Supplement of Atmos. Chem. Phys., 19, 6167–6183, 2019 https://doi.org/10.5194/acp-19-6167-2019-supplement © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

The influence of spatiality on shipping emissions, air quality and potential human exposure in the Yangtze River Delta/Shanghai, China

Junlan Feng et al.

Correspondence to: Yan Zhang (yan_zhang@fudan.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Supporting information

The influence of spatiality on shipping emissions, air quality and potential human exposure in Yangtze River Delta/Shanghai, China

Junlan Feng¹, Yan Zhang^{1,2,3*}, Shanshan Li¹, Jingbo Mao¹, Allison P. Patton⁴, Yuyan Zhou¹, Weichun Ma^{1,3}, Cong Liu⁵, Haidong Kan⁵, Cheng Huang⁶, Jingyu An⁶, Li Li⁶, Yin Shen⁷, Qingyan Fu⁷, Xinning Wang⁷, Juan Liu⁷, Shuxiao Wang⁸, Dian Ding⁸, Jie Cheng⁹, Wangqi Ge⁹, Hong Zhu⁹, Katherine Walker⁴

Correspondence to: Yan Zhang (yan_zhang@fudan.edu.cn)

Summary of contents:

Additional Material and Methods

S1 Estimation of ship emissions

S2 Fuel type, sulfur content, engine type, emission Factors, low load adjustment multipliers, and control factors

S3 Calculation of statistical metrics in the model evaluation

Additional Figures and Tables

- 1. Figure S1 Nested simulation domains 1 to 4 in this study
- 2. Table S1 Pollution sources and pollutant types in national-scale non-shipping emission inventories
- 3. Table S2 Pollution sources and pollutant types in local-scale non-shipping emission inventories
- 4. Table S3 Inputs for each run of the simulations
- 5. Table S4 Average and peak contributions from ship emissions in different offshore coastal areas to the land ambient PM_{2.5} concentrations in January and June

¹ Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China

² Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China

³ Shanghai Institute of Eco-Chongming (SIEC), Shanghai 200062, China

⁴ Health Effects Institute, 75 Federal Street, Suite 1400, Boston, MA 02110-1817, USA

⁵ Public Health School, Fudan University, Shanghai 200032, China

⁶ Shanghai Academy of Environmental Science, Shanghai 200233, China

⁷ Shanghai Environmental Monitoring Center, Shanghai 200030, China

⁸ State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China

⁹ Shanghai Urban-rural Construction and Transportation Development Research Institute, Shanghai 200032, China

Additional Material and Methods

S.1 Estimation of ship emissions

Marine vessel emissions were calculated based on a bottom-up activity-based method.

The main engine load factor, LF_m, was calculated as

$$LF_m = (ActSpeed / MaxSpeed)^3$$
 (1)

where ActSpeed is the actual speed when ship is cruising and MaxSpeed is the maximum speed for the ship.

Main engine emissions in grams, E_m, were calculated as

$$E_{m} = P_{m} \times LF_{m} \times LLAM \times T_{m} \times EF_{m} \times FCF_{m} \times CF_{m}$$
 (2)

where P_m is the installed power of ME (kw), LLAM is the low load adjustment multiplier for the main engine, T_m is operation time of the main engine (h), EF_m is the main engine emissions factor (g/kwh), FCF_m is the main engine fuel correction factor, and CF_m is the main engine control factor.

Auxiliary engine emissions in grams, Ea, were calculated as

$$E_a = P_a \times LF_a \times T_a \times EF_a \times CF_a$$
 (3)

where P_a is the installed power of the auxiliary engine (kw), LF_a is auxiliary engine load factors, T_a is operation time of the auxiliary engine (h), EF_a is auxiliary engine emissions factors (g/kwh), and CF_a is auxiliary engine control factors.

Auxiliary boiler emissions in grams, E_b, are generally calculated as

$$E_b = P_b \times LF_b \times T_b \times EF_b \times CF_b \qquad (4)$$

where P_b is the installed power of the auxiliary boiler (kw), LF_b is AB load factors, T_b is operation time of the auxiliary boiler (h), EF_b is auxiliary boiler emissions factors (g/kwh), and CF_b is auxiliary boiler control factors. However, auxiliary boiler emissions were not considered in this study because limited auxiliary boiler information exists in the Lloyd's register and Chinese Classification Society (CCS) database.

The total emissions of the ship in grams, E, was

$$E = E_m + E_a + E_b$$
 (5).

For ships available in Lloyd's register (now IHS-Fairplay) (Lloyds, 2015) and CCS database, the following data were derived from these database including: ship name, ship type, date of construction, flag name, revolutions per minute (RPM) of the main engine, speed, maximum design power of the main engine, maximum design power of the auxiliary engines and gross

tonnage. Information of some domestic ships is available in CCS database, but for those ships unavailable in the database, default values of the main engine power averages were uniformly applied to different ship types: oil tankers (2400 kw), container cargo ships (5000 kw), non-container cargo ships (3800 kw), passenger ships (2300 kw) and other types of ships (2300 kw).

S.2 Fuel type, sulfur content, engine type, emission Factors, low load adjustment multipliers, and control factors

The two most common fuel oils used in ships are residual oil (RO) and marine distillates (MD). In general, RO is used in the main engine, and the fuel sulfur content is approximately 2.7%, MD is used in the auxiliary engine, and the sulfur content is approximately 0.5%. On the basis of data on ships passing by the Port of Shanghai provided by the largest Chinese heavy fuel oil (HFO) supplier, China Marine Bunker (CMB), the sulfur content of the fuel used by the main engines in domestic vessels ranges from 0.2% to 2.0%, and the sulfur content of the fuel used by the main engines in ocean-going vessels ranges from 1.9% to 3.5%. In this study, we adjusted the sulfur content of the fuel used by the main engines in domestic vessels to 1.5% and that of ocean-going vessels to 2.7%. The amount of SO₂ emitted is directly affected by the sulfur content of the fuel; therefore, when main engine emissions were estimated by the model, the emissions of domestic vessels were amended correspondingly. The main engine category was sorted into slow speed diesel (SSD), medium speed diesel (MSD), and high speed diesel (HSD) based on the engine revolutions per minute (RPM), and the largest auxiliary engine category was MSD. The type of engine was judged first according to the RPM of the main engine in Lloyd's database. The emission factors of the different types of engines differ considerably.

The emission factors for SO₂, NO_x, CO, NMVOC_s, PM₁₀, and PM_{2.5} come primarily from the data published in Cooper (2004), ICF International (2009), and Goldsworthy and Goldsworthy (2015). Emissions factors for OC and EC were obtained from published data in Agrawal et al. (2008a), Agrawal et al. (2008b), Petzold et al. (2011), and Moldanová et al. (2013). Emission factors used in the present study were listed in Fan et al. (2016). Emission factors are adjusted for loads below 20 % using tables from studies conducted in other countries (ICF International, 2009; Starcrest Consulting Group, 2009). Because adjustment multipliers were not available for organic carbon (OC) and elemental carbon (EC), these pollutants were assigned the same low load adjustment multiplier (LLAM) as PM in the present study, which may introduce uncertainties. In this study, the ratio of BC emissions to PM emissions (BC/PM) was around 2.9%, which falls within the range of 2% to 4.5% in other studies (Comer et al., 2017; Erying et al., 2005; Petzold et al., 2004).

For all marine engines over 130 kilowatts (kW) for engines built on or after January 1, 2000, NO_x limits in Annex VI applied. We used a control factor of 0.9024 for main engines and a factor of 0.906 for auxiliary engines to adjust the NO_x emissions. For vessels built after 2010, and thus complying with "IMO Tier 2", we used a main engine control factor of 0.875 and an auxiliary

engine control factor of 0.8767 to adjust main engine emissions from ships with emission controls. The control factors were from ICF International (2009). The detailed low load adjustment multipliers and control factors were listed in Fan et al. (2016).

S.3 Calculation of statistical metrics in the model evaluation

The statistical metrics in the model evaluation include Normalized Mean Bias (NMB), Normalized Mean Error (NME), Root Mean-square Error (RMSE), and Pearson's correlation coefficient (r). The statistical metrics are calculated as follows:

NMB =
$$\frac{\sum_{i=1}^{n} (S_i - O_i)}{\sum_{i=1}^{n} O_i} \times 100\%$$
 (6)

NME =
$$\frac{\sum_{i=1}^{n} |S_i - O_i|}{\sum_{i=1}^{n} O_i} \times 100\%$$
 (7)

RMSE =
$$\sqrt{\frac{\sum_{i=1}^{n} (S_{i} - O_{i})^{2}}{n}}$$
 (8)

$$r = \frac{\sum_{i=1}^{n} (S_{i} - \bar{S})(O_{i} - \bar{O})}{\sqrt{\sum_{i=1}^{n} (S_{i} - \bar{S})^{2} \sum_{i=1}^{n} (O_{i} - \bar{O})^{2}}}$$

Where:

S_i = the daily-average simulated data at a certain monitoring station, day i

 O_i = the daily-average observation data at a certain monitoring station, day i

 \bar{S} = the average simulated data at a certain monitoring station of all days

 \bar{O} = the average observation data at a certain monitoring station of all days

n =the total numbers of days of the monitoring stations for which the simulated results are compared with the observed ones

References:

- Agrawal, H., Malloy, Q. G. J., Welch, W. A., Miller, J. W., and Iii, D. R. C.: In-use gaseous and particulate matter emissions from a modern ocean going container vessel, Atmos. Environ., 42, 5504-5510, 10.1016/j.atmosenv.2008.02.053, 2008a.
- Agrawal, H., Welch, W. A., Miller, J. W., and Cocker, D. R.: Emission Measurements from a Crude Oil Tanker at Sea, Environ. Sci. Technol., 42, 7098, 10.1021/es703102y, 2008b.
- Comer, B., Olmer, N., Mao, X., Roy, B., and Rutherford, D.: Black Carbon Emissions and Fuel
 Use in Global Shipping, 2015, The International Council on Clean Transportation, 2017.
 Retrieved from
 https://www.theicct.org/sites/default/files/publications/Global-Marine-BC-Inventory-2015_ICC
 T-Report_15122017_vF.pdf
- Cooper, D.: Methodology for calculating emissions from ships: 1. Update of emission factors, Swedish Methodology for Environmental Data (SMED), 2004.
- Eyring, V., Köhler, H. W., Aardenne, J., and Lauer, A.: Emissions from international shipping: 1.

 The last 50 years, J. Geophys. Res., 110, 10.1029/2004jd005619, 2005
- Fan, Q., Zhang, Y., Ma, W., Ma, H., Feng, J., Yu, Q., Yang, X., Ng, S. K., Fu, Q., and Chen, L.: Spatial and Seasonal Dynamics of Ship Emissions over the Yangtze River Delta and East China Sea and Their Potential Environmental Influence, Environ. Sci. Technol., 50, 1322-1329, 10.1021/acs.est.5b03965, 2016.
- Goldsworthy, L., and Goldsworthy, B.: Modelling of ship engine exhaust emissions in ports and extensive coastal waters based on terrestrial AIS data An Australian case study, Elsevier Science Publishers B. V., 45-60 pp., 2015.
- ICF International: Current methodologies in preparing mobile source port-related emission inventories, 2009.
- Lloyd 's register (IHS Fairplay). 2015.
- Moldanov á, J., Fridell, E., Winnes, H., and Holminfridell, S.: Physical and chemical characterisation of PM emissions from two ships operating in European Emission Control Areas, Atmos. Meas. Tech., 6, 3577-3596, 10.5194/amt-6-3577-2013, 2013.
- Petzold, A., Feldpausch, P., Fritzsche, L., Minikin, A., Lauer, P., Kurok, C., and Bauer, H.: Particle emissions from ship engines, J. Aerosol Sci., Abstracts of the European Aerosol Conference,

S1095-S1096, 2004

Petzold, A., Lauer, P., Fritsche, U., Hasselbach, J., Lichtenstern, M., Schlager, H., and Fleischer, F.:

Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting

climate effects, Environ. Sci. Technol., 45, 10394-10400, 10.1021/es2021439, 2011.

Starcrest Consulting Group: Port of Los Angeles Inventory of Air Emissions 2008, Technical Report Revision, 2009.

Additional Figures and Tables

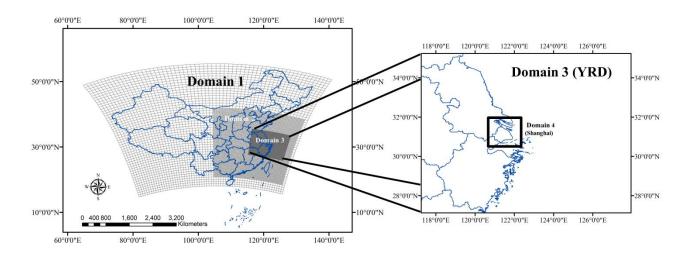


Figure S1. Nested simulation domains 1 to 4 in this study

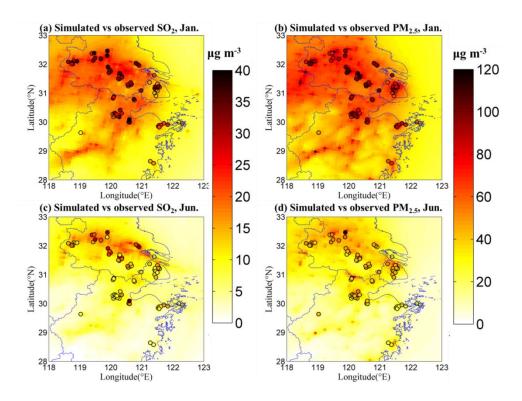


Figure S2. The simulated (grid) and observed (circles) SO_2 concentration distribution in YRD region, in January 2015 (a) and June 2015 (c); the simulated (grid) and observed (circles) $PM_{2.5}$ concentration distribution in YRD region, in January 2015 (b) and June 2015 (d)

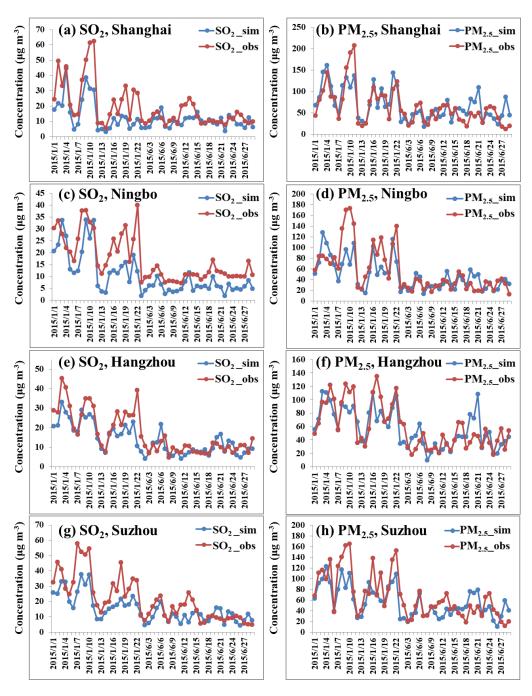


Figure S3. Daily variability of simulated (sim.) and observed (obs.) SO₂ concentrations (a, c, e, g) and PM_{2.5} concentrations (b, d, f, h) in four representative cities, including two coastal cities – Shanghai (a, b) and Ningbo (c, d), and two inland cites – Hangzhou (e, f) and Suzhou (g, h).

Table S1. Pollution sources and pollutant types in national-scale non-shipping emission inventories

Domain	Pollution source	Pollutant type
Domain 1	Power plant, steel, cement	SO ₂ , NO _x , PM _{2.5} ,
(China) and		PM_{10} , CO , NH_3
Domain 2	Industrial point source	SO_2 , $PM_{2.5}$, PM_{10}
	Industrial combustion, industrial process, domestic fuel	SO_2 , NO_x , $PM_{2.5}$,
	combustion, domestic biomass combustion, on-road traffic,	PM_{10} , VOC_s ,
	non-road traffic, open combustion	CO, NH ₃
	Residential solvent, industrial solvent	VOC_s
	Agriculture, residential and commercial, waste	CO, NH ₃

Table S2. Pollution sources and pollutant types in local-scale non-shipping emission inventories

Domain	Pollution source	Pollutant type			
Domain 3	Power plant, industrial boiler,	SO ₂ , NO _x , PM _{2.5} , PM ₁₀ , CO, NH ₃ ,			
(YRD), and	industrial process, domestic source	VOC_s			
Domain 4	On-road traffic	NO_x , $PM_{2.5}$, PM_{10} , CO , NH_3 , VOC_s			
(Shanghai)	Non-road traffic	SO ₂ , NO _x , PM _{2.5} , PM ₁₀ , CO, VOC _s			
	Dust	$PM_{2.5}, PM_{10}$			
	Agriculture	NH_3			

Table S3. Inputs for each run of the simulations

Run	Run name	Land-Based Emissions	Shipping and
#			port-related emissions
	Domain 1 (D1), 81-km		
1	D1 baseline	National-scale land-based	National scale shipping
		emission inventory	inventory based on AIS
	Domain 2 (D2), 27-km		
2	D2 baseline	National-scale land-based	National scale shipping
		emission inventory	inventory based on AIS
	Domain 3 (D3), 9-km		
3	D3 baseline	Local YRD land-based	Shipping emission inventory
		emission inventory	based on AIS
4	Remove all coastal ships,	Local YRD land-based	Container trucks and port
	ocean-going ships and	emission inventory	machineries
	inland ships		
5	Remove 12-200Nm	Local YRD land-based	Shipping emissions inside 12
	shipping sources	emission inventory	Nm
6	Remove 24-200Nm	Local YRD land-based	Shipping emissions inside 24
	shipping sources	emission inventory	Nm
7	Remove 48-200nm	Local YRD land-based	Shipping emissions inside 48
	shipping sources	emission inventory	Nm
8	Remove 96-200nm	Local YRD land-based	Shipping emissions inside 96
	shipping sources	emission inventory	Nm
	Domain 4 (D4), 1 km		
10	D4 baseline	Local land-based emission	Local shipping inventory for
		inventory	inland-water ships and coastal
			ships, and container-cargo
			trucks and port terminal
			equipment

11	Remove cargo trucks and	Local land-based emission	Inland-water ships, and coastal
	port terminal equipment	inventory	ships
12	Remove inland-water ships	Local land-based emission	Coastal ships, and
	(including international	inventory	container-cargo trucks and port
	ships going on the rivers)		terminal equipment
13	Remove coastal ships	Local land-based emission	Inland-water ships, and
		inventory	container-cargo trucks and port
			terminal equipment

Table S4. Average and peak contributions from ship emissions in different offshore coastal areas to the ambient SO_2 and $PM_{2.5}$ concentrations in January and June

Offshore distance	Average contribution (μg/m³)			Maximum contribution (μg/m³)				
	SO_2	$PM_{2.5}$		SO_2		$PM_{2.5}$		
	January	June	January	June	January	June	January	June
Inland and within 12 NM	0.52	0.70	0.24	0.56	6.00	8.79	1.62	4.02
12-24 NM	0.005	0.007	0.01	0.04	0.03	0.05	0.05	0.20
24-48 NM	0.01	0.009	0.04	0.07	0.06	0.05	0.11	0.34
48-96 NM	0.02	0.008	0.07	0.07	0.05	0.03	0.14	0.30
96-200 NM	0.00	0.001	0.003	0.01	0.004	0.003	0.02	0.05