Lelieveld et al., 2018).
There is a long history of coordinated model intercompar-
ison projects (MIPs), with the general aim of coordinating
modelling centres to better understand how the state-of-the-
science models compare against each other and observations.
MIPs are generally focused on specific science questions
which define the length of the integrations performed with
the models and the amount of model output requested. MIPs
have been the key mechanism to bring together our under-
standing of climate change and are increasingly enabling our
understanding of atmospheric composition to be improved.

The most recent global MIPs include both the CCMI
(Morgenstern et al., 2017) and international HTAPII (Koffi
et al., 2016). We opted to look at data from both of these
MIPs but, owing to constraints on time and data availability,
chose to focus on a subset of models. Specifically, we exam-
ine output from simulations from the following eight models:

– HadGEM2-ES model (Collins et al., 2011; Jones et al.,
2011), hereafter referred to as HTAPII-HDGM;

– GEOS-Chem Adjoint (Henze et al., 2007), hereafter re-
ferred to as HTAPII-GCAD;

– CHASER-v4-MIROC-ESM and CHASER-MIROC-
ESM (two different configurations of essentially the
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same model run for HTAPII and CCMI and referred
to as HTAPII-CHSR and CCMI-CHSM respectively)
(Sudo et al., 2002a, b);

– MOZART-4 (Divya et al., 2015), hereafter referred to as
HTAPII-MOZT;

– MRI-ESM1r1 (Yukimoto et al., 2011; Deushi and Shi-
bata 2011), hereafter referred to as CCMI-MRIE;

– GEOSCCM (Oman et al., 2011; Reinecker et al., 2008;
Duncan et al., 2007; Strahan et al., 2007), hereafter re-
ferred to as CCMI-GCCM;

– UMUKCA-UCAM (Bednarz et al., 2016), hereafter re-
ferred to as CCMI-UKCA.

Table 2 outlines the details of the above models, with
which the MIPs were run, and documents our calculations
of the tropospheric ozone burden in each model (using a
consistent treatment of a chemical tropopause defined using
a 150 ppb monthly mean ozone iso-surface). These models
span a range of horizontal resolution (the lowest resolution
is CCMI-UKCA at lat 2.5◦× long 3.75◦ and highest resolu-
tion is HTAPII-HDGM at 1.25◦ lat× 1.85◦ long) and verti-
cal resolution (HTAPII-CHSR/CCMI-CHSM have 32 verti-
cal model levels, whilst CCMI-MRIE has 80 vertical model
levels) and use chemical mechanisms of differing complexity
and scope (e.g. CCMI-UKCA has been designed for simu-
lations of mainly stratospheric nature whilst HTAPII-CHSR
and CCMI-CHSM use a chemistry scheme much more fo-
cused on tropospheric oxidation, with a larger number of
non-methane VOCs). The lowest model level varies from a
minimum of 25 m for CCMI-MRIE to 124 m for HTAPII-
GCAD. For further details of the model set-ups please see
the cited references for each model in Table 2 and the MIP
description papers (i.e. for the CCMI models see Morgen-
stern et al., 2017). From our analysis of the tropospheric
ozone burden, we see that all models lie within the range
of the Atmospheric Chemistry and Climate Model Intercom-
parison Project (ACCMIP) models (Young et al., 2013) and
the likely range as recently quantified through satellite re-
trievals of the tropospheric column analysed by the IGAC
Tropospheric Ozone Assessment Report (TOAR) (Gaudel et
al., 2018).

From the eight models described above, we focus our anal-
ysis on monthly and daily mean mixing ratios of ozone, NOx
and CO, and monthly mean surface emissions of CO, NOx
and lightning-derived NOx . We focus on output from the
models appropriate for the year 2010 and limit the main anal-
ysis to the domain of 56–105◦ longitude and 5–38◦ latitude,
which covers the entire Indian subcontinent.

In spite of simulating the same period of time, CCMI
and HTAPII use different base emission inventories as part
of their protocol. Surface CO and NOx emissions, which
over the Indian subcontinent are dominated by anthropogenic
sources, should generally be consistent within MIPs, which

we largely see but explore in more detail below. Lightning
is an important source of NOx to the remote atmosphere. It
is an emission term that tends to be not possible to specify
in the MIPs, and hence it reflects an area of emissions that
models should differ in. We assess this in more detail below.

2.2.1 Description of emissions from model simulations

The annual total NOx and CO emissions for all models over
the domain are shown in Figs. 1, S2 and S3. Briefly, there is
large variability in input emissions of NOx and CO for the
different models and MIPs (Figs. S2 and S3). The intra-MIP
variability is greater than the inter-MIP variability for NOx ;
i.e. there is more variability within a MIP for NOx emissions
than between them (see Fig. 1). However, the converse is true
for CO where the CCMI emissions tend to be higher than
those used in the HTAPII MIP. For individual MIPs, every
modelling group was required to use the same anthropogenic
emissions data. Disparities in emissions may be due to the
use of different natural and biomass burning sources.

Lightning is the largest contributor to upper tropospheric
NOx and it is a source of largest uncertainty. Global emis-
sions of lightning NOx (LNOx) as simulated by the models
show a variance of 7.56 Tg (N) year−1 (annual global emis-
sion of LNOx as simulated by each model is given in Fig. 2).
The vertical profiles of LNOx emissions are very different in
each model over the domain considered in this study (Fig. 2).
Parameterisation of LNOx is highly dependent on the verti-
cal and horizontal resolution of the models. CCMI-UKCA
and HTAPII-HDGM models show similar vertical profiles
as they have a similar internal configuration. The difference
in the convection parameterisation in these models leads to
a difference in the magnitudes of LNOx emissions. CCMI-
MRIE clearly stands out, giving the highest values of LNOx
emissions globally as well as over the Indian subcontinent.

3 Results

Here we evaluate four model simulations each from HTAPII
and CCMI, with a set of ground-based, satellite and airborne
observations of O3; ground-based and airborne observations
of CO; and ground-based observations of NOx .

3.1 Annual mean model-simulated surface ozone

Figure 3 shows the spatial patterns of annual mean surface
ozone mixing ratios from the model simulations described
in Table 2 and the multi-model mean (MMM), shown in
the lower right-hand panel. Ozone mixing ratios from the
lowest model level are considered as surface ozone in this
study. There is general agreement in the spatial characteristic
of annual mean surface ozone across the models, except for
HTAPII-HDGM (it shows different maxima and minima as
compared to the other models). The range in area-weighted
surface annual mean ozone is 22.9–35.3 ppb, with HTAPII-
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Figure 1. Shows the high variability in NOx and CO emissions (anthropogenic+ natural) between the two MIPs over the domain considered
in this study. CCMI models show larger variability for NOx emissions and HTAPII models shows larger variability for CO emissions.

Figure 2. Annual vertical profiles of lightning NOx emissions over
the domain considered in this study (inset: global emissions of light-
ning NOx in Tg (N) year−1 as simulated by each model).

CHSR at the lower and HTAPII-MOZT at the upper end of
the range, and the MMM value is 29.3 ppb. We also investi-
gated the population-weighted surface annual average statis-
tics using population data from NCAR climate and global
dynamics (Gao, 2017; Jones and O’Neill, 2016). These data
have a range of 28.5–38.85 ppb, with HTAPII-CHSR at the

lower end and CCMI-UKCA at the upper end and a MMM
of 33.0 ppb.

The MMM shows that the highest values of surface ozone
are over the Tibetan plateau and northern part of India and the
lowest values over the southern peninsula. However, whilst
the models broadly agree on the regions of higher and lower
ozone, there is significant intermodal variability in the mag-
nitude of ozone concentration. Variations in models can be
attributed to the different chemical schemes, physical pa-
rameterisations, grid resolution and non-anthropogenic emis-
sions used in the models. CCMI-UKCA shows the highest
values of surface mean annual average ozone compared to
the other models. This may be attributed to the fact that
CCMI-UKCA was designed for stratospheric chemistry and
hence contains only a limited set of tropospheric chem-
istry reactions and no isoprene chemistry (more details in
Sect. 2.2).

The standard deviation of the multi-model ensemble is
shown in Fig. 4. The standard deviation of the multi-model
mean can be used as an indicator of the level of agreement
between the models. Here we show that there is a reasonably
low level of agreement between the models, with an average
of 23 % standard deviation in the mean. This is slightly worse
than the level of agreement between the ACCMIP models
over the same region shown in Young et al. (2013) (< 20 %
standard deviation in the mean) and could reflect the fact that
here we compare simulations from two different MIPs which
make use of different emissions. However, we find the dif-
ference between the emissions within models of a particular
MIP is as large as those between MIPs (Figs. 1, S2 and S3).
Figure 4 highlights that models differ most in the northern
and eastern part of India and standard deviation is the least
in the central part of India. For the more well studied re-
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Figure 3. The spatial patterns of annual mean surface ozone (ppb) as simulated by the lowest level in each model, highlighting the regions
where the models show maxima and minima over the Indian subcontinent.

gions such as North America and Europe, Young et al. (2013)
show that global model multi-model analyses have similar if
not slightly larger variability than over the Indian subcon-
tinent. Young et al. (2013) show that the variability in the
south-eastern USA is very high,> 30 %, across the ACCMIP
models, which is likely linked to the impacts of different bio-
genic emissions (not specified in MIP protocols) and chem-
istry over this isoprene-rich area.

3.2 Comparison between models and ground-based
surface observations

3.2.1 Ozone

Comparison of model-simulated monthly mean surface
ozone with the monthly mean of hourly observations from
the eight ground-based monitoring stations listed in Table 2
is shown in Fig. 5. In contrast to locations in Europe and

North America, but in agreement with previous observational
analysis of surface ozone over India (Beig et al., 2007; Jain
et al., 2005; Lal et al., 2012), our observational data high-
light a double peak structure in the seasonal cycle of surface
ozone. Cloudiness and wet scavenging of ozone precursors
during the monsoon period (June–September) limit the pho-
tochemical production of ozone, resulting in lower values of
ozone during these months. Due to favourable meteorologi-
cal conditions during pre- (April–May) and post- (October–
November) monsoon seasons, such as strong solar radiation,
high temperature and low humidity, photochemical produc-
tion of ozone is enhanced during these months. Emissions
from biomass burning also contribute to ozone production
during the post-monsoon season at sites such as Delhi and
Patiala. The seasonal variability in the models is captured
fairly well at all stations, except at Chennai. Figure 5 in-
cludes the MMM and standard deviation (dark dashed blue
and light blue envelope), which can be compared with the
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Figure 4. Relative standard deviation of surface ozone from the
eight models. The plot also shows the location of ground-based ob-
servational MAPAN stations considered in this study.

mean and standard deviation of the observations (solid black
line and grey envelope). In seven out of eight cases, the ozone
mixing ratio is higher in the MMM than in the observations
(except at Jabalpur, where MMM is within 1σ deviation).
The overestimation by the models is due to the overesti-
mation in production and/or the underestimation of loss of
ozone. This could be attributed to a combination of factors.
The principal factor is most likely a mismatch in the repre-
sentativeness of the observational sites for comparison with
the coarse-resolution models. At coarse resolution, the mod-
els cannot capture fine-scale processes, such as the impact of
nearby sources of pollution (e.g. NOx emissions) on the ob-
servations of ozone. Ozone production is highly non-linear
in terms of the precursor emissions VOCs and NOx (Monks
et al., 2015). Figure 5 also highlights differences between the
models. There is considerable inter-model variation in simu-
lating the seasonal variation in surface ozone, as we discuss
in more detail below.

To evaluate the performance of models at each station we
compare the normalised mean biases (NMBs) and Pearson
correlation coefficient (R). These were calculated using the
following equations:

NMB=
6Model−6Obs

6Obs
, (1)

R =

(
Model [i]−Model

)
× (Obs[i]Obs)

σ (Model)× σ(Obs)
, (2)

where σ is the standard deviation.

Figure 6 shows the relationship between R and NMB for
each of the models we have studied, as well as the multi-
model mean, at each of the surface site locations. As is ev-
ident from Fig. 5, all models show a positive NMB at all
stations. All models have low biases and high R values (ex-
cept for CCMI-UKCA) at Jabalpur and Pune. Models show
high biases at Guwahati and Chennai, and low R values at
Chennai and Udaipur. Observations at Chennai peak in April
and October, i.e. during pre- and post-summer monsoon sea-
sons. Models show poor correlation with the seasonal cycle
of ozone at Chennai. To some extent this might be affected by
the model’s ability to simulate summer monsoons (from the
south-west) and winter monsoons (from the north-east) that
affect Chennai. It would be worth comparing model simula-
tions with ozone observational data at Mumbai on the west
coast of India, which receives rainfall only during the sum-
mer, to understand the role of the monsoon near these coastal
sites, and we suggest further analysis assessing the perfor-
mance of the models at the coastal impacted locations specif-
ically. Overall, the performance of the models across all the
sites is inconsistent. There is no one model that performs sys-
tematically well at all stations. Conversely, the models per-
form differently at each station in terms of their R value and
NMB. Unlike in previous studies (e.g. Young et al., 2013)
the MMM also does not outperform the individual models in
Fig. 5. CCMI-UKCA acts as an outlier at five out of eight
sites. The impact of the underlying emission biases can be
seen by comparing the results between HTAPII-CHSR and
CCMI-CHSM in this study. These are in effect the same
model (see Sect. 2.2) but include different emissions data as
part of the different MIP protocols. Figure 6 shows that these
two simulations result in large differences at only one of the
eight sites investigated (Chennai), whereas the difference be-
tween different models in the same MIP is typically much
larger. This implies that the differences between the simu-
lations are more down to the differences in model set-up,
representation of chemical and physical processes, and non-
anthropogenic emission sources in the models than the dif-
ferences in anthropogenic emissions between the two MIPs.

In order to better understand the causes of biases between
the model and observations shown in Figs. 5 and 6, 24 h aver-
age model and observation data have been analysed to deter-
mine probability density functions (PDFs) as shown in Fig. 7
for a subset of the sites considered (Delhi, Pune, Guwahati
and Chennai). The PDFs for the observations show a multi-
modal distribution (with 2–3 modes most common) with the
highest peak at lower ozone values. This pattern is typical
of situations in which nearby sources of NOx titrate ozone,
through the following reaction:

O3+NO→ NO2+O2. (3)

The observed PDFs are typically low in Guwahati and
Chennai, whereas Delhi and Pune show several days where
high levels of ozone are seen, especially in Pune where daily
average ozone can be as high as 97 ppb.
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Figure 5. Comparison between ground-based observations, model-simulated data and the ensemble mean of monthly mean surface ozone
over the eight MAPAN stations.

Figure 6. Scatter plot of Pearson correlation coefficient (R) values against normalised mean bias (NMB), highlighting the models perfor-
mance in surface ozone at each station.

The PDFs for the model simulations also show a mul-
timodal distribution but the nature of their distributions is
very different from the observed distribution. Moreover, the
differences between the simulation PDFs is larger than the
differences between the multi-model mean and the observa-
tions. Again, this highlights the large variability among mod-
els in their simulation of ozone in these regions. The most
obvious feature from Fig. 7 is that the models overestimate
the PDFs at the four sites and significantly overestimate the
tails of the ozone distributions. As well as overestimating the
ozone concentration at the modes, in most models the high-

est peak is at the second mode with higher ozone values, in
contrast to the observations where the highest peak is usually
at lower ozone concentrations. The amplitude and shift in the
PDF peaks compared to observations is greatest at Guwahati
and Chennai. This may be due to the inability of the models
to adequately simulate NOx titration at these sites, which oc-
curs at a finer scale than can be resolved by the coarse model
grids. Studies have shown that the model’s ability to simu-
late surface ozone is very sensitive to horizontal resolution
and high-resolution models generally perform better when
compared to observations (Stock et al., 2014).
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Figure 7. Probability density functions (PDFs) for in situ observations and model-simulated 24 h average surface ozone at Delhi, Pune,
Guwahati and Chennai.

3.2.2 Ozone precursors

When compared with the set of available surface ozone ob-
servations we have used, the current state-of-the-art global
chemistry models overestimate surface ozone in India. There
is a large amount of variability among the models, much
larger over India than in previous model inter-comparisons
over the northern and southern hemispheres (Young et al.,
2013). In order to better understand the variation in ozone,
we have also compared the model simulations of NOx and
carbon monoxide at the eight sites that form part of the MA-
PAN network. Similar to Fig. 5, Fig. 8 shows the seasonal
variation in surface NOx in the models and observations. The
observations of NOx (black line with grey envelope) vary
from location to location. High values are observed during
autumn–winter due to the transport of pollutants from pol-
luted regions, such as the IGP region, through north-easterly
winds. During the winter months NOx emissions are trapped
closer to the surface due to low boundary layer heights,
caused by frequent temperature inversions, while in summer
months south-westerly winds bring in clean marine air to al-
most the entire Indian region and there is greater mixing with
free tropospheric air, causing dilution of pollutants in gen-
eral (Beig et al., 2007; Jain et al., 2005; Lal et al., 2012).
Figure 8 shows that in Pune, Guwahati and Jabalpur, the
highest observed monthly average NOx is seen in the win-
ter months. In Delhi and Patiala, the pre- and post-monsoon
season (when biomass burning is high) are when NOx lev-
els are at their highest levels, with lower levels of NOx in

the monsoon months. Figure 8 highlights that there is a large
range of NOx values in the observations, with Delhi having
the largest monthly average levels of NOx of up to 180 ppb
(November) and Chennai having the lowest levels of NOx
(8 ppb, November).

Comparing the observations and the MMM highlights that
on average the simulations underestimate levels of NOx
at these eight locations across India. An exception is for
HTAPII-HDGM at Patiala, where the model simulation over-
estimates the levels of NOx present. The monthly average
NOx in the model simulations at all sites is dominated by
NO2 whereas in observations at Delhi (the only site for which
separate measurements of NO and NO2 are available), NO
dominates monthly average NOx (see Sect. S4 in the Sup-
plement). This discrepancy could be attributed to the coarse
resolution of the models, meaning high NOx emissions are
diluted over a larger volume of air. Hence, models underesti-
mate ozone titration due to high levels of NO near emission
sources, which results in the overestimation of surface ozone
and a photo-stationary state with greater proportion of NOx
as NO2.

Figure 9 shows a comparison of the observed and model-
simulated CO at the different sites across India we focus on
here. At the majority of the other sites considered, there is a
clear seasonal cycle in CO, with peaks in the winter months
and minimum values during the summer and monsoon pe-
riod. As with NOx (Fig. 8), Delhi is the region with the high-
est observed values of carbon monoxide, and the highest lev-
els of CO occur in the pre- and post-monsoon period (con-
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Figure 8. Comparison between ground-based observations and model simulations of monthly mean surface NOx over the eight MAPAN
stations. A different scale has been used for Delhi and Patiala.

Figure 9. Comparison between ground-based observations and model simulations of monthly mean surface CO over the eight MAPAN
stations. A different scale has been used for Delhi.

sistent with the periods of highest agricultural burning). The
variations in observed carbon monoxide are caused by a com-
bination of factors, including changes in the strength of direct
emissions of CO (Fig. S5) as well as the contribution of sec-
ondary sources such as the oxidation of VOCs (Grant et al.,
2010), variations in the boundary layer height and changes in
local wind patterns (Ahammed et al., 2006).

The model simulations capture the seasonal variability in
monthly mean CO well (R values> 0.4 for all models) at
most locations; the exception is in Hyderabad, where all
models generally show a negative correlation with the ob-
servations, and at Jabalpur, where correlation is poor (see
Sect. S5). Interestingly, the model simulations at Jabalpur
and Hyderabad show the lowest correlations with the ob-
servations in spite of having the lowest biases. This could
point towards some important processes which the models
are struggling to simulate, but further work would be needed
to clarify this. The site with the best correlation is Udaipur,
where the MMM correlation coefficient is 0.96. Models are

in agreement with the observed CO at all sites but highly un-
derestimate the observed values at Delhi and Patiala. As with
NOx , an exception is HTAPII-HDGM, which tends to over-
estimate CO at Patiala, but with good correlation (R value
of 0.63), picking up the peaks in pre- and post-monsoon CO
associated with burning.

3.3 Comparison between models and satellite data

3.3.1 Annual average tropospheric ozone column
(AATOC)

Figure 10 shows the annual average tropospheric ozone col-
umn (AATOC) retrieved by the OMI/MLS for the year 2010
on board the AURA satellite and the model simulations. The
OMI/MLS AATOC shows the highest values (45–60 Dob-
son units) over the IGP and the central and north-western re-
gions of India. These high values are not uncommon globally
(Gaudel et al., 2018). High levels of AATOC are associated
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Figure 10. OMI/MLS-determined and model-simulated annual average tropospheric ozone column (AATOC) in Dobson units (DU) over the
Indian subcontinent. Values in the bottom left corner indicate the mean AATOC in the domain.

with high anthropogenic activities and large-scale biomass
burning. The IGP and the regions of India mentioned above
are examples of regions affected by these sources. Lower val-
ues of AATOC are observed over the maritime regions and a
minimum is observed over the Tibetan plateau. The seasonal
cycle of tropospheric ozone column (TOC) peaks in May–
June and is fairly widespread over India. The onset of the
monsoon leads to lower levels of TOC across the region on
the whole. Hence, differences in emissions are not the only
factor that leads to differences in the observed AATOC val-
ues; regional variations in meteorological conditions are also
an important factor that controls AATOC (David and Nair,
2013).

In order to evaluate the model simulations and observa-
tions we first compare the mean total ozone column (MTOC),
defined as the spatial mean of AATOC over the study do-

main. Over the entire region we focus on (56 to 105◦ lon-
gitude and 5 to 38◦ latitude), the MTOC from OMI/MLS
is 30.1 DU. Models overestimate the MTOC over this re-
gion (see Fig. 10), with MTOC values for models ranging
from 35 to 42 DU. HTAPII-HDGM shows the highest bias
(∼ 40 %) and HTAPII-CHSR, HTAPII-MOZT and CCMI-
GCCM show the lowest bias (∼ 16 %). It is worth noting
that the AATOC values are not the highest for CCMI-UKCA,
even though the annual average surface ozone values are the
highest for CCMI-UKCA as compared to the other models.

The differences between the OMI/MLS observations and
the model simulations are further highlighted in Fig. 11,
where the percentage biases in AATOC are shown. The
model simulations, in general, show similar spatial patterns
in AATOC to OMI/MLS, but all models overestimate the
total TOC values over the domain. The total TOC values
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Figure 11. Percentage biases in model-simulated AATOC with respect to the OMI-determined AATOC.

for HTAPII-CHSR and CCMI-CHSM are somewhat dif-
ferent and show different bias patterns in spite of hav-
ing same chemistry schemes and being based on the same
model. However, the differences between different models
in the same MIP (i.e. between HTAPII-CHSR and the other
HTAPII models, or between CCMI-CHSM and the other
CCMI models) are typically larger, both in terms of the av-
erage total TOC over the domain and the spatial distribution.
Thus, there is greater inter-model variation due to model set-
up (either differences in model chemistry schemes, dynam-
ics or non-anthropogenic emission sources) than due to dif-
ferences in anthropogenic emissions prescribed by the two
MIPs.

3.3.2 Empirical orthogonal function analysis

Several previous studies have focused on harmonic or spec-
tral analysis of time series of ozone in both observations and
models (Bowdalo et al., 2016; Derwent et al., 2013; Parrish
et al., 2014; Solazzo et al., 2017). A key goal of the stud-
ies and types of analysis above is to determine the causes of
biases between models and observations to enable improve-
ments in modelling of ozone. Typically spectral analysis al-
lows the complex time series present in an ozone dataset to
be decomposed into a set of spectral features. Studies have

applied these methods to many parts of the world such as
Europe, North America and Australia (e.g. Derwent et al.,
2013; Young et al., 2013; Bowdalo et al., 2016), but to date
no study has applied spectral analysis on global model and
observed ozone across India.

In this study, we have used EOF analysis on the
OMI/MLS-observed and the model-simulated TOC from
HTAPII and CCMI. EOF analysis reduces the dimensional-
ity of the input spatial variables (i.e. ozone column, which is
f (lat, long, time)) to find new sets of variables that capture
most of the observed variance from the original data through
a linear combination of the original variables. Principle com-
ponents (PCs) represent the sign and overall amplitude of the
EOF as a function of time. EOF analysis is commonly used
in the climate science community (Nair et al., 2014) but has
been less widely used in the ozone modelling community.
EOF analysis is analogous to Fourier transform (FT) analy-
sis but performs better than FT when the signal differs from
the pure sinusoidal waveform (Cepeda and Colome, 2014).

EOF analysis was applied to both the OMI/MLS and mod-
elled TOC across a domain of 56 to 105◦ longitude and 5
to 38◦ latitude, which covers the entire Indian subcontinent.
Figure 12a depicts the spatial patterns of EOF1, which ex-
plains the maximum variance in tropospheric ozone over the
domain. EOF1 has a loading for each variable; in this case the
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variables are the grid points, they have correlation structures
both in space and time. The amplitudes of the EOF1 spatial
patterns have a time series as shown by PC1 in Fig. 12b.

The spatial patterns depicted by EOF1 (Fig. 12a) for mod-
els are similar to the spatial pattern for the OMI/MLS obser-
vations: they show higher values in the north-western part of
domain and lower in the southern part and over the ocean.
However, the magnitudes of the loading are different be-
tween each of the models and between the MMM and the
observations.

The amplitude of EOF1 (Fig. 12b) has negative values in
winter and positive values during the summer monsoon sea-
sons. There is a discernible difference in the phase of PC1,
with most of the models peaking in July–August, but the ob-
servations peaking in June. The annual-cycle-like structure
of PC1 shows a strong correlation with the movement of
the intertropical convergence zone (ITCZ) over India, which
heads southward during winter and northward during sum-
mer. Physically these spatial patterns thus represent surface
pressure changing with the movement of ITCZ. Precipitation
also migrates with ITCZ over India. Hence maximum vari-
ance in tropospheric ozone is explained by the monsoon over
South Asia (i.e. EOF1 reflects the monsoon). It is worth not-
ing that the maximum variance in tropospheric ozone col-
umn explained by EOF1 in observations is ∼ 60 % whereas
in models it is greater than 70 %. The maximum variance
in tropospheric ozone column explained by EOF1 in CCMI-
UKCA is∼ 55 %, which is less than that of the observations.
The differences in the EOF1 spatial pattern, the amplitudes
of EOF1 (as given by the PC1) and the percentage of maxi-
mum variance explained indicate that each model is captur-
ing monsoons differently both in space and in time.

In spite of reasonable agreement between the models and
observations for EOF1 and PC1, the comparison for EOF2
and PC2 is poor (Fig. S2a and b). There is no agreement be-
tween the spatial pattern of EOF2 and the amplitude of EOF2
(PC2) among the models and OMI-MLS. Whilst this EOF
analysis has provided a novel approach to comparing and
contrasting the modelled and observed tropospheric ozone
column distributions, it does not give a clear understand-
ing about the underlying reasons for the discrepancies in the
models, as with many of the previous studies (Bowdalo et
al., 2016; Derwent et al., 2013; Parrish et al., 2014; Solazzo
et al., 2017).

3.4 Comparison with the IAGOS-CARIBIC
observations

We now focus on the comparison of the model data to ver-
tical profiles of carbon monoxide and ozone measured on
board a commercial airliner as part of the IAGOS-CARIBIC
programme (Brenninkmeijer et al., 2007). The observations
from IAGOS-CARIBIC are important as they provide a con-
nection between the surface and satellite observations dis-

cussed above, but they are statistically less powerful owing
to small samples sizes.

Figure 13 shows the seasonal mean vertical profiles of
ozone and carbon monoxide from the IAGOS-CARIBIC air-
craft observations from Lufthansa flights LH758 and LH759,
which connect between Frankfurt, Germany, and Chennai,
India, compared with model output over Chennai. In total
we have combined the results from over 16 flights during
April to December 2008. We have converted the IAGOS-
CARIBIC data into pseudo-climatological data, by averaging
over 25 hPa vertical bins as explained in Sect. 2.1.2, to enable
a comparison of the models pre-monsoon, post-monsoon and
during the monsoon. The black lines in Fig. 13 denote the
average observed vertical profile, with the grey envelope re-
flecting the standard deviation in these average observations.
Model data refer to the average monthly mean model profiles
over Chennai airport that coincide with aircraft and are also
interpolated to 25 hPa vertical pressure bins.

During the pre-monsoon season (April–May), high val-
ues of ozone and CO are observed in the lower troposphere
(LT) (p > 500 hPa) as compared to the upper troposphere
(UT) (p < 500 hPa). Generally speaking, models underesti-
mate the ozone and CO values in the LT and perform fairly
well in the UT. Given the fact that these are very limited ob-
servational data, any specific emission events (for example
wild fires) that occurred during the observing period are un-
likely to be reproduced by the models (Ojha et al., 2016).
The levels of model-simulated CO in the pre-monsoon LT
generally show higher biases as compared to the ozone lev-
els. HTAPII-MOZT simulates the pre-monsoon LT carbon
monoxide levels in good agreement with the observations but
highly overestimates the UT values and generally overesti-
mates the CO mixing ratios in the post- and monsoon pe-
riods. CCMI-UKCA highly underestimates the CO profiles,
especially in the UT. HTAPII-HDGM performs well in the
LT for ozone profiles during the pre-monsoon season.

Chennai experienced a strong pollution event on
15 July 2008 (Ojha et al., 2016), hence high values of ozone
are observed between 900 and 850 hPa during the monsoon
season (June–September). Since the model ozone values are
monthly mean values, models do not capture this strong
pollution event. Aside from this event, models capture the
ozone and CO profiles well during the monsoon season; the
MMM bias is ∼ 11 % for ozone and ∼−5 % for CO and
the correlation coefficient is ∼ 0.29 for ozone and ∼ 0.7 for
CO. HTAPII-HDGM and CCMI-UKCA tend to overestimate
the ozone profile in the UT whilst HTAPII-MOZT overesti-
mates and CCMI-UKCA underestimates the CO profiles in
the monsoon season.

There are large discrepancies between the models and
IAGOS-CARIBIC observations in the LT during the post-
monsoon season. Models overestimate the ozone and car-
bon monoxide profiles by a factor of 1.5 and 1.7, respec-
tively, in the LT during the post-monsoon season (October–
December). However, the models agree much better with
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Figure 12. (a) Dominant spatial pattern (i.e. EOF1), which explains the maximum variance in the tropospheric ozone column. (b) Time
series of the amplitude of EOF1 (PC1) with the values of accounted variance by the EOF1 in the legend for each model.

the observed ozone and carbon monoxide profiles in the UT
during this season. HTAPII-MOZT overestimates the car-
bon monoxide profile in the UT. The majority of the other
models tend to have fairly high levels of carbon monox-
ide “trapped” within the boundary layer during the post-
monsoon period. There is little evidence for this trapping in
the IAGOS-CARIBIC observations, but more evidence for

pollutant (CO) build-up in this season can be seen in the sur-
face data analysed in Sect. 3.2.2.

The comparison of the HTAPII and CCMI models to these
aircraft data has been useful in basic evaluation of the vertical
profiles of these key pollutants. However, the limited number
of observed vertical profiles of these pollutants restrict de-
tailed evaluation of models over this region. Moreover, tar-
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Figure 13. Comparison of ozone and carbon monoxide profiles from model simulations, 2009–2010, with the CARIBIC observations in
Chennai for pre-monsoon (April–May), monsoon (June–September) and post-monsoon (October–December) seasons, 2008. Model simula-
tions have been vertically interpolated along the CARIBIC flight pressure levels. The mean of the data collected during the aircraft descent
and ascent is shown here.

geted aircraft-based studies would be illuminating, especially
with comprehensive chemical and aerosol measurements to
enable improvements in modelling in this region.

3.5 Ozone as a function of VOC and NOx emissions

Finally, in order to evaluate how the models are simulat-
ing ozone at the surface, we extend the analysis of surface
ozone shown in Fig. 3 to contrast the model-simulated sur-
face ozone against the model input VOC and NOx emissions
following Squire et al. (2015) by creating ozone isopleth
plots. Figure 14 shows the isopleths of surface ozone con-
centrations as a function of NOx and VOC emissions for a
subset of models (HTAPII-GCAD, HTAPII-CHSR, CCMI-
GEOSCCM and CCMI-CHSM) over the entire domain of
study. These models were chosen as they include (i) es-
sentially the same model run for the two different MIPs
(HTAPII-CHSR and CCMI-CHSM) and (ii) different model
runs for the same MIPs (HTAPII-CHSR and HTAPII-GCAD,
CCMI-CHSM and CCMI-GEOSCCM), and (iii) these were
some of the only models that output total VOC emissions,

which are better indicators for ozone chemistry than carbon
monoxide (Monks et al., 2015). The monthly mean surface
ozone data over the study region from these simulations were
combined with the monthly mean surface emissions of VOCs
and NOx to generate the plots in Fig. 14. The dots in each
panel indicate the locations (in VOC and NOx space) that the
model ozone data samples. As can be seen, there is wide vari-
ation in the VOC–NOx space sampled by the models due to
differences in their input emissions, as discussed in Sect. 2.2.

Unlike the ozone isopleths shown in Squire et al. (2015),
which focused on grid boxes dominated by isoprene chem-
istry, the isopleths here generally show a double peak struc-
ture, with high ozone at both high and low NOx and VOC
emissions (i.e. the bottom left and top right of each panel).
This suggests that this analysis is not connecting in situ pro-
duced O3 to the underlying emissions of VOCs and NOx
and shows effects of pollutants from other regions as well.
HTAPII-CHSR and CCMI-CHSM have the same chemistry
scheme but the different inputs used cause the ozone to
respond differently to the NOx and VOC emissions. The
HTAPII models (HTAPII-CHSR and HTAPII-GCAD) have
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Figure 14. Isopleths of ozone concentration in parts per billion (ppb) as a function of NOx and VOC emissions over the domain. The dots in
each panel indicate the locations (in VOC and NOx space) that the model ozone data samples.

the same anthropogenic emission inputs but the difference in
the chemistry scheme used causes the ozone to respond dif-
ferently to the NOx and VOC emissions. On similar lines, the
CCMI models (CCMI-CHSM and CCMI-GEOSCCM) also
give different isopleth patterns.

4 Conclusions

In this study, we have systematically assessed differences
and similarities in the modelled ozone from eight different
models, contributing to the HTAPII and CCMI model inter-
comparison projects, over the Indian subcontinent. Large
inter-model variability is observed in the model-simulated
annual average surface. Tropospheric O3 and ozone precur-
sors from these models have been evaluated against a set of
ground-based, aircraft and satellite observations over India.
Comparison between the model-simulated and ground-based
observations of surface ozone show some similarities be-
tween the seasonal cycle, except at Chennai. However, mod-
els overestimate the ozone mixing ratios at all locations, with
CCMI-UKCA giving the highest values of annual average
surface ozone.

While a detailed evaluation of why CCMI-UKCA simu-
lates the highest levels of annual mean surface ozone is be-
yond the scope of this study, we note that further work should
be performed to understand the reasons behind this be-
haviour. Simulations similar to those in Prather et al. (2018)
would potentially help shed light on the role of the chemical
scheme as a source of bias in the model.

Models underestimate NOx mixing ratios, except for
HTAPII-HDGM at Patiala. NO2 dominates NOx in the mod-
els. Models tend to underestimate CO only at Delhi and Pa-
tiala and perform well at the other ground-based stations. It
is important to note that the sites considered in this study are
categorised as semi-urban and are therefore influenced by lo-
cal emissions, which are not well represented in global mod-
els. Models with coarse-resolution grids are unable to capture
the short timescale processes taking place at the local scale
and result in the underestimation of surface carbon monoxide
and NOx and the overestimation of ozone, as we have shown
in Figs. 3–7. In order to better evaluate global model sim-
ulations of surface ozone, we would suggest the need for a
network of rural stations measuring ozone and ozone precur-
sors (i.e. NOx , CO, VOCs), covering different geographical
and chemical environments across India.
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Model simulations of total TOC show similar spatial pat-
terns compared to the OMI data over the study domain, but
they overestimate the total TOC values, with biases ranging
from 16 % to 40 %. EOF analysis highlights that more than
70 % of the ozone variation in models is dependent on a sin-
gle phenomenon, i.e. EOF1.

Comparison with the CARIBIC ozone and CO profiles in-
dicate that models perform fairly well in the upper tropo-
sphere as compared to the lower troposphere. The sparse
observations of CO and O3 profiles limit the evaluation of
model ozone and CO profiles over this region. It is clear
from the ozone isopleths that different inputs and chemistry
schemes used in these models cause the ozone to respond
differently to VOCs and NOx emissions. Large variation in
lightning NOx emissions is one of the major reasons for
the differences in the total NOx emissions. Further investi-
gation to support this study including the details of chem-
istry schemes and the simulations of VOC, HO2 needs to be
evaluated within each model. For future chemistry-climate
model intercomparisons, we recommend the inclusion of
simulations with standardisation of non-anthropogenic emis-
sion sources as well as anthropogenic sources in order to be
able to diagnose the impact of model chemistry only on tro-
pospheric ozone.

Data availability. The CCMI data used here are held at the Cen-
tre for Environmental Data Analysis (CEDA; http://data.ceda.ac.uk/
badc/wcrp-ccmi/data/CCMI-1/, last access: 1 November 2018). For
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