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Abstract. In 2013, China’s government published the Air
Pollution Prevention and Control Action Plan (APPCAP)
with a specific target for Beijing, which aims to reduce an-
nual mean PM2.5 concentrations in Beijing to 60 µg m−3

in 2017. During 2013–2017, the air quality in Beijing
was significantly improved following the implementation of
various emission control measures locally and regionally,
with the annual mean PM2.5 concentration decreasing from
89.5 µg m−3 in 2013 to 58 µg m−3 in 2017. As meteorolog-
ical conditions were more favourable to the reduction of air
pollution in 2017 than in 2013 and 2016, the real effective-
ness of emission control measures on the improvement of air
quality in Beijing has frequently been questioned.

In this work, by combining a detailed bottom-up emission
inventory over Beijing, the MEIC regional emission inven-
tory and the WRF-CMAQ (Weather Research and Forecast-
ing Model and Community Multiscale Air Quality) model,
we attribute the improvement in Beijing’s PM2.5 air qual-
ity in 2017 (compared to 2013 and 2016) to the following
factors: changes in meteorological conditions, reduction of
emissions from surrounding regions, and seven specific cate-
gories of local emission control measures in Beijing. We col-
lect and summarize data related to 32 detailed control mea-
sures implemented during 2013–2017, quantify the emission
reductions associated with each measure using the bottom-
up local emission inventory in 2013, aggregate the measures

into seven categories, and conduct a series of CMAQ simu-
lations to quantify the contribution of different factors to the
PM2.5 changes.

We found that, although changes in meteorological condi-
tions partly explain the improved PM2.5 air quality in Bei-
jing in 2017 compared to 2013 (3.8 µg m−3, 12.1 % of total),
the rapid decrease in PM2.5 concentrations in Beijing during
2013–2017 was dominated by local (20.6 µg m−3, 65.4 %)
and regional (7.1 µg m−3, 22.5 %) emission reductions. The
seven categories of emission control measures, i.e. coal-fired
boiler control, clean fuels in the residential sector, optimize
industrial structure, fugitive dust control, vehicle emission
control, improved end-of-pipe control, and integrated treat-
ment of VOCs, reduced the PM2.5 concentrations in Beijing
by 5.9, 5.3, 3.2, 2.3, 1.9, 1.8, and 0.2 µg m−3, respectively,
during 2013–2017. We also found that changes in meteo-
rological conditions could explain roughly 30 % of total re-
duction in PM2.5 concentration during 2016–2017 with more
prominent contribution in winter months (November and De-
cember). If the meteorological conditions in 2017 had re-
mained the same as those in 2016, the annual mean PM2.5
concentrations would have increased from 58 to 63 µg m−3,
exceeding the target established in the APPCAP. Despite the
remarkable impacts from meteorological condition changes,
local and regional emission reductions still played major
roles in the PM2.5 decrease in Beijing during 2016–2017, and
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clean fuels in the residential sector, coal-fired boiler control,
and optimize industrial structure were the three most effec-
tive local measures (contributing reductions of 2.1, 1.9, and
1.5 µg m−3, respectively). Our study confirms the effective-
ness of clean air actions in Beijing and its surrounding re-
gions and reveals that a new generation of control measures
and strengthened regional joint emission control measures
should be implemented for continued air quality improve-
ment in Beijing because the major emitting sources have
changed since the implementation of the clean air actions.

1 Introduction

Most countries inevitably undergo and tackle severe air pol-
lution in the development process. In recent years, severe
PM2.5 pollution in China has gradually become an urgent
challenge to the government (Wang and Hao, 2012; Li et al.,
2017). It not only posed a threat to human health but has
also badly influenced the social economy and ecological en-
vironment (Menon et al., 2002; Chan et al., 2006; Ming et
al., 2009; Zheng et al., 2015; Zhu et al., 2015). Beijing, as
the capital of China, has suffered especially severe air qual-
ity problems. In 2013, the annual average PM2.5 concentra-
tions in Beijing reached 90 µg m−3, which was nearly 3 times
higher than China’s National Ambient Air Quality Standard
(NAAQS) of 35 µg m−3 (MEP, 2012). In addition to the high
annual average PM2.5 concentrations, several frequent and
severe heavy haze episodes in January 2013 made the situ-
ation even worse and caused great public concern (Zhang et
al., 2014; G. Zheng et al., 2016).

To address the increasingly serious PM2.5 pollution, the
Chinese government released the Air Pollution Prevention
and Control Action Plan (APPCAP) in September 2013,
which aimed to mitigate severe PM pollution across China,
especially in some typical regions. In particular, the average
PM2.5 concentrations of Beijing should be reduced to less
than 60 µg m−3 by 2017. Based on the ambition and guid-
ance of the APPCAP, Beijing has made further efforts and
formulated the Beijing 2013–2017 Clean Air Action Plan (re-
ferred to as the Beijing Action Plan) to mitigate air pollution.
The Beijing Action Plan represents the most important and
systematic set of local air pollution control and management
policies in the past 5 years. After implementing a series of
air pollution control policies and measures, the annual mean
PM2.5 concentrations in Beijing decreased to 58 µg m−3 in
2017 (BMEP, 2018), 35.2 % lower than that in 2013 and sur-
passing the air quality goals of the APPCAP. Meanwhile,
the surrounding regions of Beijing, such as Tianjin, Hebei,
Shandong, Shanxi, and Henan province, also implemented
the APPCAP, and the air quality of the whole region has
attained marked improvements, which have also been con-
firmed by satellite-based and ground-based observations (Liu

et al., 2016; S. Cai et al., 2017; Zhao et al., 2017; J. Wang et
al., 2017; Y. Zheng et al., 2017).

The PM2.5 concentrations in the atmosphere are affected
by several factors, while pollutant emissions, regional trans-
port, and meteorological conditions play dominant roles (He
et al., 2001; Chen et al., 2018; Zhang et al,. 2018a). In gen-
eral, local pollutant emissions contribute most to the air pol-
lution for a given city, and the control of emissions is al-
ways one of the most effective ways to mitigate air pollu-
tion. Regarding the influence of regional transport, consid-
ering that Beijing is embraced on three sides by mountains
except for the south and southeast direction, the transport of
air pollutants from the south and southeast can easily affect
the PM2.5 concentrations in Beijing (Sun et al., 2015; Wang
et al., 2015; Chen et al., 2017). However, regional cities in
these two directions, such as Baoding, Changzhou, Heng-
shui, Shijiazhuang, Tangshan, and Tianjin, suffer even worse
air pollution (Li et al., 2017). A combination of PM2.5 forma-
tion and transport resulted in the regionally complex air pol-
lution characteristics in Beijing (Lang et al., 2013; Chen et
al., 2016; Y. Zhang et al., 2018; Zhong et al., 2018). Besides
the impact of pollutant emissions and transport, PM2.5 con-
centrations are also highly influenced by some other factors,
including atmospheric advection, atmospheric diffusion, and
secondary aerosol formulation. (Sun et al., 2015; Yin et al.,
2016; Zhang et al., 2016). Several studies have also reported
that frequent stable meteorological conditions play an impor-
tant role in severe pollution episodes (Elser et al., 2016; Ma
et al., 2017; Zhang et al., 2018b). Based on emission invento-
ries and air quality models, existing studies have established
a mature sensitivity decomposition framework to assess the
contributions of emission control to air quality improvements
(Zhao et al., 2013; W. Cai et al., 2017).

The mitigation of PM2.5 pollution in Beijing was signifi-
cant during 2013–2017, especially during 2016–2017. This
impact resulted from the integrated effects of various fac-
tors, including the local emission control through the Beijing
Action Plan, the surrounding emission reductions through
the APPCAP, and the impacts of meteorological condition
changes. Several studies have researched the roles of mete-
orology as well as regional and local emissions in Beijing’s
PM2.5 pollution; however, most of these studies analysed a
single factor or focused on heavy pollution episodes (Wang
et al., 2013; Y. Wang et al., 2017; Zeng et al., 2014; Zhang
et al., 2015; Zheng et al., 2016; Liu et al., 2017; Ma et al.,
2017). There was no systematic and decomposed attribution
analysis of Beijing’s air quality improvements at an annual
scale, especially during the periods of 2013–2017 and 2016–
2017, in which the PM2.5 concentrations in Beijing decreased
significantly. To better understand the great progress in the
cleaning of air in Beijing in recent years, a more comprehen-
sive analysis covering the periods of 2013–2017 and 2016–
2017 is urgently needed. In this study, based on several sen-
sitivity simulations, we established a decomposition analy-
sis framework to evaluate the impacts of local control poli-
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cies, surrounding emission reductions, and the meteorolog-
ical changes on PM2.5 abatements in Beijing during 2013–
2017 and 2016–2017. First, the emission reductions of Bei-
jing and its surroundings were estimated based on the quan-
tification of air pollution control measures; meanwhile, a new
multiple-pollutant emission inventory of Beijing and its sur-
roundings, covering the periods of 2013–2017, was updated
and developed. Second, based on a zero-out method, we de-
signed a set of sensitivity experiments under different local
and regional emission control measures and different mete-
orological conditions. Third, we used the Weather Research
and Forecasting Model and Community Multiscale Air Qual-
ity model to reproduce and simulate the air quality under
different meteorological conditions and emission scenarios.
Finally, based on a zero-out approach, an integrated and de-
composed attribution analysis of PM2.5 abatements in Bei-
jing was developed to quantify the impacts of local pollution
control, surrounding emission reductions, and meteorologi-
cal changes. The study also identified the key point of next
steps for air pollution control, which would be beneficial for
future policymaking.

2 Methodology and data

A model-based decomposition attribution analysis of PM2.5
abatements in Beijing during 2013–2017 and 2016–2017 was
developed under the framework shown in Fig. 1. First, we
used the observation data from 12 national observation sta-
tions in Beijing to review the air quality during 2013–2017,
especially the monthly PM2.5 concentrations in this period.
The contributions of total PM2.5 abatements in Beijing in
2017 were decomposed into three basic parts, including me-
teorology change, surrounding emission control, and local
emission control. Then, we used the WRF-CMAQ (Weather
Research and Forecasting Model and Community Multiscale
Air Quality) modelling system and observed PM2.5 con-
centrations to quantify the contributions of these three fac-
tors. To further evaluate the effect of local control policies,
we divided the Beijing Action Plan into seven specific pol-
icy types, estimated the corresponding emission reductions,
and updated the emission inventory during 2013–2017 based
on Beijing’s local emission inventory (BJ-EI, described in
Sect. 2.2) and the framework of the MEIC model (Zhang et
al., 2007; http://www.meicmodel.org/, last access: 30 August
2018). The contributions from local emission control to the
PM2.5 air quality improvements in Beijing were also decom-
posed into specific measures with the WRF-CMAQ model
and measure-related sensitivity experiments.

2.1 Ground-based and satellite-based observational
data

The study first reviewed the air quality in Beijing from 2013
to 2017 with both ground observation data and satellite ob-
servation data. Since 2012, Beijing has maintained an auto-
mated air quality monitoring network with 35 stations spa-
tially distributed in the 16 administrative districts and coun-
ties (the specific locations of the air quality monitors are
shown in the Supplement, Fig. S1). Since 2013, hourly con-
centrations of SO2, NO2, CO, PM2.5, PM10, and O3 have
been continuously measured and recorded by Beijing’s Envi-
ronment Protection Bureau (EPB). In this study, we reviewed
the changes in SO2, NO2, CO, O3, PM2.5, and PM10 in Bei-
jing annually during 2013–2017 and analysed the monthly
PM2.5 concentrations during this period. The hourly obser-
vation data we used were from the 12 national observation
stations in Beijing, which are included among the above 35
stations (Fig. S1).

Satellite observation data can provide the objective ev-
idence of the emission reductions and the air quality im-
provements. Based on satellite observations, we analysed
the changes of tropospheric vertical column NO2, bound-
ary layer SO2, and aerosol optical depth (AOD) in Beijing
during 2013–2017 to back up the estimated emission trends
and reductions (Sect. 3.5). Based on the Ozone Monitor-
ing Instrument (OMI) sensor, the NO2 tropospheric verti-
cal column density product, DOMINO, is produced by the
Royal Netherlands Meteorological Institute (KNMI); and the
SO2 boundary layer vertical column density product, OMI
SO2, is produced by NASA. The daily AOD observation
data comes from Terra and Aqua, based on the MODIS
sensor. To reduce uncertainties in the satellite-based eval-
uation, DOMINO NO2 and OMI SO2 columns with cloud
fraction higher than 0.3 and surface reflectance higher than
0.3 were discarded. Based on our previous research and
methods (Zheng et al., 2016), we estimated the ground-level
PM2.5 concentrations in Beijing using the satellite-derived
AOD data.

To evaluate the accuracy of the PM2.5 composition simula-
tion, we collected the PM2.5 composition data from the Sur-
face PARTiculate mAtter Network (SPARTAN, https://www.
spartan-network.org/, last access: 4 February 2019). SPAR-
TAN is a global, long-term project that observed and anal-
ysed the particulate matter mass, water-soluble ions, black
carbon, and metals since 2013 (Snider et al., 2015). Ma-
jor SPARTAN measurements include the Air Photon three-
wavelength integrating nephelometer and the Air Photon
SS4i automated air sampler. SPARTAN monitors are located
in nearly 20 highly populated regions in the world, such
as Beijing, Hanoi, Singapore, Dhaka, Pretoria, Toronto, and
Bondville. Detailed measurements and site information can
be found in Snider’s research (Snider et al., 2015, 2016).
In this research, we used the reconstructed PM2.5 specia-
tion data in the Beijing site (located in the Department of
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Figure 1. Methodological framework for the decomposition analysis of improved PM2.5-related air quality in Beijing during 2013–2017.

Earth System Science, Tsinghua University) (https://www.
spartan-network.org/beijing-china, last access: 4 February
2019) to validate the model simulation results of PM2.5 com-
positions and to verify the variation of PM2.5 compositions
in Beijing during 2013–2017. Additionally, we collected the
observational PM2.5 compositions from the reported research
(Shao et al., 2018) to verify the simulated variations of PM2.5
compositions in the CMAQ model. In Shao’s research, the
multi-size PM samples were observed and analysed at an ur-
ban site at Beijing Normal University, and the chemical com-
position changes from January 2013 to the winter of 2016–
2017 in Beijing were compared.

2.2 Estimates of local emission reduction from specific
control measures

In this study, the anthropogenic emission inventory of Bei-
jing was provided by the Beijing Municipal Environmen-
tal Monitoring Center (BMEMC). Based on the bottom-up
method, the BMEMC developed a high-resolution emission
inventory for Beijing (BJ-EI) of 2013 and 2017. BJ-EI basi-
cally had the same source classification as the MEIC model
(described in Sect. 2.3); however, the investigation and calcu-
lation process of BJ-EI were conducted at the county level,
and those of MEIC were conducted at the provincial level.
The power, heating, industry (such as cement, iron, steel,
chemical industry, manufacturing industry), and most sol-
vent use (such as vehicle paint, ink, paint, and coating) sec-
tors were treated as point sources, with a higher accuracy of
emission facility locations. In addition, fugitive dust emis-
sions, including bare soil dust, road dust, and construction
dust, were added in BJ-EI but were missing in the MEIC
model because of the lack of activity rate data. More detailed
comparisons of BJ-EI and the MEIC model can be found
in Table S1. Therefore, the spatial distribution and emission
source allocation of BJ-EI were more accurate than those
of the MEIC model, which can significantly improve the air

quality modelling, especially when modelling with finer res-
olutions (B. Zheng et al., 2017). Meanwhile, more detailed
and objective activity rate, technology distribution, and re-
moval efficacy data at the county level were collected from
BJ-EI, which can largely reduce the uncertainty in estimating
the emission reductions of each local control policy.

Beijing started the air quality protection process in 1998
and has focused most on the control of SO2 and NOx (Lu et
al., 2010; Wang et al., 2012; Zhang et al., 2016). The Chi-
nese government released the APPCAP nationwide in 2013
and committed to reducing PM2.5 pollution for the first time
ever (Zheng et al., 2018b). The APPCAP aimed to reduce the
annual PM2.5 concentrations of the Beijing–Tianjin–Hebei
region by 25 % compared with 2013, and, particularly, the
PM2.5 concentrations of Beijing should be controlled to less
than 60 µg m−3. To fulfil the air quality targets, Beijing re-
leased its own Beijing Action Plan under the framework and
guidance of the APPCAP, which contained much more am-
bitious and stricter control measures than ever before. We
summarized and classified all measures in the Beijing Ac-
tion Plan into seven types, including coal-fired boiler control,
clean fuels in the residential sector, optimize industrial struc-
ture, improved end-of-pipe control, vehicle emission control,
integrated treatment of VOCs, and fugitive dust control. All
the quantifiable control measures were listed in Table 1.

Following our previous studies (Jiang et al., 2015), air pol-
lution control policies and measures could be quantified by
adjusting the emission calculation parameters; then the emis-
sion reduction associated with a single policy can be esti-
mated from the emission difference between before and after
the implementation of this specific policy.

2.3 Regional emission inventory data

The air pollutant emission inventory of Beijing’s surrounding
regions (including Tianjin, Hebei, Henan, Shandong, Shanxi,
and Inner Mongolia) for the period of 2013–2017 was ob-
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Table 1. Summary of emission control measures implemented in the Beijing Action Plan (2013–2017).

Measure
Policy type ID Specific control measures Sectors

1. Coal-fired
boiler control

1-1 By the end of 2017, Beijing had closed the four major coal-fired power plants and con-
structed four great natural gas thermal-power cogeneration centres instead, which reduced
coal use by nearly 8.6 million metric tons in total.

Power and heating

1-2 Beijing made great efforts to renovate the coal-fired facilities with capacities of less than
25 MW in urban districts and 7 MW in the whole city. A total capacity of 27 300 MW
of coal-fired boilers were eliminated or replaced by clean fuels such as natural gas and
electricity. Coal use was reduced by more than 8.5 million metric tons during this process.

Industry

2. Clean fuels
in the residential
sector

2-1 Through cutting down non-peak household power prices and establishing new gas heating
systems, approximately 900 000 households in Beijing were converted from using coal to
using gas or electricity, and coal use was reduced by a total of 2.1 million metric tons.

Residential

2-2 The burning of biomass, such as wood and crops, was thoroughly forbidden by the end of
2016.

Residential

3. Optimize in-
dustrial structure

3-1 During 2013 to 2017, Beijing phased out a total of 1992 large high-pollution enterprises
in the chemical engineering, furniture manufacturing, printing, and non-metal mineral
product industries; furthermore, three-quarters of the cement industry was eliminated.

Industry

3-2 In the last 5 years, especially since 2016, Beijing has made great efforts to eliminate the
small, clustered, and polluting factories that cannot meet efficiency, environmental, and
safety standards, and a total of 11 000 such factories were managed or eliminated.

Industry

4. Improved end-
of-pipe control

4-1 Since 2013, a total of 468 projects involving cleaner production and technological up-
grades for high-pollution industrial sectors were carried out by the government. During
this process, Beijing has gradually retrofitted all cement factories to achieve thorough
denitrification and degassing and has enhanced the desulfurization retrofitting of the non-
metal mineral product and chemical engineering industries.

Industry

4-2 Beijing first promoted low-nitrogen-burning (LNB) combustion for all industrial sectors
in 2013, and the LNB transformation of nearly 21 000 MW of gas-fired boilers and oil-
fired boilers has been completed.

Industry

5. Vehicle emis-
sion control

5-1 (1) During 2013 to 2017, Beijing retired a total of 2 167 000 old vehicles, and all “yellow-
labelled” cars (gasoline and diesel cars that failed to meet Euro I and Euro III standards)
were eliminated completely by 2017. (2) In March 2017, Beijing completely implemented
the China 6/VI fuel quality standard, which is one of the most tightened emission stan-
dards in the world. (3) A total of 51 000 taxis completed the replacement of three-way
catalytic converters, and 17 000 heavy-duty diesel vehicles were equipped with wall flow
particle traps. (4) In September 2017, all out-of-city diesel vehicles with lower emission
standards than China III were forbidden to travel within the sixth ring road.

On-road transportation

5-2 (1) By the end of 2016, all off-road vehicles were required to comply with “Limits and
measurement methods for exhaust pollutants from diesel engines of non-road mobile ma-
chinery (China III, IV)”. (2) Since 2017, the use of heavily polluting off-road vehicles has
been restricted in the six major urban districts and Tongzhou district.

Off-road transportation

6. Integrated
treatment of
VOCs

6-1 Beijing started to eliminate organic solvent coatings, bituminous waterproof materials,
and organic painted furniture manufacturing in 2013. Meanwhile, Beijing promoted the
use of high-solids and waterborne paints, which contain much fewer organic chemicals,
in machine manufacturing, printing, coating, and automobile repair sectors.

Solvent use

6-2 During 2013 to 2017, the Yanshan company, the only petrochemical industry enterprise
in Beijing, completed seven extensive VOC control projects, such as the innovation of
sealing and defocusing technology, the detection and repair of leakage points, and the
specialized management of refined oil production and storage areas.

Industry

7. Fugitive dust
control

7-1 Beijing increased the quality and frequency of the road cleaning process. By the end of
2017, a mechanized cleaning process was adopted in an area of 90 580 000 m2, accounting
for 88 % of the total urban road area.

Fugitive dust

7-2 Beijing shut down a total of 310 concrete mixing plants and updated over 20 000 cinder
block transporters. Additionally, more than 1200 construction sites were equipped with a
video monitoring system at the exits and entrances.

Fugitive dust

7-3 By the end of 2015, Beijing completed an afforestation project in advance and afforested
nearly 700 km2 in nearby plain areas.

Fugitive dust
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tained from the MEIC model and Zheng’s updating work
(Zheng et al., 2018b). MEIC is a bottom-up emission in-
ventory model developed for China by Tsinghua University,
covering 31 provinces in China and the year range of 1990
up to now. More than 700 emission sources were developed
in the MEIC model. The methodologies and data on which
the MEIC are based, as well as the continuous updating pro-
cess of pollutant emission factors, have been introduced in
our previous studies (Q. Zhang et al., 2007; Liu et al., 2016;
Lei et al., 2011; Li et al., 2014, 2017a, b; Shen et al., 2015;
Hong et al., 2017; Qi et al., 2017; B. Zheng et al., 2017).
For the updated emission inventory and emission reductions
of the surrounding regions, we referred to our previous work
(Zheng et al., 2018b). In their work, Zheng et al collected the
latest Chinese energy statistics data from the National Bu-
reau of Statistics, the industrial production and technology
penetration data, and the unpublished data from the Ministry
of Ecology and Environment. Then they estimated and up-
dated China’s anthropogenic emissions from 2010 to 2017
under the framework of the MEIC model. Particularly, they
calibrated the emission calculation parameters (such as tech-
nology penetrations and removal efficiencies) in major sec-
tors, such as power, cement, steel, and iron, of each province
based on emission control policies. Based on their updated
China anthropogenic emission inventory, we collected and
analysed the detailed sectoral emission reductions and trends
of Beijing’s surrounding regions during 2013–2017.

2.4 WRF-CMAQ model

2.4.1 Model configuration

In this work, WRFv3.8 and CMAQ 5.1 were used to build up
the air quality modelling system. The WRF model provided
the meteorological conditions, while the CMAQ model sim-
ulated the air quality and main pollutant concentrations.

For the simulation area, three nested domains were de-
signed in this study (Fig. S2), with a horizontal resolution
of 36 km× 36 km, 12 km× 12 km, and 4 km× 4 km, respec-
tively. The first domain covered the entire China area and
some parts of south and east Asia; the second one covered
the majority of eastern and northern China; and the third one
focused on Beijing and its surrounding regions, including the
municipality of Tianjin and the provinces of Hebei, Henan,
Shandong, Shanxi, and Inner Mongolia. To reduce the un-
certainty of meteorological boundary conditions, the simula-
tion size of the WRF model was three grid cells larger than
that of the CMAQ model in each domain. The vertical res-
olution was designed as 23 sigma levels from the surface to
tropopause (about 100 mbar) for the WRF simulation (with
10 layers below 3 km), while it collapsed into 14 chemical
transport model layers by the Meteorology-Chemistry Inter-
face Processor (MCIP). The 14 sigma levels for the CMAQ
model vertical resolution were 1.000, 0.995, 0.988, 0.980,

0.970, 0.956, 0.938, 0.893, 0.839, 0.777, 0.702, 0.582, 0.400,
0.200, and 0.000.

For the WRF model configuration, we chose the New God-
dard scheme (Chou et al., 1998) and the rapid radiative trans-
fer model (RRTM; Mlawer et al., 1997) for shortwave and
longwave radiation options, the Kain–Fritsch cloud param-
eterization (version 2, Kain, 2004), the ACM2 PBL scheme
(Pleim, 2007), the Pleim–Xiu land-surface scheme (Xiu and
Pleim, 2001), and WSM6 cloud microphysics (Hong and
Lim, 2006). Analysis nudging, observational nudging, and
soil nudging were adopted, and FDDA data were from the
US National Centers for Environmental Prediction (NCEP,
http://rda.ucar.edu/datasets/, last access: 16 August 2018),
Automated Data Processing surface (ds461.0) and upper
(ds351.0) air data. The meteorological initial and boundary
conditions were derived from the final analysis data (FNL).
We made a continuous meteorology simulation during 2013–
2017, with a 10 d spin-up before this period.

For the CMAQ model configuration, we applied the CB05
as a gas-phase chemical mechanism and AERO6 as the par-
ticulate matter chemical mechanism. The online computation
of photolytic rates was adopted using the simulated aerosol
and ozone concentrations. The chemical initial and bound-
ary conditions of the first domain were interpolated from the
output of the GEOS-Chem model (Bey et al., 2001; Geng et
al., 2015). We firstly simulated a complete time series of all
pollutant’s concentrations during 2013–2017 (as base cases)
and then modelled the 18 sensitivity experiments (described
in Sect. 2.5). A 10 d spin-up period was adopted for each sen-
sitivity simulation to mitigate the initial condition impacts.
To make the analysis and evaluation more comprehensive,
we simulated all sensitivity scenarios for the whole year in
cases where the severe pollution period was missing. Similar
configurations for the WRF and CMAQ model were applied
in our previous studies and exhibited good agreement with
observations (B. Zheng et al., 2015; B. Zheng et al., 2017).

For the emission inputs of the model system, the an-
thropogenic emission inventory for Beijing was taken from
BMEMC, and the inventories for other regions in China
were provided by the MEIC model, which has been up-
dated to the 2017 level based on Zheng’s work (Zheng et
al., 2018b). Emissions for other Asian countries were derived
from the MIX emission inventory (Model Inter-comparison
Study Asia Phase III, MICS-ASIA III; Li et al., 2017a). The
biogenic emissions were taken from the Model of Emission
of Gases and Aerosols from Nature (MEGAN v2.1). For
the dust emission, bare lands dust was calculated by the in-
line windblown dust in the CMAQ model. As Sect. 2.2 de-
scribed, other dust sources, such as road dust and construc-
tion dust, were added in BJ-EI, while they were missed in
the MEIC model. The lack of fugitive dust in the emission
inventory brought uncertainty of air quality simulation, es-
pecially for the PM10 simulation in other regions (discussed
in Sect. 2.4.2).

Atmos. Chem. Phys., 19, 6125–6146, 2019 www.atmos-chem-phys.net/19/6125/2019/

http://rda.ucar.edu/datasets/


J. Cheng et al.: A model-based decomposition analysis 6131

2.4.2 Model validation

To evaluate the meteorology results simulated by the WRF
model, we collected the hourly observed meteorology data
from the Computational and Information Systems Labora-
tory at the National Center for Atmospheric Research in
Boulder (NCAR, https://rda.ucar.edu/, last access: 16 Au-
gust 2018) and calculated the mean bias (MB), mean error
(ME), correlation coefficient (Corr), root mean square er-
ror (RMSE), normalized mean bias (NMB), and normalized
mean error (NME). The evaluation results showed that the
simulation basically reproduced the meteorological condi-
tions in 2013 and 2017, and the temperature simulation es-
pecially featured a high accuracy. The monthly evaluation
results of the simulated temperature, relative humidity, wind
speed, and wind direction for Beijing in 2013 to 2017 are
shown in Table S2a–f.

To evaluate the pollutant concentrations simulated by the
CMAQ model, we collected the hourly observed major pol-
lutant concentration data from the Beijing Municipal Envi-
ronmental Protection Bureau. The decrement of the PM2.5
concentration is the most important target in APPCAP, as
well as the major pollutant this research focused on. We
emphatically analysed the accuracy of PM2.5 simulations
and listed the monthly descriptive statistics (MB, ME, Corr,
RMSE, NMB, and NME) of the hourly observational PM2.5
and the CMAQ model simulation for 12 national stations in
Beijing during 2013–2017 (Table S3a). The time series of
PM2.5 from observations and CMAQ simulations in three
base cases (EL13S13M13,EL16S16M16, and EL17S17M17, de-
scribed in Sect. 2.5) for Beijing are shown in Fig. 2. Further-
more, we calculated the annual descriptive statistic charac-
ters of the observational and simulated PM2.5 with other five
major pollutants (SO2, NO2, PM10, CO, and O3) in Beijing
during 2013–2017, which can be found in Table S3b. The
time series and evaluation results indicated that the CMAQ
model and simulation results in this work can reproduce the
temporal and spatial distribution of air pollutants in Beijing
and its surroundings relatively well. As for the simulated
PM2.5 of 2017, the monthly Corr of PM2.5 concentrations
varied from 0.53 (in May) to 0.89 (in October), and the an-
nual Corr of PM2.5 concentrations varied from 0.65 (in 2016)
to 0.81 (in 2014). The NMB and NME of monthly PM2.5
simulations were±45 % and±55 %, respectively. According
to the observation data, the annual average PM2.5 concen-
trations in Beijing decreased by 31.5 µg m−3 from 2013 to
2017, while the simulated PM2.5 decreased by 32.8 µg m−3

(Table 2). Compared with 2016, the observed and simulated
PM2.5 decreased by 14.9 and 16.6 µg m−3, respectively (Ta-
ble 2). The evaluation results suggested that the modelling
system in this work can be used to quantify and analyse
the attribution of PM2.5 mitigation in Beijing. As for the
simulation results of other pollutants in Beijing, the Corr
varied from 0.61–0.74 for SO2, 0.59–0.68 for NO2, 0.62–
0.78 for CO, 0.64–0.74 for O3, and 0.62–0.74 for PM10 (Ta-

Figure 2. Comparison of observed (blue) and CMAQ-simulated
(red) daily mean PM2.5 concentrations over Beijing in 2013 (a),
2016 (b), and 2017 (c). Observation data were obtained and aver-
aged from 12 national observation stations in Beijing. Simulated
concentrations were extracted from the grids corresponding to the
station locations.

ble S3b), which was acceptable for the research. The SO2
simulation was overestimated in the five years, especially
during 2013–2015, which indicated the SO2 emission in BJ-
EI might be higher than the reality. The added fugitive dust
emission (road and construction dust) in BJ-EI has improved
the PM10 simulation of Beijing noticeably, with an overes-
timation range of 4–12 % (Table S3b). However, the PM10
simulation of other cities in the third domain was under-
estimated (−8 %)–(34 %), especially in some heavy indus-
try cities such as Tangshan (−34 %), Baoding (−25 %), and
Handan (−29 %). This might be attributed to the lack of con-
struction and road dust emissions in these regions, as well as
the uncertainty of the dust model (Todd et al., 2008; Foroutan
et al., 2017). It might introduce the uncertainty of simula-
tion, but, given that our research was focused on the attribu-
tion analyses of anthropogenic emission changes in Beijing,
this uncertainty was relatively small. The O3 was underes-
timated in this WRF-CMAQ model system, with the range
of (−8.3 %)–(−22.6 %). The rough vertical layers, the un-
derestimation of nature source emissions, the defect of upper
boundary simulation in the regional model, and the uncer-
tainties of VOC (volatile organic compound) emission inven-
tories might all lead this underestimation.

Besides PM2.5 concentrations, we also evaluated the sim-
ulated PM2.5 compositions. We compared the PM2.5 com-
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positions of the observations from the Beijing site, SPAR-
TAN, and the simulations from the same grid, which can
be found in Table S4. Generally speaking, secondary inor-
ganic aerosol (SIA) was overestimated in most periods (0.1–
56.6 %), especially for the nitrate (NO−3 ) simulation, which
overestimated 6.56–89.9 %. Organic matter (OM) was under-
estimated in most periods, with the underestimation range
of (−3.0 %)–(−41.8 %). This might be caused by the miss-
ing mechanism and insufficient simulation of secondary or-
ganic aerosol (SOA) formulations in the CMAQ model. The
NMB of simulated and observed black carbon (BC) varied
from (−52.9 %) to (38.2 %). Similar evaluation results can
be found in Weagle’s research (Weagle et al., 2018), where
he compared the GEOS-Chem simulation with SPARTAN
observation data, with an average 45.7 % overestimation of
SIA, −58.9 % underestimation of BC, and −19.2 % under-
estimation of OM. However, the variation trends of simu-
lated PM2.5 compositions were basically consistent with the
SPARTAN data; both had the remarkable decrement in OM
and increment in NO−3 . In Shao’s observational results, the
SO2−

4 proportion in the winter of 2016–2017 in Beijing re-
duced by 11 % compared with January 2013, while NO−3
and NH+4 proportions increased by 77.9 % and 47.3 % (Shao
et al., 2018). And in our research, the relative change ratio
of SO2−

4 , NO−3 , and NH+4 proportions in Beijing from Jan-
uary 2013 to the winter of 2016–2017 were−29.1 %, 89.2 %,
and 11.7 %, respectively. In general, the simulated composi-
tions basically captured the variations in observation results,
which can support the reasonable analyses of the chemical
composition changes.

2.5 Scenario design and decomposition analysis

To decompose the attribution of PM2.5 abatements in Bei-
jing from 2013 to 2017 and from 2016 to 2017, we set up
18 sensitivity simulations based on a zero-out approach and
quantified the contributions of meteorology changes, emis-
sion reductions in surrounding areas, and seven types of lo-
cal emission control policies. Given that the nonlinearity be-
tween the response of PM2.5 concentrations and the meteo-
rology or emission changes, we discussed uncertainties and
limitations in Sect. 3.5. The description and details of all sce-
narios were listed in Table 2, and the direct simulation results
were listed in Table 2, under the column “Simulated PM2.5
(µg m−3)”.

All scenario cases were labelled as ELiSjMk . Mk(k)

represents the meteorological period the case adopted and
ELiSj (i,j) represents the emission period. Total emission in-
ventories of China consisted of two parts, the BJ-EI from
BMEMC and the regional (all parts of China except for
Beijing) emission inventories from the MEIC model. The
adopted emission periods of these two parts were labelled
as Li(i) and Sj (j), respectively.

EL13S13M13, EL16S16M16, and EL17S17M17 were three
base cases, driven by the actual emission inventories and me-

teorology of 2013, 2016, and 2017, respectively, to repro-
duce the air quality of the corresponding year. EL17S17M13
and EL17S17M16 were designed to investigate the impact of
meteorology. These two cases were driven by varying meteo-
rological conditions (meteorology of 2013 and 2016, respec-
tively) and the same emission inventory (for the year 2017).
EL17S13M17 and EL17S16M17 were designed to quantify the
impact of surrounding emission reduction during 2013–2017
and 2016–2017. In these two cases, the emission inventory of
Beijing was set to the 2017 level, while the regional emission
inventory was set to the 2013 and 2016 levels, respectively.

Another 14 simulations were designed to quantify the
air quality improvements contributed by seven types of lo-
cal control policies during two periods. Cases for 2013–
2017 and 2016–2017 were labelled as ELpiS17M17 and
ELqiS17M17, respectively, where i represents the number of
each policy (described and listed in Table 1). The meteoro-
logical conditions and regional emission inventories of these
14 cases were set to 2017. For each simulation, emission re-
ductions introduced by the corresponding policy type were
added to the 2017 baseline, which is the equivalent of “turn-
ing off” this type of policy during this period. And then the
derived emission inventory was applied to drive the corre-
sponding air quality modelling.

A linear additive relationship was assumed among all con-
tributors to perform a decomposition analysis, and the simu-
lated contributions of all sensitivity cases were then normal-
ized by the difference in observed PM2.5 concentrations from
2013 to 2017 and from 2016 to 2017. The normalization pro-
cess of the 2013–2017 period was calculated by the follow-
ing equations, while the simulated results for the period of
2016–2017 can be normalized with the similar process.

SCon(M)= SPM2.5(EL17S17M13)−SPM2.5(EL17S17M17), (1)
SCon(S)= SPM2.5(EL17S13M17)−SPM2.5(EL17S17M17),

(2)
SCon(pi)= SPM2.5(ELpiS17M17)−SPM2.5(EL17S17M17), (3)

NCon(M)= (PM2.5OBS2013−PM2.5OBS2017)

×
SCon(M)

SCon(M)+SCon(S)+
∑7

i=1SCon(pi)
, (4)

NCon(S)= (PM2.5OBS2013−PM2.5OBS2017)

×
SCon(S)

SCon(M)+SCon(S)+
∑7

i=1SCon(pi)
, (5)

NCon(pi)= (PM2.5OBS2013−PM2.5OBS2017)

×
SCon(pi)

SCon(M)+SCon(S)+
∑7

i=1SCon(pi)
, (6)

where SCon(M) represents the simulated contribution of me-
teorology change during 2013–2017, which equals the bal-
ance of simulated PM2.5 (µg m−3) from case EL17S17M13
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and case EL17S17M17. Similarly, SCon(M) and SCon(pi)

represent the simulated contributions of regional emission
reductions and each local control policy type. NCon(M) rep-
resents the normalized contribution of meteorology change
during 2013–2017, which equals the product of the observa-
tional PM2.5 balance (from 2013 to 2017) and the proportion
of simulated meteorology contribution (in the simulated con-
tributions of all factors). Similarly, NCon(M) and NCon(pi)
represent the normalized contribution of regional emission
reductions and each local control policy type.

3 Results and discussion

3.1 Observed changes in surface air quality in Beijing
during 2013–2017

In 2013, air pollution was the major environmental problem
in Beijing and its surrounding regions (Zhang et al., 2016).
In addition to the severe and persistent haze events, the an-
nual mean PM2.5 concentration was 89.5 µg m−3 in Beijing.
Furthermore, the concentrations of other major air pollutants
were also at fairly high levels, with 56.0 µg m−3 for NO2,
26.5 µg m−3 for SO2, 183.4 µg m−3 for O3 (the statistic refers
to the annual average of daily maximum 8 h sliding, 90th per-
centile concentration), and 3.4 mg m−3 for CO (the statistic
refers to the annual average of daily 24 h, 95th percentile con-
centration) (BMEP, 2014).

During 2013–2017, the annual average concentrations of
SO2, NO2, PM2.5, and PM10 decreased steadily in Beijing
(Fig. S3a). SO2 had the most significant decrease rate of
−69.8 % (Fig. S3b), indicating the great effectiveness of the
clean air actions on SO2 emission control. PM2.5 had the sec-
ond greatest decrement of 35.2 %, and the annual concentra-
tion of PM2.5 in 2017 was 58 µg m−3, overfulfilling the air
quality targets in the APPCAP.

Although the annual average PM2.5 concentrations de-
creased remarkably during 2013–2017, the monthly concen-
tration varied substantially in different years, as shown in
Fig. 3. Compared with the 2013 level, the average PM2.5
concentrations of each month in 2017 all had a notable de-
cline and presented a similar trend from July to December.
However, compared with the 2016 level, the PM2.5 pollu-
tion in January and February was more severe than in 2017,
while it noticeably improved after October and decreased by
nearly 66.3 % in December (from 130.7 µg m−3 in 2016 to
44.0 µg m−3 in 2017). The monthly PM2.5 concentrations in
November and December in 2016 were also much higher
than those in 2013. A heavy PM2.5 pollution episode oc-
curred in the autumn of 2016 and the winter of 2016–2017.
However, the PM2.5 concentrations noticeably decreased af-
ter September in 2017 compared with both 2013 and 2016.
The observed PM2.5 trends indicate that the emission trend
and intensity are major factors in the variation in PM2.5 con-
centrations, while the meteorology changes also play an im-

portant role. The quantification of the contributions of emis-
sion control and meteorology changes will benefit numerous
future applications.

3.2 Attribution of the 2013–2017 emission reduction in
Beijing to specific measures

Based on the MEIC model and the detailed local bottom-
up emission inventory, Beijing’s atmospheric emissions were
updated by year and by sector, as shown in Fig. 4. Further-
more, the attribution of emission reductions in Beijing to
specific control measures during 2013–2017 and 2016–2017
was displayed in Fig. 5.

The major air pollutant emissions in Beijing in 2013 are
estimated as follows: 95 kt of SO2, 218 kt of NOx , 273 kt of
volatile organic compounds, and 81 kt of PM2.5. The power
and heating sector and the residential sector were the ma-
jor sources of SO2 emissions, accounting for 45.1 % and
40.6 %, respectively. NOx emissions mainly came from mo-
bile sources, which contributed 67.2 %. Solvent use, mobile
sources, and industry made notable contributions to VOC
emissions, accounting for 32.0 %, 23.8 %, and 23.7 %, re-
spectively. Fugitive dust and the residential sector were the
major emitters of PM2.5, with proportions of 48.7 % and
26.2 %. However, the implementation of the Beijing Action
Plan had a significant impact in terms of local emission
reductions. Compared with 2013, Beijing’s anthropogenic
emissions in 2017 were estimated to have decreased by
83.6 % for SO2, 42.9 % for NOx , 42.4 % for VOCs, and
54.7 % for PM2.5. Furthermore, the structure of the emission
proportions also changed. For NOx emissions, transportation
still remained the largest emitter of NOx in 2017 but repre-
sented a much higher proportion in 2017 than in 2013. The
contributions of other sectors, especially power and heating,
decreased. With notable contributions of VOC emission re-
ductions in the residential and industrial sectors, the propor-
tions of these two sectors noticeably decreased in 2017, and
solvent use as well as transportation became the major emit-
ters. For PM2.5, through the effective measures implemented
in the residential, industrial, and power and heating sectors,
these sectors emitted less PM2.5 in 2017 than in 2013, and
the majority of PM2.5 emissions came from fugitive dust.

In general, the power and heating, industry, and residen-
tial sectors exhibited the most notable emission reductions
during 2013–2017. The variations in emissions by sector and
year are mainly attributable to air pollution control policies
and measures. As previously mentioned, seven types of air
pollution control measures were simultaneously contributing
to the emission reduction process. According to our research,
during 2013–2017, coal-fired boiler control and clean fuels
in the residential sector had the most notable effects on SO2
emission reductions and reduced SO2 emissions by 35 and
28 kt, respectively, accounting for 44.0 % and 35.2 % of the
total (Fig. 6a; Table S5). Coal combustion was regarded as
the major source of SO2 emissions in Beijing, where coal

Atmos. Chem. Phys., 19, 6125–6146, 2019 www.atmos-chem-phys.net/19/6125/2019/



J. Cheng et al.: A model-based decomposition analysis 6135

Figure 3. Observed monthly (a) and annual (b) average PM2.5 concentrations in Beijing during 2013–2017.

Figure 4. Changes in anthropogenic emissions of SO2, NOx ,
VOCs, and primary PM2.5 in Beijing during 2013–2017.

was primarily used for residential heating and cooking, coal-
fired boilers, and power plants. The great emission reduction
in SO2 indicated accurate source identification and effective
emission control in the past 5 years. However, we should also
notice that end-of-pipe controls on coal combustion in Bei-
jing have been developed and almost finished recently, leav-
ing little room for further emission reduction. Therefore, the
adjustment and optimization of the energy structure would
be the most effective and dominant pathway for mitigating
coal combustion pollution in the future. According to sev-
eral studies on the source apportionment of PM2.5 in Beijing,
the transportation sector accounted for a major part of PM2.5
pollution in 2013, and its contribution has significantly in-
creased since then (Li et al., 2015, 2017; Hua et al., 2018;
Y. Zhang et al., 2018). Vehicle emission control, including
both on-road and off-road vehicles, was the biggest contribu-
tor to NOx emission reductions with an estimated total reduc-

tion of 44 kt NOx , accounting for 47 % of the total reductions
(Fig. 6a; Table S5). Improved end-of-pipe control reduced the
NOx emissions by 10 kt in total and accounted for 10.3 %
of the total NOx reductions. In view of the widespread con-
version of combustion equipment from coal-based to oil/gas-
based equipment, several measures were taken to improve
the end-of-pipe control in response to the potential increase
in NOx emissions, including the application of low-nitrogen-
burning (LNB) technologies. A large number of gas-fired or
oil-fired boilers, equivalent to 34 000 MV, have been reno-
vated, decreasing NOx emissions by nearly 7.5 kt (Table S5).
Benefitting from the advanced planning of VOC pollution
control and scientific source apportionment, VOC control
measures were also as effective as other pollutant control
measures in Beijing during 2013–2017. Integrated treatment
of VOCs had the most prominent achievement in reducing
VOC emissions, with a reduction of 57 kt and a proportion
of 49.3 % (Fig. 6a; Table S5). Vehicle emission control and
optimize industrial structure also effectively reduced VOC
emissions, accounting for 16.1 % and 11.4 %, respectively
(Fig. 6a; Table S5). For PM2.5 emission control, clean fu-
els in the residential sector, fugitive dust control, coal-fired
boiler control, and optimize industrial structure all made no-
ticeable contributions, which reduced the PM2.5 emissions
by 13, 11, 10, and 6 kt, respectively, and accounted for 90.3 %
of the total (Fig. 6a; Table S5). In recent years, fugitive dust
has gradually become the most dominant source of PM2.5
emissions, but the relevant control measures are considered
less effective than measures focused on coal combustion and
the industry sector. Moreover, as the PM2.5 emissions from
the industry sector and coal combustion have gradually de-
creased and become better managed, fugitive dust, includ-
ing road dust, construction dust, and stock dump dust, has
become the most challenging target for future PM2.5 emis-
sion control. In general, coal-fired boiler control, clean fuels
in the residential sector, optimize industrial structure, and
vehicle emission control made significant contributions to
pollutant emission reductions in Beijing during 2013–2017
overall, while integrated treatment of VOCs and fugitive dust
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Figure 5. Emission reductions of SO2, NOx , VOCs, and primary PM2.5 attributed to seven types of control policies in Beijing for the periods
of 2013–2017 (a) and 2016–2017 (b). The relative contribution of each policy to the total emission reduction is presented on the Y axis. The
number on each bar represents the absolute emission reductions by the relevant control policy.

Figure 6. Changes in anthropogenic emissions of SO2, NOx ,
VOCs, and primary PM2.5 in the areas surrounding Beijing during
2013–2017. The regions include Tianjin, Hebei, Henan, Shandong,
Shanxi, and Inner Mongolia.

control achieved prominent reductions in VOCs and PM2.5
emissions.

To ensure that the national air quality targets of the APP-
CAP could be achieved as scheduled, Beijing implemented
a series of stronger and more targeted pollution control poli-
cies and measures since 2016. For energy structure adjust-

ment, measures associated with clean fuels in the residential
sector were enhanced. A total of 92 000 households in ur-
ban areas and 369 000 households in rural areas converted
the scattered coal-based fuels into clean fuels, close to the
total amount of 2013–2016. For industrial structure adjust-
ment, Beijing strengthened the elimination and management
of small, cluttered, and heavily polluting factories. More than
6500 factories were eliminated during 2016–2017, approach-
ing 1.5 times compared with the total amount during 2013–
2016. During 2016–2017, SO2, NOx , VOCs, and PM2.5 were
estimated to have decreased by 19.6, 29.0, 42.9, and 15.7 kt,
respectively (Table S5). Clean fuels in the residential sec-
tor, coal-fired boiler control, and optimize industrial struc-
ture were the top three most effective local measures dur-
ing this period. In addition, with the enhanced management
of non-point air pollution sources, including fugitive dust,
heavily polluting vehicles, and domestic solvent use, the rel-
evant control measures generated more remarkable emission
reductions in this period than the previous periods. For in-
stance, fugitive dust control was estimated to have decreased
the PM2.5 emissions by 4.7 kt during 2016–2017, represent-
ing 42.5 % of the total PM2.5 emission reductions by fugitive
dust control during 2013–2017.

3.3 Emission reduction in surrounding regions during
2013–2017

According to our previous research (Zheng et al., 2018b),
the implementation of national clean air actions has brought
conspicuous emission reductions in Beijing’s surrounding re-
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gions (including Tianjin, Hebei, Henan, Shandong, Shanxi,
and Inner Mongolia) from 2013 to 2017 (China State Coun-
cil, 2018). Figure 6 showed the updated emission inventory
of Beijing’s surrounding regions by year and sector during
2013–2017.

According to Fig. 6, SO2 and PM2.5 emissions presented
rapid decreasing trends from 2013 to 2017, while the trend
of VOC emissions remained steady with a slight increment.
Compared with 2013, SO2, NOx , and PM2.5 emissions were
estimated to decrease by 59.5 %, 22.9 %, and 36.6 %, re-
spectively, while VOC emissions increased slightly by 0.2 %
(Zheng et al., 2018b). During 2013–2017, the industry and
the power and heating sectors made the most prominent con-
tributions to SO2 emission reductions, which decreased SO2
emissions by 3021 and 2000 kt, respectively, indicating that
the SO2 emissions control measures were quite effective (Cai
et al., 2017; Shao et al., 2018). Reductions in the NOx emis-
sions mainly came from the power and heating sector, with
a reduction of 1541 kt within 5 years. For PM2.5 emission
reductions, industrial sectors were the greatest contributors,
with reductions of 621 and 528 kt. The VOC emissions in the
surrounding regions continued to increase, especially in the
solvent use sectors. During the process of implementing na-
tional clean air actions, the surrounding regions also carried
out several valid measures to control VOC emissions, such
as the supervision and repair of gasoline stations, oil tankers,
and oil transfer processes and the integrated treatment and
management of petrochemical and refinery industries (Hui et
al., 2019). The VOC emissions from the residential and trans-
portation sectors in 2017 decreased by 20.7 %. However, due
to the lack of thorough regulation of chemical industries and
the ineffective end-of-pipe control of solvent use sources, the
total VOC emissions increased slightly in 2017 (Zheng et
al., 2018b).

3.4 Decomposition of PM2.5 concentration changes in
Beijing during 2013–2017

3.4.1 Modelled PM2.5 air quality changes in Beijing
during 2013–2017

According to the base simulation results, the annual average
PM2.5 concentrations of Beijing decreased by 32.8 µg m−3

from 2013 to 2017 and by 16.6 µg m−3 from 2016 to 2017,
which agrees well with the observed decreases (31.5 µg m−3

from 2013 to 2017 and 14.9 µg m−3 from 2016 to 2017).
Although there was a steady decline in PM2.5 concentra-
tions of Beijing during 2013–2017, the trends of PM2.5 com-
positions varied differently. The simulation results of base
cases (which adopted the real meteorology and emissions of
each year) showed that the sulfate (SO2−

4 ) and organic mat-
ter (OM) were the dominant species for the decline in PM2.5
concentrations during 2013–2017, with the decrement of
7.5 µg m−3 (56.6 %) and 9.6 µg m−3 (40.5 %), respectively.
The contribution of SO2−

4 to the total PM2.5 also notice-

ably decreased, from 15.3 % in 2013 to 10.7 % in 2017; and
OM proportion decreased from 27.5 % in 2013 to 26.5 %
in 2017. The rapid decrement of SO2−

4 was consistent with
the remarkable SO2 emission reductions in Beijing during
2013–2017. Along with the effective SO2 emission control
measures, SO2−

4 was basically no longer the key contributor
leading to heavy pollution in Beijing, while the nitrate-driven
haze pollution has become more dominant in Beijing in re-
cent years, especially in the summertime (Li et al., 2018).
The decrement of OM was mainly caused by the promi-
nent emission reductions of primary organic carbon (mainly
from residential burning and other coal combustion sources).
VOC emission reductions also contributed to the OM de-
creasing; however, due to the insufficient simulation of SOA
formulations in the CMAQ model, the contributions of VOC
emission control might be underestimated. In contrast, ni-
trate (NO−3 ) increased in 2014–2016 and kept basically the
same concentration level in 2017 (10.4 µg m−3) as in 2013
(10.9 µg m−3). However, the contribution of NO−3 to the total
PM2.5 increased a lot, from 12.7 % in 2013 to 19.4 % in 2017.
The specific concentration and proportion trends of PM2.5
concentrations can be found in Table S6.

Figure 7 shows the spatial distribution of PM2.5 concentra-
tions in Beijing and the surrounding areas in 2013, 2016, and
2017 (panels a–c), along with the total PM2.5 changes and the
changes due to major contributing factors from 2013 to 2017
(panels d–f) and from 2016 to 2017 (panels g–i). In 2013,
some typical regions, such as southern Beijing and most of
the cities of Tianjin, Tangshan, Baoding, Shijiazhuang, Han-
dan, and Anyang, suffered intense PM2.5 pollution. After
implementing the APPCAP and local air pollution control
policies, severe pollution was mitigated in most regions, al-
though several heavily polluted spots still existed. However,
Beijing had successfully removed itself from the list of heav-
ily polluted areas. According to the base simulation results
(Fig. 7a–c), Beijing, especially the southern area, had the
most notable PM2.5 decrease among all parts of the third
nested simulation domain. The municipality of Tianjin and
the southwestern Hebei province also achieved prominent
abatements in PM2.5 pollution. Based on the spatial distribu-
tions of total PM2.5 changes and changes due to major con-
tributing factors in Beijing (Fig. 7d–i), the control of emis-
sions dominated the PM2.5 changes in both 2013–2017 and
2016–2017; however, the favourable effects of meteorologi-
cal changes during 2016–2017 were much more remarkable.
We further estimated and quantified the contributions of each
factor as follows.

3.4.2 Contribution from changes in meteorological
conditions

According to the simulation results of the base cases and
fixed-emission sensitivity experiments (Tables 2, S6), the
meteorological conditions in 2017 were found to be more
favourable than those in the previous periods, especially
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Figure 7. Changes in CMAQ-simulated annual mean PM2.5 concentrations. (a–c) Base simulations of 2013, 2016, and 2017; (d–f) total
PM2.5 changes and the changes attributed to meteorology and emission variations during 2013–2017; (g–i) total PM2.5 changes and the
changes attributed to meteorology and emission variations during 2016–2017.

2016. During 2013–2017, changes in meteorological con-
ditions contributed 3.8 µg m−3 to the PM2.5 air quality im-
provements, accounting for 12.1 % of the total abatements.
Under the meteorological conditions of 2013 and the emis-
sion level of 2017, the annual average PM2.5 concentration
of Beijing would have decreased from 90 to 62–62.5 µg m−3

and would not have achieved the air quality targets estab-
lished in the APPCAP. During 2016–2017, the favourable
effects of meteorology changes became much more striking
and contributed 4.4 µg m−3, accounting for 29.5 % of the to-
tal PM2.5 abatements from 2016 to 2017. Similarly, under the
meteorological conditions of 2016, the PM2.5 level in Beijing
in 2017 would have decreased to 62.5–63.0 µg m−3, still in
excess of the APPCAP target.

From the perspective of annual average analysis, changes
in meteorology generally had a beneficial effect on air pollu-
tion mitigation in 2017; however, the impact varied greatly in
the monthly analysis. Figure 8 showed the monthly average
simulated PM2.5 concentrations in the two fixed-emission
sensitivity experiments. Compared with the meteorological
conditions of 2013 (Fig. 8a), the meteorological conditions
of 2017 became better in winter, especially in January and
February. Under the anthropogenic emissions of 2017, the
meteorological conditions of January and February 2013

would have increased the PM2.5 concentration by 22.5 % and
37.7 %, respectively. However, the meteorological conditions
of 2017 were worse than those of 2013 in spring and summer,
especially in April, May, and July. The air quality was good
in the first few months of 2016, and the simulation results
also indicated that the meteorological conditions during this
period in 2017 were much worse than those in 2016, increas-
ing the PM2.5 concentrations by 51.6 µg m−3 in January and
28.6 µg m−3 in February (Fig. 8b). However, the conditions
improved in the following months, especially during October
to December. If the meteorological conditions remained the
same as those in 2016, the monthly average PM2.5 concen-
trations of October, November, and December would have
increased by 25.4 %, 58.0 %, and 92.4 %, respectively. It is
worth noting that severe PM2.5 pollution and haze events
always occur in winter in North China; therefore, remark-
able improvements in the meteorological conditions in Jan-
uary, February, November, and December would contribute
greatly to the mitigation of annual PM2.5 concentrations.
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Figure 8. CMAQ-simulated monthly PM2.5 concentrations in Bei-
jing under different meteorological conditions. The numbers shown
in each panel represent the monthly relative change rates of fixed-
emission simulation results compared with the base simulation re-
sults.

3.4.3 Contribution from local and regional emission
reduction measures

Although the changes in meteorological conditions were
favourable for PM2.5-related air quality improvements in
Beijing, the control of emissions was still the dominant
factor in PM2.5 abatement in recent years and contributed
the reductions of 27.7 µg m−3 (accounting for 87.9 %) and
10.5 µg m−3 (accounting for 70.5 %) in 2013–2017 and
2016–2017, respectively.

According to the simulation results of the regional fixed-
emission sensitivity experiments (Tables 2 and S6), the con-
tributions of regional emission reductions to the PM2.5 abate-
ments in Beijing were 7.1 µg m−3 during 2013–2017 and
2.5 µg m−3 during 2016–2017, accounting for 22.5 % and
16.8 %, respectively. The results indicated that, by imple-
menting the APPCAP, regional provinces and cities around
Beijing achieved notable emission control effects. In partic-
ular, emission reductions in the industry and power sectors
have made striking contributions to PM2.5-related air quality
improvements in regional areas.

In addition to the impacts of meteorology changes and re-
gional emission reductions, the contributions of local emis-
sion control to the PM2.5 abatements in Beijing were es-
timated to be 20.6 µg m−3 (2013–2017) and 8.0 µg m−3

(2016–2017), accounting for 65.4 % and 53.7 %, respec-
tively. According to the results of the measure-related sen-

sitivity experiments (Table S6), we further decomposed the
contributions due to local emission control into each spe-
cific measure. As Fig. 9 shows, during 2013–2017, coal-fired
boiler control made the largest contribution of 5.9 µg m−3,
accounting for 18.7 % of the total decrement. Clean fuels in
the residential sector was the second greatest contributor af-
ter coal-fired boiler control, decreasing PM2.5 concentrations
by 5.3 µg m−3. Measures associated with optimize industrial
structure also effectively reduced PM2.5 concentrations, with
a decrease of 3.2 µg m−3 and a proportion of 10.2 %. Mea-
sures associated with fugitive dust control, vehicle emission
control, improved end-of-pipe control, and integrated treat-
ment of VOCs had relatively minor contributions and reduced
the PM2.5 concentrations in Beijing by 7.3 %, 6.0 %, 5.7 %,
and 0.6 %, respectively, from 2013 to 2017 (Fig. 9a). During
2016–2017, clean fuels in the residential sector, coal-fired
boiler control, and optimize industrial structure were the top
three contributors to the PM2.5 abatements among all local
policies, accounting for 14.1 %, 12.8 %, and 10.1 % of the
total (Fig. 9b). These results highlight the great enhancement
in the control of bulk coal use and the elimination of small,
clustered, and heavily polluting factories during this period.

In summary, the improvement in the PM2.5-related air
quality in Beijing was decomposed, and the results are shown
in Fig. 10. During 2013–2017, meteorology changes, sur-
rounding emission reductions, and local emission control
contributed 3.8, 7.1, and 20.6 µg m−3, respectively, account-
ing for 12.1 %, 22.5 %, and 65.4 %. Coal-fired boiler con-
trol, clean fuels in the residential sector, and optimize indus-
trial structure were the top three contributors among all local
emission control policies. Emission reduction was the most
dominant factor in the air quality improvements in Beijing
during this period. For 2016–2017, the contributions of mete-
orology changes, surrounding emission reductions, and local
emission control were 4.4, 2.5, and 8.0 µg m−3, respectively.
The favourable meteorological conditions during this period
had a remarkable effect, accounting for 29.5 % of the total
pollution reduction. The top three local control measures of
this period were same as those of 2013–2017 but had a differ-
ent order. Clean fuels in the residential sector and optimize
industrial structure made larger contributions.

3.5 Uncertainties and limitations

We built a model-based decomposition framework and at-
tributed the PM2.5 abatements in Beijing during 2013–2017
and 2016–2017; however, certain uncertainties and limita-
tions remain. The major uncertainties and limitations of this
work are discussed below.

3.5.1 Uncertainties of the zero-out approach

Although various methods have been developed to quantify
the source of PM2.5 and evaluate their contributions, such
as receptor-based methods (like CMB and PMF), trajectory-
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Figure 9. Contributions of the seven types of control policies to the PM2.5 abatements in Beijing for the periods of 2013–2017 (a) and
2016–2017 (b). The relative contribution rate of each policy to the total PM2.5 abatements is presented on the Y axis. The number on each
bar represents the normalized absolute PM2.5 abatement by the relevant control policy.

Figure 10. Decomposition of improved PM2.5 air quality in Beijing during (a) 2013–2017 and (b) 2016–2017.

based methods (like PSCF and EEI), and source-oriented
methods (like CAMx-PSAT and CMAQ-ISAM) (Li et al.,
2015), they can hardly consider the meteorology and emis-
sion changes simultaneously. Therefore, the zero-out ap-
proach might be a better choice to attribute the contribution
of local and regional emission control as well as meteorology
changes under one complete decomposition framework. The
zero-out method is also widely used in estimating the contri-
bution of air pollution sources (Lelieveld et al., 2015; Han et
al., 2016; Baker et al., 2016; Q. Zhang et al., 2017; R. Zhang
et al., 2017; Ni et al., 2018).

However, the response of PM2.5 formulation is not linear
to the meteorology and emission changes; thus, the zero-out
approach would introduce extra bias in research. The non-
linear effects of the analysis period of 2013–2017 could be

evaluated by the following equation (Q. Zhang et al., 2017).

Bias= (SCon(M)+SCon(S)+
∑7

i=1
SCon(pi))

− (SPM2.5 (EL13S13M13)−SPM2.5 (EL17S17M17)) , (7)

where SPM2.5 (EL13S13M13) and SPM2.5 (EL17S17M17) rep-
resent the direct simulated PM2.5 concentration of the base
case in 2013 and 2017. The balance of their values is the
actual PM2.5 decrement during 2013–2017 under the mixed
impacts of meteorology change as well as regional and local
emission reductions. The sum of SCon(M), SCon(S), and∑7

i=1SCon(pi) represents a linear result of all contributors
during this period. The extra bias can be estimated as the dif-
ference between the linear addition and the actual decrement.
According to Eq. (7), we estimated biases in the analysis of
2013–2017 were 1.4 µg m−3, accounting for 4.3 %. Similarly,
the absolute and relative biases in the analysis of 2016–2017
were estimated as −0.6 µg m−3 and −3.6 %. Both indicated
the non-linear effects are relatively small and acceptable.
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3.5.2 Uncertainties in emission estimates

The incomplete research and investigation of activity rates,
emission factors, and removal efficiencies would introduce
uncertainties in estimating the emission trends and magni-
tudes, as well as the measure-based emission reductions.

Based on our previous work, the uncertainty of MEIC was
estimated to be ±12 % for SO2, ±31 % for NOx , ±70 % for
CO, ±68 % for VOCs, ±130 % for PM2.5, ±208 % for BC,
and ±258 % for organic carbon (OC) (Zhang et al., 2009;
Zheng et al., 2018a). The larger uncertainty of BC and OC
is mostly because their major emitters are much more scat-
tered and harder to investigate or quantify, such as heavy
diesel vehicles and residential burning. The uncertainty of
the updated emission inventory of China during 2010–2017
was evaluated in Zheng’s work by comparing the emissions
with observations (Zheng et al., 2018b) and reported a good
agreement.

Similarly, we discussed the uncertainty of emission trends
and relative change ratios in BJ-EI. Ground-based, satellite-
based observational data and the estimated emissions form
BJ-EI were all normalized to the base year, 2013. We com-
pared the observational concentration trends of major pollu-
tants with their precursor emissions (Fig. S5). A good agree-
ment was found in the trends of SO2 emission, OMI SO2
column, and surface observational SO2 concentration, with a
decreasing ratio of 83.6 %, 77.6 %, and 69.8 %, respectively
(Fig. S5a), indicating a relatively small uncertainty in SO2
emission estimation. The surface concentration trend during
2016–2017 became flatter than the OMI SO2 columns trend.
This is partly because during this period the surface SO2
emission became gradually steady, while the high-stack SO2
emission reductions became more significant, especially in
regional areas. The NOx emission trend was basically consis-
tent with the variation in NO2 tropospheric vertical column,
decreasing 43.2 % and 40.3 %, respectively, but both were
lower than the surface NO2 concentration trend (Fig. S5b).
This phenomenon might be caused by the meteorology im-
pacts (Uno et al., 2007), chemical reactions of nitrous ox-
ides (Valin et al., 2011), and the overestimation of surface
NO2 observations (Lamsal et al., 2010). Satellite-derived and
surface observational PM2.5 concentrations decreased 36.0 %
and 35.2 % respectively during 2013–2017 in Beijing, and
both agreed with the trends of primary PM2.5 and precur-
sor emissions (Fig. S5c). Among all precursors, the decreas-
ing rate of SO2 was more significant and rapid than that of
NOx and HN3, which was consistent with the simulation re-
sults in which the proportion of sulfate in PM2.5 noticeably
decreased while the contributions of nitrate and ammonium
increased (Fig. S4). The decrement of VOC emissions con-
tributed to PM2.5 abatements by decreasing OM. A similar
phenomenon was also reported in previous research (Shao et
al., 2018). In general, the relatively good coherence of emis-
sion and observation variations indicated that the BJ-EI basi-

cally well quantified the actual emission trends and variations
in Beijing during 2013–2017.

Estimation of measure-based emission reductions is an-
other major aspect of introducing uncertainty. However, the
uncertainty of this aspect is hard to quantify. Emission con-
trol measures can have independent or integrated impacts on
activity rate, emission factor, technology evolution, and end-
of-pipe removal efficiency, which are all sensitive to emis-
sion calculation and remaining large uncertainty. Coal-fired
boiler control was the most explicit control policy to quan-
tify, for the detailed and accurate information of unit-based
power plants and facility-based boilers. The amount of elimi-
nated coal, newly increased alternative clean energy, the evo-
lution of emission factors, and the removal efficiency of each
boiler were collected in sufficient amounts, which can largely
lower the uncertainty of the reduction estimation. Similar
to coal-fired boiler control, improved end-of-pipe control
mainly focused on the heavily polluted manufacturing facto-
ries and gas/oil-fired boilers. The facility-based information
and the accurate eliminated capacities make the uncertainty
relatively small. As for the policy of clean fuels in the resi-
dential sector, which reduced residential coal use, the elimi-
nated traditional biofuels were collected at the county level;
thus the uncertainty of activity rate estimation was relatively
small. However, along with the promotion of coal quality
(such as the lower sulfur and ash content) and the evolution
of domestic burning equipment, the improvement of emis-
sion factors was hard to estimate, especially in the rural ar-
eas, which would introduce large uncertainty. Major limita-
tions of estimating optimize industrial structure reductions
came from the elimination of small, clustered, and polluting
factories. Different from highly polluted enterprises, the spe-
cific information of these scattered factories was hard to in-
vestigate. Although we knew a total of 11 000 such factories
were phased out during 2013–2017, the activity rate, emis-
sion factor, or end-of-pipe control information were ambigu-
ous, which would easily lead to the underestimation or over-
estimation of reductions from this sub-measure. Integrated
treatment of VOCs included the VOC control of the chemi-
cal industry and solvent use sectors. The Yanshan company
is the only chemical factory in Beijing, and the specific in-
formation of this factory made the estimation more reason-
able. However, investigations for the amounts of solvent used
were limited; meanwhile, the lack of emission factor mea-
surements for various solvent-use-related sources also intro-
duced large uncertainty (Li et al., 2017a). Reductions from
fugitive dust control might be the most difficult one to es-
timate, with a larger uncertainty. This policy type contained
the control of road dust and construction dust. Due to the lack
of measurements for the real-time traffic flow, threshold fric-
tion velocities, surface roughness length, the efficiency of the
road cleaning process, and other key parameters for emission
calculation, we estimated the emission reductions from this
sub-measure by the improvements of the cleaning process
adopted ratio and the various road areas, which might not to-
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tally reflect the actual emission change of road dust. For the
construction dust estimation, although we collected the in-
formation of each construction site and stock yard in Beijing,
the indefinite emission process and factors would also create
uncertainties for estimation. In general, emission reductions
from the policies which focused on non-point and scattered
emission sources, such as road dust, small and clustered fac-
tories, and various solvent use sources, are more difficult to
quantify and would cause larger uncertainties. Additional de-
tailed information and real-world measurements might help
to lower these uncertainties.

3.5.3 Other uncertainties

The decomposed analysis was also affected by the inher-
ent WRF-CMAQ uncertainties, as Sect. 2.4.2 discussed. The
missing mechanism and insufficient simulation of SOA for-
mulations in the CMAQ model might lead to the underesti-
mation of the OM, as well as the contribution of VOC emis-
sion control. The rough vertical layers, the underestimation
of nature source emissions, the defect of upper boundary sim-
ulation in the regional model, and the uncertainties of VOC
emission inventories might all lead to the deficiency of O3
underestimation. The lack of construction dust and the un-
derestimation of the in-line windblown dust model might re-
sult in the lower PM10 simulation in other regions. And the
open biomass burning was not included in this study, which
would also introduce certain uncertainties. Given that we fo-
cused more on the decomposed attribution of anthropogenic
emission changes and meteorology impacts, and the simu-
lations of PM2.5 concentrations and compositions basically
captured the temporal and spatial variations, the uncertain-
ties originated from this aspect were relatively small. How-
ever, further studies and efforts should made to improve the
model simulations.

4 Concluding remarks

The remarkable decreases in the annual average PM2.5 con-
centrations in Beijing from 2013 to 2017 and from 2016
to 2017 were the combined results of various factors. In
this study, based on a series of numerical simulation ex-
periments and a decomposed attribution analysis, local air
pollution control policies, surrounding emission reductions,
and favourable meteorological conditions were estimated
to contribute 65.4 % (20.6 µg m−3), 22.5 % (7.1 µg m−3),
and 12.1 % (3.8 µg m−3), respectively, of the total PM2.5
abatements in Beijing (31.5 µg m−3) from 2013 to 2017
and 53.7 % (8.0 µg m−3), 16.8 % (2.5 µg m−3), and 29.5 %
(4.4 µg m−3), respectively, of the total PM2.5 abatements
(14.9 µg m−3) from 2016 to 2017. During 2013–2017, air
pollution control policies had the most dominant effect on
PM2.5 abatements, accounting for nearly 88 %, but the mete-

orological impacts have been considerable since 2016, espe-
cially in the winter of 2016–2017 and the autumn of 2017.

Under the Beijing Action Plan, anthropogenic emissions
were reduced by 83.6 % for SO2, 42.9 % for NOx , 42.4 % for
VOCs, and 54.7 % for PM2.5 compared with the 2013 level.
Under the APPCAP, the areas surrounding Beijing also re-
duced their pollutant emissions by 59.5 % for SO2, 22.9 %
for NOx , and 36.6 % for PM2.5. A measure-by-measure anal-
ysis showed that coal-fired boiler control, clean fuels in the
residential sector, and optimize industrial structure were the
most effective control measures in general for Beijing during
2013–2017 and 2016–2017, both in terms of emission reduc-
tions and PM2.5 pollution mitigation.

The results indicated several options for future air pollu-
tion control in Beijing. The most notable effect of the Beijing
Action Plan mainly came from the control of combustion,
which suggests that power plants, coal-fired boilers, and resi-
dential burning have accounted for the majority of the air pol-
lution sources for a long time. Consequently, Beijing should
continue to optimize the city’s energy structure to achieve
a qualitative improvement in energy consumption. However,
with the progress on air pollution control in Beijing, the con-
tributions of combustion and industry emission control, of
which the sectors and sources are relatively easy to identify
and manage, have gradually decreased, and there is less room
for further improvement. Pollutant emissions from domestic
living, such as transportation, restaurant fumes, and residen-
tial solvent use, have increasingly accounted for larger pro-
portions. Vehicles, VOC emission sources, and fugitive dust
have gradually become the major and most difficult chal-
lenges for Beijing’s future air pollution control. On the one
hand, the government should further apply stronger and more
effective management of non-point pollution sources aris-
ing from the demands for city development, such as cater-
ing enterprises, vehicles, off-road transportation, construc-
tion sites, and the use of solvents and coatings. More re-
sources and investment, more accurate identification, and re-
fined management strategies are needed for these diffuse pol-
lution sources. On the other hand, the support and innovation
of science and technology should be enhanced further, in-
cluding not only high-technology strategies of pollutant re-
moval and equipment renovation but also the understanding
of pollution mechanisms and the identification of pollution
sources. For instance, the scientific source apportionment of
atmospheric particulates, the dynamic update of emission in-
ventories, the application of widespread observation systems,
the construction of pollution forecasts and warning systems,
etc. should be developed further. A support system for air
quality analysis, decision-making, implementation, assess-
ment, and optimization should be established in the future
to make qualitative leaps in environmental protection.
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