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Abstract. Atmospheric inversions have been used to as-
sess biosphere–atmosphere CO2 surface exchanges at vari-
ous scales, but variability among inverse flux estimates re-
mains significant, especially at continental scales. Atmo-
spheric transport errors are one of the main contributors to
this variability. To characterize transport errors and their spa-
tiotemporal structures, we present an objective method to
generate a calibrated ensemble adjusted with meteorological
measurements collected across a region, here the upper US
Midwest in midsummer. Using multiple model configura-
tions of the Weather Research and Forecasting (WRF) model,
we show that a reduced number of simulations (less than 10
members) reproduces the transport error characteristics of a
45-member ensemble while minimizing the size of the en-
semble. The large ensemble of 45 members was constructed
using different physics parameterization (i.e., land surface
models (LSMs), planetary boundary layer (PBL) schemes,
cumulus parameterizations and microphysics parameteriza-
tions) and meteorological initial/boundary conditions. All
the different models were coupled to CO2 fluxes and lateral
boundary conditions from CarbonTracker to simulate CO2
mole fractions. Observed meteorological variables critical to
inverse flux estimates, PBL wind speed, PBL wind direction
and PBL height are used to calibrate our ensemble over the
region. Two optimization techniques (i.e., simulated anneal-
ing and a genetic algorithm) are used for the selection of the
optimal ensemble using the flatness of the rank histograms
as the main criterion. We also choose model configurations
that minimize the systematic errors (i.e., monthly biases) in
the ensemble. We evaluate the impact of transport errors on
atmospheric CO2 mole fraction to represent up to 40 % of

the model–data mismatch (fraction of the total variance). We
conclude that a carefully chosen subset of the physics ensem-
ble can represent the uncertainties in the full ensemble, and
that transport ensembles calibrated with relevant meteorolog-
ical variables provide a promising path forward for improv-
ing the treatment of transport uncertainties in atmospheric
inverse flux estimates.

1 Introduction

Atmospheric inversions are used to assess the exchange of
CO2 between the biosphere and the atmosphere (e.g., Gurney
et al., 2002; Baker et al., 2006; Peylin et al., 2013). The at-
mospheric inversion or “top-down” method combines a prior
distribution of surface fluxes with a transport model to simu-
late CO2 mole fractions and adjust the fluxes to be optimally
consistent with the observations (Enting, 1993). Large uncer-
tainty and variability often exist among inverse flux estimates
(e.g., Gurney et al., 2002; Sarmiento et al., 2010; Peylin et
al., 2013; Schuh et al., 2013). These posterior flux uncertain-
ties arise from varying spatial resolution, limited atmospheric
data density (Gurney et al., 2002), uncertain prior fluxes
(Corbin et al., 2010; Gourdji et al., 2010; Huntzinger et al.,
2012) and uncertainties in atmospheric transport (Stephens
et al., 2007; Gerbig et al., 2008; Pickett-Heaps et al., 2011;
Díaz Isaac et al., 2014; Lauvaux and Davis, 2014).

Atmospheric inversions based on Bayesian inference de-
pend on the prior flux error covariance matrix and the obser-
vation error covariance matrix. The prior flux error covari-
ance matrix represents the statistics of the mismatch between
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the true fluxes and the prior fluxes, but the limited density of
flux observation limits our ability to characterize these er-
rors (Hilton et al., 2013). The observation error covariance
describes errors of both measurements and the atmospheric
transport model. In atmospheric inversions, the model er-
rors tend to be much greater than the measurement errors
(e.g., Gerbig et al., 2003; Law et al., 2008). Additionally,
atmospheric inversions assume that the atmospheric trans-
port uncertainties are known and are unbiased; therefore, the
method propagates uncertain and potentially biased atmo-
spheric transport model errors to inverse fluxes limiting their
optimality. Unfortunately, rigorous assessments of the trans-
port uncertainties within current atmospheric inversions are
limited. Estimation of the atmospheric transport errors and
their impact on CO2 fluxes remains a challenge (Lauvaux et
al., 2009).

A limited number of studies are dedicated to quantify the
uncertainty in atmospheric transport models and even fewer
attempted to translate this information into the impact on the
CO2 mixing ratio and inverse fluxes. The atmospheric Tracer
Transport Model Intercomparison Project (TransCom) has
been dedicated to evaluate the impact of atmospheric trans-
port models in atmospheric inversion systems (e.g., Gurney
et al., 2002; Law et al., 2008; Peylin et al., 2013). These
experiments have also shown the importance of the trans-
port model resolution to avoid any misrepresentation of high-
frequency atmospheric signals (Law et al., 2008). Diaz Isaac
et al. (2014) showed how two transport models with two dif-
ferent resolutions and physics but using the same surface
fluxes can lead to large model–data differences in the atmo-
spheric CO2 mole fractions. These differences would yield
significant errors on the inverse fluxes if propagated into the
inverse problem. Errors in horizontal wind (Lin and Gerbig,
2005) and in vertical transport (Stephens et al., 2007; Ger-
big et al., 2008; Kretschmer et al., 2012) have been shown
to be important contributors to uncertainties in simulated at-
mospheric CO2. Lin and Gerbig (2005), for example, esti-
mate the impact of horizontal wind error on CO2 mole frac-
tions and conclude that uncertainties in CO2 due to advection
errors can be as large as 6 ppm. Other studies have shown
that errors in the simulation of vertical mixing have a large
impact on simulated CO2 and inverse flux estimates (e.g.,
Denning et al., 1995; Stephens et al., 2007; Gerbig et al.,
2008). Therefore, some studies have evaluated the effects
that planetary boundary layer height (PBLH) has on CO2
mole fractions (Gerbig et al., 2008; Williams et al., 2011;
Kretschmer et al., 2012). Approximately 3 ppm uncertainty
in CO2 mole fractions has been attributed to PBLH errors
over Europe during the summertime (Gerbig et al., 2008;
Kretschmer et al., 2012). These studies have attributed the
errors to the lack of sophisticated subgrid parameterization,
especially PBL schemes and land surface models (LSMs).
This led other studies (Kretschmer et al., 2012; Lauvaux and
Davis, 2014; Feng et al., 2016) to evaluate the impact of
different PBL parameterizations on simulated atmospheric

CO2. These studies have found systematic errors of several
ppm in atmospheric CO2 that can generate biased inverse
flux estimates. While there is an agreement that errors in the
vertical mixing and advection schemes can directly affect the
inverse fluxes, other components of the model physics (e.g.,
convection, large-scale forcing) have not been carefully eval-
uated.

Atmospheric transport models have multiple sources of
uncertainty including the boundary conditions, initial condi-
tions, model physics parameterization schemes and parame-
ter values. With errors inherited from all of these sources, en-
sembles have become a powerful tool for the quantification
of atmospheric transport uncertainties. Different approaches
have been evaluated in the carbon cycle community to rep-
resent the model uncertainty: (1) the multi-model ensembles
that encompass models from different research institutions
around the world (e.g., TransCom experiment; Gurney et al.,
2002; Baker et al., 2006; Patra et al., 2008; Peylin et al.,
2013; Houweling et al., 2010), (2) multi-physics ensembles
that involve different model physics configurations gener-
ated by the variation of different parameterization schemes
from the model (e.g., Kretschmer et al., 2012; Yver et al.,
2013; Lauvaux and Davis, 2014; Angevine et al., 2014; Feng
et al., 2016; Sarmiento et al., 2017) and (3) multi-analysis
(i.e., forcing data) that consists of running a model over the
same period using different analysis fields (where perturba-
tions can be added) (e.g., Lauvaux et al., 2009; Miller et
al., 2015; Angevine et al., 2014). These ensembles are in-
formative (e.g., Peylin et al., 2013; Kretschmer et al., 2012;
Lauvaux and Davis, 2014) but have some shortcomings. In
some cases, the ensemble spread includes a mixture of trans-
port model uncertainties and other errors such as the varia-
tion in prior fluxes or the observations used. Other studies
have only varied the PBL scheme parameterizations. None
of these studies have carefully assessed whether or not their
ensemble spreads represent the actual transport uncertainties.

In the last two decades, the development of ensemble
methods has improved the representation of transport un-
certainty using the statistics of large ensembles to charac-
terize the statistical spread of atmospheric forecasts (e.g.,
Evensen, 1994a, b). Single-physics ensemble-based statistics
are highly susceptible to model error, leading to underdis-
persive ensembles (e.g., Lee, 2012). Large ensembles (> 50
members) remain computationally expensive and ill adapted
to assimilation over longer timescales such as multi-year in-
versions of long-lived species (e.g., CO2). Smaller-size en-
sembles would be ideal, but most initial-condition-only per-
turbation methods produce unreliable and overconfident rep-
resentations of the atmospheric state (Buizza et al., 2005).
An ensemble used to explore and quantify atmospheric trans-
port uncertainties requires a significant number of members
to avoid sampling noise and the lack of dispersion of the
ensemble members (Houtekamer and Mitchell, 2001). How-
ever, large ensembles are computationally expensive. Lim-
itations in computational resources lead to restrictions, in-

Atmos. Chem. Phys., 19, 5695–5718, 2019 www.atmos-chem-phys.net/19/5695/2019/



L. I. Díaz-Isaac et al.: Calibration of a multi-physics ensemble 5697

cluding the setup of the model (e.g., model resolution, nest-
ing options, duration of the simulation) and the number of
ensemble members. It is desirable to generate an ensemble
that is capable of representing the transport uncertainties and
which does not include any redundant members.

Various post-processing techniques can be used to cali-
brate or “down-select” from a transport ensemble of 50 or
more members to a subset of ensemble members that repre-
sent the model transport uncertainties (e.g., Alhamed et al.,
2002; Garaud and Mallet, 2011; Lee, 2012; Lee et al., 2016).
Some of these techniques are principal component analysis
(e.g., Lee, 2012), k-means cluster analysis (e.g., Lee et al.,
2012) and hierarchical cluster analysis (e.g., Alhamed et al.,
2002; Yussouf et al., 2004; Johnson et al., 2011; Lee et al.,
2012, 2016). Riccio et al. (2012) applied the concept of “un-
correlation” to reduce the number of members without us-
ing any observations. Solazzo and Galmarini (2014) reduced
the number of members by finding a subset of members that
maximize a statistical performance skill such as the correla-
tion coefficient, the root mean square error or the fractional
bias. Other techniques applied less commonly to the calibra-
tion of the ensembles include simulated annealing and ge-
netic algorithms (e.g., Garaud and Mallet, 2011). All these
techniques are capable of eliminating those members that are
redundant and generating an ensemble with a smaller num-
ber of members that represents the uncertainty of the atmo-
spheric transport model more faithfully than the larger en-
semble.

In this study, we start with a large multi-physics/multi-
analysis ensemble of 45 members presented in Díaz-Isaac
et al. (2018) and apply a calibration process similar to the
one explained in Garaud and Mallet (2011). Two principal
features characterize an ensemble: reliability and resolution.
The reliability is the probability that a simulation has of
matching the frequency of an observed event. The resolution
is the ability of the system to predict a specific event. Both
features are needed in order to represent model errors accu-
rately. Our main goal is to down-select the large ensemble to
generate a calibrated ensemble that will represent the uncer-
tainty of the transport model with respect to meteorological
variables of most importance in simulating atmospheric CO2.
These variables are the horizontal mean PBL wind speed and
wind direction, and the vertical mixing of surface fluxes, i.e.,
PBLH. We focus on the criterion that will measure the relia-
bility of the ensemble, i.e., the probability of the ensemble in
representing the frequency of events (i.e., the spatiotemporal
variability of the atmospheric state). For the down-selection
of the ensemble, we will use two different techniques: sim-
ulated annealing and a genetic algorithm (from now on re-
ferred to as calibration techniques/processes). In a final step,
the ensemble with the optimal reliability will be selected by
minimizing the biases in the ensemble mean. We will eval-
uate which physical parameterizations play important roles
in balancing the ensembles and evaluate how well a pure
physics ensemble can represent transport uncertainty.

Figure 1. Geographical domain used by WRF-ChemCO2 physics
ensemble. The parent domain (d01) has a 30 km resolution, the in-
ner domain (d02) has a 10 km resolution. Contours represent terrain
height in meters. The inner domain covers the study region and in-
cludes the rawinsonde sites (red circles) and the CO2 towers (blue
triangles) locations.

2 Methods

2.1 Generation of the ensemble

We generate an ensemble using the Weather Research and
Forecasting (WRF) model version 3.5.1 (Skamarock et al.,
2008), including the chemistry module modified in this study
for CO2 (WRF-ChemCO2). The ensemble consists of 45
members that were generated by varying the different physics
parameterization and meteorological data. The land surface
models, surface layers, planetary boundary layer schemes,
cumulus schemes, microphysics schemes and meteorologi-
cal data (i.e., initial and boundary conditions) are alternated
in the ensemble (see Table 1). All the simulations use the
same radiation schemes, both long- and shortwave.

The different simulations were run using the one-way nest-
ing method, with two nested domains (Fig. 1). The coarse do-
main (d01) uses a horizontal grid spacing of 30 km and cov-
ers most of the United States and part of Canada. The inner
domain (d02) uses a 10 km grid spacing, is centered in Iowa
and covers the Midwest region of the United States. The ver-
tical resolution of the model is described with 59 vertical lev-
els, with 40 of them within the first 2 km of the atmosphere.
This work focuses on the simulation with higher resolution;
therefore, only the 10 km domain will be analyzed.
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Table 1. Physics schemes used in WRF for the sensitivity analysis.

Parameter Options

Land surface model Noah LSM
Rapid Update Cycle (RUC) LSM
Five-layer thermal diffusion

Planetary boundary
layer (PBL) scheme

Yonsei University (YSU)
Mellor–Yamada–Janjic (MYJ)
Mellor–Yamada–Nakanishi–Niino level 2.5 (MYNN2.5)

Surface layer MM5 similarity
Eta similarity
MYNN surface layer

Cumulus Kain–Fritsch (KF)
Grell 3D (G3D)
No cumulus parameterization

Microphysics WSM 5-class
Thompson et al. (2004)

Shortwave/longwave
radiation physics

Dudhia/Rapid Radiative Transfer Model (RRTM)

Initial and boundary
conditions

North American Regional Reanalysis (NARR)
Global Final Analysis (FNL)

The CO2 fluxes for summer 2008 were obtained from
NOAA Global Monitoring Division’s CarbonTracker version
2009 (CT2009) data assimilation system (Peters et al., 2007;
with updates documented at https://www.esrl.noaa.gov/gmd/
ccgg/carbontracker/, last access: 17 January 2018). The dif-
ferent surface fluxes from CT2009 that we propagate into
the WRF-ChemCO2 model are fossil fuel burning, terrestrial
biosphere exchange and exchange with oceans. The CO2 lat-
eral boundary conditions were obtained from CT2009 mole
fractions. The CO2 fluxes and boundary conditions are iden-
tical for all ensemble members.

2.2 Dataset and data selection

Our interest is to calibrate the ensemble over the US Mid-
west using the meteorological observations available over
this region. The calibration of the ensemble will be done
only within the inner domain. To perform the calibration,
we used balloon soundings collected over the Midwest re-
gion (Fig. 1). Meteorological data were obtained from the
University of Wyoming’s online data archive (http://weather.
uwyo.edu/upperair/sounding.html, last access: 20 July 2018)
for 14 rawinsonde stations over the US Midwest region
(Fig. 1). To evaluate how the new calibrated ensemble im-
pacts CO2 mole fractions, we will use in situ atmospheric
CO2 mole fraction data provided by seven communica-
tion towers (Fig. 1). Five of these towers were part of a
Penn State experimental network, deployed from 2007 to
2009 (Richardson et al., 2012; Miles et al., 2012, 2013;
https://doi.org/10.3334/ORNLDAAC/1202). The other two

towers (Park Falls – WLEF; West Branch – WBI) are part
of the Earth System Research Laboratory/Global Monitoring
Division (ESRL/GMD) tall tower network (Andrews et al.,
2014), managed by NOAA. Each of these towers sampled air
at multiple heights, ranging from 11 to 396 m above ground
level (m a.g.l.).

The ensemble will be calibrated for three different meteo-
rological variables: PBL wind speed, PBL wind direction and
planetary boundary layer height (PBLH). We will calibrate
the ensemble with the late afternoon data (i.e., 00:00 UTC)
from the different rawinsondes. In this study, we use only
daytime data, because we want to calibrate and evaluate
the ensemble under the same well-mixed conditions that are
used to perform atmospheric inversions. For each rawinsonde
site, we will use wind speed and wind direction observa-
tions from approximately 300 m a.g.l. We choose this obser-
vational level because we want the observations to lie within
the well-mixed layer, the layer into which surface fluxes are
distributed, and the same air mass that is sampled and simu-
lated for inversions based on tower CO2 measurements.

The PBLH was estimated using the virtual potential tem-
perature gradient (θν). The method identifies the PBLH as the
first point above the atmospheric surface layer, where (1) θν
is greater than or equal to 0.2 K km−1, and (2) the difference
between the surface and the threshold-level virtual potential
temperature is greater than or equal to 3 K (θνs− θν ≥ 3 K).

WRF derives an estimated PBLH for each simulation;
however, the technique used to estimate the PBLH varies ac-
cording to the PBL scheme used to run the simulation. For
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example, the YSU PBL schemes estimate PBLH using the
bulk Richardson number (Hong et al., 2006), the MYJ PBL
scheme uses the turbulent kinetic energy (TKE) to estimate
the PBLH (Janjic, 2002), and the MYNN PBL scheme uses
twice the TKE to estimate the PBLH. To avoid any errors
from the technique used to estimate the PBLH, we decided
to estimate the PBLH from the model using the same method
used for the observations. Simulated PBLH will be analyzed
at the same time as the observations, 00:00 UTC, i.e., late
afternoon in the study region.

We analyzed CO2 mole fractions collected from the sam-
pling levels at or above 100 m a.g.l., which is the highest
observation level across the Mid-Continent Intensive (MCI)
network (Miles et al., 2012). This ensures that the observed
mole fractions reflect regional CO2 fluxes and not near-
surface gradients of CO2 in the atmospheric surface layer
(ASL) or local CO2 fluxes (Wang et al., 2007). Both observed
and simulated CO2 mole fractions are averaged from 18:00
to 22:00 UTC (12:00–16:00 LST), when the daytime period
of the boundary layer should be convective and the CO2 pro-
file well mixed (e.g., Davis et al., 2003; Stull, 1988). This
averaged mole fraction will be referred to hereafter as daily
daytime average (DDA).

2.3 Criteria

In this research, we want to test the performance of the trans-
port ensemble and try to achieve a better representation of
transport uncertainties, if possible using an ensemble with
a smaller number of members. A series of statistical met-
rics are used as criteria to measure the representation of
uncertainty by the ensemble for the period of 18 June to
21 July 2008. The criteria used for our down-selection pro-
cess include rank histograms, rank-histogram scores and en-
semble bias.

2.3.1 Talagrand diagram (or rank histogram) and
rank-histogram score

The rank histogram and the rank-histogram scores are tools
used to measure the spread and hence the reliability of the
ensemble (see Fig. A1 in the Appendix). The rank histogram
(Anderson, 1996; Hamill and Colucci, 1997; Talagrand et
al., 1999) is computed by sorting the corresponding mod-
eled variable of the ensemble in increasing order and then
a rank among the sorted predicted variables from lowest to
highest is given to the observation. The ensemble members
are sorted to define “bins” of the modeled variable; if the en-
semble contains N members, then there will be N + 1 bins.
If the rank is zero, then the observed variable value is lower
than all the modeled variable values, and if it is N + 1, then
the observation is greater than all of the modeled values. If
the ensemble is perfectly reliable, the rank histogram should
be flat (i.e., flatness equal to 1). This happens when the prob-
ability of occurrence of the observation within each bin is

equal. A rank histogram that deviates from the flat shape im-
plies a biased, overdispersive or underdispersive ensemble.
A “U-shaped” rank histogram indicates that the ensemble is
underdispersive; normally, in this type of ensemble, the ob-
servations tend to fall outside of the envelope of the ensem-
ble. This kind of histogram is associated with a lack of vari-
ability or an ensemble affected by biases (Hamill, 2001). A
“central-dome” (or “A-shaped”) histogram indicates that the
ensemble is overdispersive; this kind of ensemble has an ex-
cess of variability. If the rank histogram is overpopulated at
either of the ends of the diagram, then this indicates that the
ensemble is biased.

The rank-histogram score is used to measure the deviation
from flatness of a rank histogram:

δ =
N + 1
NM

N∑
j=0
(rj − r)

2, (1)

and should ideally be close to 1 (Talagrand et al., 1999; Can-
dille and Talagrand, 2005). In Eq. (1), N is the number of
members (i.e., models), M is the number of observations, rj
the number of observations of rank j , and r =M/(N + 1)
is the expectation of rj . In theory, the optimal ensemble has
a score of 1 when enough members are available. A score
lower than 1 would indicate overconfidence in the results,
with an ensemble matching the observed variability better
than statistically expected. Having a score smaller than 1
would not affect the selection process. Nevertheless, a flat
rank histogram does not necessarily mean that the ensem-
ble is reliable or has enough spread. For example, a flat his-
togram can still be generated from ensembles with different
conditional biases (Hamill, 2001). The flat rank histogram
can also be produced when covariances between samples
are incorrectly represented. Therefore, additional verification
analysis has to be introduced to certify that the calibrated
ensemble has enough spread and is reliable. We introduce
hereafter several additional metrics used to evaluate the en-
semble.

2.3.2 Ensemble bias

Atmospheric inverse flux estimates are highly sensitive to
biases. The bias, or the mean of the model–data mis-
matches, was used to assist the selection of the calibrated
sub-ensemble. We identify a sub-ensemble that has minimal
bias:

Bias=
1
M

M∑
i=1
(pi), (2)

where pi is the difference between the modeled wind speed,
direction or PBLH, and the observed value, M is the number
of measurements and i sums over each of the rawinsonde
measurements.
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2.4 Verification methods

Different statistical tools were used to evaluate both the large
(45-member) ensemble and calibrated ensemble; these statis-
tics include Taylor diagrams, spread–skill relationship and
ensemble root mean square deviation (RMSD). These statis-
tical analyses will be used to describe the performance of
each member (standard deviations and correlations), ensem-
ble spread (root mean square deviation) and error structures
in space (error covariance), which will allow us to evaluate
all the important aspects of an ensemble.

We use Taylor diagrams to describe the performance of
each of the models of the large ensemble (Taylor, 2001).
The Taylor diagram relies on three nondimensional statistics:
the ratio of the variance (model variance normalized by the
observed variance), the correlation coefficient, and the nor-
malized center root mean square (CRMS) difference (Taylor,
2001). The ratio of the variance or normalized standard devi-
ation indicates the difference in amplitude between the model
and the observation. The correlation coefficient measures the
similarity in the temporal variation between the model and
the observation. The CRMS is normalized by the observed
standard deviation and quantifies the ratio of the amplitude
of the variations between the model and the observations.

To verify that the ensemble captures the variability in the
model performance across space and time, we computed the
relationship between the spread of the ensemble and the skill
of the ensemble over the entire dataset (i.e., spread–skill re-
lationship). The linear fit between the two parameters mea-
sures the correlation between the ensemble spread and the
ensemble mean error or skill (Whitaker and Lough, 1998).
The ensemble spread is calculated by computing the stan-
dard deviation of the ensemble and the mean error by com-
puting the absolute difference between the ensemble mean
and the observations. Ideally, as the ensemble skill improves
(the mean error gets smaller), the ensemble spread becomes
smaller, and vice versa. Compared to the rank histograms,
spread–skill diagrams represent the ability of the ensemble
to represent the errors in time and space.

The spread of the ensemble is evaluated in time, using the
RMSD. The RMSD does not consider the observations as
we take the square root of the average difference between
model configuration and the ensemble mean. Additionally,
we use the mean and standard deviation of the error (model–
data mismatch) to evaluate the performance of each of the
members selected for the calibrated ensembles.

Transport model errors in atmospheric inversions are de-
scribed in the observation error covariance matrix and hence
in CO2 mole fractions (ppm2). Therefore, we evaluate the
impact of the calibration on the variances of CO2 mole frac-
tions. For the covariances, we compare the spatial extent of
error structures between the full ensemble and the reduced-
size ensembles by looking at spatial covariances from our
measurement locations. The limited number of members is
likely to introduce sampling noise in the diagnosed error co-

variances. We also know that the full ensemble is not a per-
fect reference, but we believe it is less noisy. The covariances
were directly derived from the different ensembles to esti-
mate the increase in sampling noise as a function of the en-
semble size.

2.5 Calibration methods

In this study, we want to test the ability to reduce the ensem-
ble from 45 members to an ensemble with a smaller number
of members that is still capable of representing the transport
uncertainties and does not include members with redundant
information. The number of ideal ensemble members could
have been decided by performing the calibration for all the
different sizes of ensemble smaller than 45 members. How-
ever, we decided to use an objective approach to select the
total number of members of the sub-ensemble. Therefore,
we use the Garaud and Mallet (2011) technique to define the
size of the calibrated sub-ensemble that each optimization
technique will generate. The size of the sub-ensemble was
determined by dividing the total number of observations by
the maximum frequency in the large ensemble (45-member)
rank histogram. We are going to generate sub-ensembles of
three different sizes (number of members) to evaluate the im-
pact that an ensemble size has on the representation of atmo-
spheric transport uncertainties. Each of the ensembles will be
calibrated for the period of 18 June to 21 July 2008.

Two optimization methods, simulated annealing (SA) and
a genetic algorithm (GA), are used to select a sub-ensemble
that minimizes the rank-histogram score (δ), which is the cri-
terion that each algorithm will use to test the reliability of the
ensemble. Each method will select a sub-ensemble that best
represents the model uncertainties of PBL wind speed, PBL
wind direction and PBLH.

In this study, SA and GA techniques will randomly search
for the different combinations of members and compute
the rank-histogram score. Both techniques generate a sub-
ensemble (S) of size N . For the first test, we will use these
algorithms to choose the combination of members that op-
timize the score of the reduced ensemble δ (S) (i.e., rank-
histogram score) for each variable. With this evaluation, we
determine if each optimization technique yields similar cali-
brated ensembles and if the calibrated ensembles are similar
among the different meteorological variables. In the second
test, we calibrate the ensemble for all three variables simulta-
neously, where we use the sum of the score squared: [δ(S)]2:

[δ (S) ]2 = [δwspd (S) ]
2
+ [δwdir (S) ]

2
+ [δpblh (S) ]

2, (3)

to control acceptance of the sub-ensembles. In Eq. (3),
δwspd(S), δwdir(S) and δpblh(S) are the scores of the sub-
ensemble for PBL wind speed, PBL wind direction and
PBLH, respectively.
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2.5.1 Simulated annealing

SA is a general probabilistic local search algorithm, de-
scribed by Kirkpatrick et al. (1983) and Černý et al. (1985) as
an optimization method inspired by the process of annealing
in metal work. Based on the Monte Carlo iteration solving
method, SA finds the global minimum using a cost function
that gives to the algorithm the ability to jump or pass multi-
ple local minima (see Fig. A2 in the Appendix). In this case,
the optimal solution is a sub-ensemble with a rank-histogram
score close to 1.

The SA starts with a randomly selected sub-ensemble.
The current state (i.e., initial random sub-ensemble) has a
lot of neighbor states (i.e., other randomly generated sub-
ensembles) in which a unit (i.e., model) is changed, re-
moved or replaced. Let S be the current sub-ensemble and
S′ be the neighbor sub-ensemble. S′ is a new sub-ensemble
(i.e., neighbor) that is randomly built from the current sub-
ensemble with one model added, removed or replaced. To
minimize the score δ, only two transitions to the neigh-
bors are possible. In the first transition, if the score of the
neighbor sub-ensembles δ(S′) is lower than the current sub-
ensemble δ(S), then S′ becomes the current sub-ensemble
and a new neighbor sub-ensemble is generated. In the second
transition, if the score of the neighbor sub-ensemble δ(S′)
is greater than the current sub-ensemble δ(S), moving to
the neighbor S′ only occurs through an acceptance probabil-
ity. This acceptance probability is equal to exp

(
−
δ(S′)−δ(S)

T

)
and it only allows the movement to the neighbor S′ if u <
exp

(
−
δ(S′)−δ(S)

T

)
. For the acceptance probability, u is a ran-

dom number uniformly drawn from [0,1] and T is called
temperature, and it decreases after each iteration following
a prescribed schedule. The acceptance probability is high at
the beginning, and the probability of switching to a neighbor
is less at the end of the algorithm. The possibility to select a
less optimal state S′, i.e., with higher δ(S′), is meant to es-
cape local minima where the algorithm could remain trapped.

When the algorithm reaches the predefined number of iter-
ations, we collect only the accepted sub-ensemble S and their
respective scores δ(S). When the algorithm finishes with the
iterations, we choose the ensemble that has both the small-
est rank-histogram score and lowest bias among the different
sub-ensembles (see Sect. 2.7). The number of iterations was
defined by sensitivity test and repetitivity of the experiments
(see Sect. 2.6).

2.5.2 Genetic algorithm

GA is a stochastic optimization method that mimics the pro-
cess of biological evolution, with the selection, crossover and
mutation of a population (Fraser and Burnell, 1970; Crosby,
1973; Holland, 1975). Let Si be an individual, that is, a sub-
ensemble, and let P = {S1, . . .,Si, . . .,SNpop} be a population
of Npop individuals (see Fig. A3 in the Appendix). As a first

step, in the GA, a random population is generated (denoted
P 0). Then this population will go through two out of the three
steps of the genetic algorithm, (1) selection and (2) crossover.
In the selection step, we select half of the best individuals
with respect to the score (i.e., summation of the score of three
variables δ(S)). For the second step, a crossover among the
selected individuals occurs when two parents create two new
children by exchanging some ensemble members. A new
population is generated withNpop/2 parents andNpop/2 chil-
dren.

This process is repeated until it reaches the specified num-
ber of iterations. This algorithm will provide at the end a
population of individuals with a better rank-histogram score
than the initial population. Out of all those individuals, we
choose the sub-ensemble with the best score for the three
variables (i.e., wind speed, wind direction and PBLH) and
with a smaller bias than the large ensemble.

2.6 Parameterization of the selection algorithms

Various inputs are required to guide the selection algorithms.
For example, we typically need to choose the initial and fi-
nal temperature (T0 and Tf) for the SA and its schedule, the
best population size (Npop) for the GA and the number of it-
erations for each algorithm. The temperature of the SA, the
Npop of the GA and the number of iterations were chosen by
running the algorithms multiple times and confirming that
the system reached similar solutions with independent mini-
mization runs. If similar solutions were not achieved within
multiple SA or GA runs, the algorithm parameters were al-
tered to increase the breadth of the search. For the SA, we
found that 20 000 iterations yielded similar solutions after
multiple runs of the algorithm. For the GA, 30 to 50 itera-
tions were sufficient as long as the ensemble was smaller than
eight members. For an ensemble of 10 members, we needed
to increase to 100 iterations. Another factor that was impor-
tant in the SA was the initial temperature used in the algo-
rithm and the temperature decrease for each iteration. While
the temperature is high, the algorithm will accept with more
frequency the poorer solutions; as the temperature is reduced,
the acceptance of poorer solutions is reduced. Therefore, we
needed to provide an initial (T0) and final (Tf) temperature
that allowed the system to reduce its acceptance condition
gradually and to search more combinations of members to
identify the best solution or sub-ensemble. We determine the
optimal parameters for SA by the maximum number of en-
semble solutions which indicates that the algorithm explored
the largest space of solution with T0 equal to 20 and Tf equal
to 1× 10−3. For GA, the larger the population, the more we
can explore the space to find an optimal solution. We found
that a Npop of 280 individuals was the value that produced
similar solutions (sub-ensembles) after multiple runs.
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Table 2. Rank-histogram score (δ), biases and standard deviation
(σ ) of the 45-member ensemble for wind speed, wind direction and
PBLH computed across 14 rawinsonde sites using daily 00:00 UTC
observations for 18 June to 21 July 2008 in the upper US Midwest.

Variables δ Bias σ

Wind speed 6.1 0.7 m s−1 3.5 m s−1

Wind direction 6.2 −0.6◦ 55.7◦

PBLH 3.2 98.2 m 787.5 m

2.7 Selection of the optimal reduced-size ensembles

The selection process is performed in three distinct steps to
ensure that the final calibrated ensembles will be the opti-
mal combinations of model configurations (Fig. 2). First, the
flatness of the rank histograms will control the acceptance of
the calibrated sub-ensembles by the selection algorithms (see
Fig. A1 in the Appendix). The flatness is defined by Eq. (1)
for the single-variable calibration and Eq. (3) for the cali-
bration of the three variables simultaneously. The algorithm
selects multiple sub-ensembles with a rank-histogram score
smaller than 6 for each individual meteorological variable, or
smaller than the original ensemble score if higher than 6 (see
Fig. 2 and Table 2). In general, the lowest scores are found for
PBLH and the highest for wind speed, as shown in Fig. 3. As
a second step, sub-ensembles accepted by SA and GA algo-
rithms with a bias larger than the bias of the full ensemble are
filtered out. This step is critical to avoid the selection of bi-
ased ensembles as discussed by Hamill et al. (2001). Finally,
the remaining calibrated ensembles are compared among SA
and GA techniques to identify if both algorithms provide a
common solution. If multiple common solutions were iden-
tified, the final sub-ensemble was determined by the solution
with the smallest score and bias. However, if no common so-
lution was found by both techniques, the final sub-ensemble
corresponds to the smallest score among the different solu-
tions that share > 50 % of the same model configurations.

3 Results

3.1 Evaluation of the large ensemble

In this section, we evaluate the performance of the large en-
semble. Our goal is to test the ensemble skill (ability of the
models to match the observations) and the spread (variability
across model simulations to represent the uncertainty). We
will evaluate the skill and the spread for PBLH, PBL wind
speed and PBL wind direction across the region of study us-
ing afternoon (00:00 UTC) rawinsonde observations.

3.1.1 Model skill

We evaluate the performance of the different models of the
45-member ensemble by computing the normalized standard

deviation, normalized center root mean square and corre-
lation coefficient for wind speed (Fig. 4a), wind direction
(Fig. 4b) and PBLH (Fig. 4c) (Taylor, 2001). The majority
of the model configurations produce winds speeds and direc-
tions with higher standard deviations (more variability) than
the observations, whereas the simulations over- and underes-
timate PBLH variability depending on the model configura-
tion. The model–data correlations with wind speed and wind
direction are between 0.4 and 0.7, whereas the PBLH shows a
smaller correlation, between 0.3 and 0.6. The range of mod-
eled PBL heights will provide a wide spectrum of alterna-
tives to select the optimal calibrated sub-ensemble. However,
wind speed and wind direction do not show much difference
among the different models. This limited spread potentially
reduces the selection of the model configurations to produce
a sub-ensemble that matches the observed variability.

3.1.2 Reliability and spread of the ensemble

We illustrate the ensemble spread and how well this ensem-
ble encompasses the observations using the time series of the
simulated and observed meteorological variables. Figure 5
shows the time series of the ensemble spread for wind speed,
wind direction and PBLH at Green Bay (GRB; Fig. 5a, c,
e) and Topeka (TOP; Fig. 5b, d, f) sites. The time series
show qualitatively that simulated wind speed (Fig. 5a–b) and
wind direction (Fig. 5c–d) have a smaller spread compared
to PBLH (Fig. 5e–f). Figure 5 shows how the ensemble can
have a small spread and still encompass the observations (i.e.,
DOY 183; Fig. 5c), and have a large spread and not encom-
pass the observation (i.e., DOY 174; Fig. 5e). These time se-
ries suggest that the ensemble may struggle to encompass
the observed wind speed and wind direction more than the
PBLH.

Figure 6 shows the rank histograms of the 45-member
ensemble for each of the meteorological variables that we
use to calibrate the ensemble (i.e., wind speed, wind direc-
tion and PBLH). In these rank histograms, we include all 14
rawinsonde sites. All the rank histograms have a U shape.
U-shaped histograms mean the ensemble is underdispersive;
that is, the model members are too often all greater than or
less than the observed atmospheric values (e.g., DOY 178–
181; Fig. 5b). Each rank histogram has the first rank as the
highest frequency, indicating that observations are most fre-
quently below the envelope of the ensemble (e.g., DOY 178–
180; Fig. 5b). The rank-histogram score for each of the vari-
ables is greater than 1, confirming that we do not have op-
timal spread in our ensemble. Table 2 shows that both wind
speed and wind direction have a higher rank-histogram score
(i.e., ≥ 6) than the PBLH, which has a score of 3.2. The en-
semble mean wind speed and PBLH show a small positive
bias relative to the observations, averaged across the region,
whereas wind direction has a very small negative bias.

Figure 7 shows the spread–skill relationship, another
method that we use to examine the representation of errors
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Figure 2. Diagram of the process of selection of reduced-sized ensembles explained in Sect. 2.7. In this diagram, in the sub-ensemble, we
show our two main thresholds after running each algorithm; the sub-ensemble score has to be smaller than the full ensemble (δ < δf) and the
sub-ensemble bias is smaller than the full-ensemble bias (bias < biasf).

Figure 3. Box plot of the rank-histogram scores of the different
sub-ensembles of 10 (a), 8 (b) and 5 (c) members accepted by the
SA. Each figure shows the rank-histograms scores for the different
variables: PBL wind speed (WSPD), PBL wind direction (WDIR)
and PBLH. The top of the box represents the 25th percentile, the
bottom of the box is the 75th percentile, the red line in the mid-
dle is the median and the green “x” the mean. Outliers beyond the
threshold values are plotted using the “+” symbol.

of the ensemble. Wind direction (Fig. 7b) shows a higher
correlation between the spread and the skill compared to the
PBLH (Fig. 7c) and the wind speed (Fig. 7a). Therefore, the
ensemble has a wider spread when the model–data differ-
ences are larger. The PBLH and wind speed show consis-
tently poorer skill (a large mean absolute error) compared
to their spread. This supports the conclusion that the large
ensemble is underdispersive for these variables. None of

Figure 4. Taylor diagram comparing the 00:00 UTC rawinsonde
observations (300 m wind speed a, 300 m wind direction b and
PBLH c) to the 45 model configurations (red circles).
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Figure 5. Time series of the simulated and observed for 300 m wind speed (a, b), 300 m wind direction (c, d) and PBLH (e, f) at the GRB (a,
c, e) and TOP (b, d, f) sites. The shaded blue area represents the spread (i.e., RMSD) of the full ensemble, the solid line is the ensemble
mean, and the red dots are the observations at 00:00 UTC.

Figure 6. Rank histogram of the 45-member ensemble for wind
speed (a), wind direction (b) and PBLH (c) using 14 rawinsonde
sites available over the region. The horizontal dashed line (r) cor-
responds to the ideal value for a flat rank histogram with respect to
the number of members.

these variables show a correlation equal to 1; this implies
that our ensemble spread does not match exactly the atmo-
spheric transport errors on a day-to-day basis. This feature is
common among ensemble prediction systems (Wilks et al.,
2011) and should not impair the ability to identify the opti-
mal reduced-size ensembles.

3.2 Calibrated ensemble

In this section, we show the results of the calibrated ensem-
bles generated with both SA and GA. Each calibration was
performed for three different sub-ensemble sizes; the size of

Figure 7. Spread–skill relationship for (a) wind speed, (b) wind di-
rection and (c) PBLH using the 14 rawinsonde sites available over
the region. Each point represents the model ensemble spread (stan-
dard deviation of the model–data difference) and skill (mean abso-
lute error) for each observation. A one-to-one line is plotted in black
and a line of best fit is plotted in red. Correlation (r) and slope (b)
of the line of best fit of the spread–skill relationship are plotted as
well.
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the ensembles is determined using the technique explained in
Sect. 2.4. To compute the size of the sub-ensemble, we use
the maximum frequency of the rank histogram using the large
ensemble (Fig. 6). In this case, the maximum frequency is the
left bar (r0) of every rank histogram. This technique yields
the result that the calibrated ensemble should have about 8–
10 members depending in the variable to be used. Therefore,
for this study, we will generate 10-, 8- and 5-member ensem-
bles using the two calibration techniques.

3.2.1 Individual variable calibration

Table 3 shows that both techniques (i.e., SA and GA) were
able to find similar combinations of model configurations
(i.e., an ensemble that shares more than half of the members)
when each meteorological variable was used separately. The
configurations chosen for each sub-ensemble vary signifi-
cantly across the different variables, with the exception of the
10-member ensemble calibrated using wind speed and wind
direction. The majority of the ensembles include model con-
figuration 14. This model configuration, as shown in Díaz-
Isaac et al. (2018), introduces large errors for both wind
speed and wind direction, and is selected to allow for suf-
ficient spread of these variables in the sub-ensembles. The fi-
nal scores of the calibrated ensembles for each variable show
that finding a calibrated sub-ensemble that reaches a score of
1 is not possible for wind speed and wind direction. A sub-
ensemble with a score less than or equal to 1 can be found
for PBLH. Figure 8 shows the rank histograms of the differ-
ent calibrated ensembles (i.e., 10, 8 and 5 members) for each
meteorological variable shown in Table 3. The calibrated en-
sembles of PBLH (Fig. 8c, f, i) are nearly flat for all en-
semble sizes, whereas the 10- and 8-member sub-ensembles
keep a slight U shape for wind speed and wind direction but
are significantly flatter than the original ensemble. The ra-
tio between the expected (r) and observed frequency of the
end members is reduced from 5 (original expected frequency
of 0.02 with 0.1 frequency observed) to less than 2 (cali-
brated expected frequency of 0.1 with 0.15 frequency ob-
served). The smallest rank-histogram scores for wind speed
and wind direction are obtained with a five-member ensem-
ble (Fig. 8g–h). The biases for all sub-ensembles (Table 3)
are similar to or less than the bias of the large ensemble (Ta-
ble 2).

3.2.2 Multiple-variable calibration

Table 4 shows the sub-ensembles selected by SA. Each of
the sub-ensembles has two simulations in common (i.e., 17
and 33), implying that these models are crucial to build an
ensemble that best represents the transport errors for the
three variables. Figure 9 shows the rank histograms of the
sub-ensembles shown in Table 4. These rank histograms
show that we were able to flatten the histogram relative to
the 45-member ensemble for all three meteorological vari-

Figure 8. Rank histograms of the calibrated ensembles found for
wind speed (a, d, g), wind direction (b, e, h) and PBLH (c, f, i) for
each of the ensemble size. The upper, middle and lower panels cor-
respond to the ensembles with 10, 8 and 5 members, respectively.
The horizontal dashed line (r) corresponds to the ideal value for a
flat rank histogram with respect to the number of members.

ables. Similar to the individual variable calibration, the rank
histograms for wind speed (Fig. 9a, d) and wind direction
(Fig. 9b, e) still show a U shape which is minimized for the
smallest (i.e., five-member) sub-ensemble (Fig. 9g–h). The
rank histograms are flatter for the PBLH (Fig. 9c, f, i) and
the histogram score is closer to 1 (Table 4) compared to wind
speed and wind direction. The rank-histogram scores for all
variables are greater than those for one-variable optimization
(see Table 4). The high rank-histogram scores are associated
with the equal weight given to the three variables for this
simultaneous calibration, where wind speed controlled the
calibration process. For the calibration of the three variables
together, we were not able to produce an ensemble for wind
speed with a score smaller than 4; this ends up limiting the
selection of the calibrated ensemble for the rest of the vari-
ables (see Fig. A4 in the Appendix). In addition, all these cal-
ibrated sub-ensembles have biases smaller in magnitude than
the 45-member ensemble. Both wind speed and PBLH retain
an overall positive bias, and wind direction a negative bias.
The standard deviations of these three calibrated ensembles
are larger than those of the large ensemble, consistent with
the effort to increase the ensemble spread.

Using SA and GA techniques and the selection criteria
detailed in Sect. 2.7 (i.e., low mean error of the entire en-
semble), we defined an optimal five-member sub-ensemble
(the optimal solution using both techniques) and nearly iden-
tical combinations of members for 10-and 8-member sub-
ensembles, with only two model configurations not being
shared by both algorithms. We also find that configuration 14
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Table 3. Calibrated ensembles generated by both SA and GA and their rank-histogram scores and bias for each variable.

N Variable Sub-ensemble δ Bias

10
WSPD [5 13 14 16 17 29 33 35 39 45] 3.8 0.4 m s−1

WDIR [5 13 14 16 17 20 31 33 34 37] 3.4 −0.6◦

PBLH [2 11 14 23 27 31 35 37 43 44] 0.4 58 m

8
WSPD [11 14 16 31 35 37 39 45] 3.7 0.5 m s−1

WDIR [14 15 17 20 23 33 34 37] 3.9 −1◦

PBLH [12 13 14 23 26 28 37 44] 0.8 75.5 m

5
WSPD [5 14 29 36 39] 3 0.4 m s−1

WDIR [14 23 33 34 37] 1.9 0.3◦

PBLH [2 5 13 31 44] 0.1 69 m

Table 4. Ensemble members, rank-histogram scores (δ), bias and standard deviation (σ ) for wind speed, wind direction and PBLH for the
calibrated sub-ensembles generated with SA.

N Sub-ensemble Wind speed Wind direction PBLH

δ Bias σ δ Bias σ δ Bias σ

(m s−1) (m s−1) (◦) (◦) (m) (m)

10 [14 17 23 26 28 33 34 35 37 45] 5.5 0.6 3.6 4.6 −0.6 58 1.5 79.7 817.4
8 [5 6 14 17 26 33 34 37] 5.6 0.6 3.6 3.4 −0.7 58.5 1.6 71.8 823.4
5 [16 17 23 33 35] 5 0.5 3.6 3.4 −0.7 59 0.6 76.2 810.7

Figure 9. Rank histograms of wind speed (a, d, g), wind direc-
tion (b, e, h) and PBLH (c, f, i) using the calibrated ensembles found
with SA. The upper, middle and upper lower panels correspond to
the ensembles with 10, 8 and 5 members, respectively. The hori-
zontal dashed line (r) corresponds to the ideal value for a flat rank
histogram with respect to the number of members.

remains important for the multi-variable calibrated ensem-
bles, as it was for the single-variable calibrated ensembles.

3.2.3 Evaluation of the multiple-variable calibrated
ensemble

Both optimization techniques were able to generate sub-
ensembles that reduce the U shape of the rank histograms,
while significantly decreasing the number of members in
the ensemble. A flatter histogram indicates that the ensem-
ble is more reliable (unbiased) and has a more appropriate
(greater) spread. The correlation between spread and skill for
the wind direction increased, while wind speed and PBLH
remain similar. Therefore, we conclude that the calibrated
sub-ensembles are equivalent to or even better than the full
ensemble to represent the daily model errors.

Figure 10 shows the time series of the different calibrated
ensembles generated by the SA algorithm at the TOP site. In
general, there are no major differences among 5- (Fig. 10a,
d, g), 8- (Fig. 10e, h) and 10-member (Fig. 10c, f, i) ensem-
bles. Figure 12 shows how the calibration can increase the
spread of the ensemble to the extent of encompassing the ob-
servations (e.g., DOY 179; Fig. 10b–c) compared to the full
ensemble (Fig. 5b). The ensemble spread was reduced after
calibration at a few specific points in space and time.

Insight into the physics parameterizations can be gained
by evaluating the calibrated ensembles. The LSM, PBL, CP
and MP schemes, and reanalysis choice vary across all of
the sub-ensemble members; no single parameterization is re-
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Figure 10. Time series of simulated and observed 300 m wind speed (a–c), 300 m wind direction (d–f) and PBLH (g–i) using the 5-, 8- and
10-member calibrated ensembles (first, second and third columns, respectively) at the TOP rawinsonde site. The green shaded area represents
the spread (i.e., root mean square deviation) of the ensemble, the black line is the mean of the ensemble, and the red dots are the observations
at 00:00 UTC.

tained for all members in any of these categories. However,
we also find that the calibrated ensembles rely upon certain
physics parameterizations more than others. Figure 11 shows
that most of the simulations in the calibrated ensemble use
the RUC and thermal diffusion (T-D) LSMs in preference to
the Noah LSM. In addition, more simulations use the MYJ
PBL scheme than the other PBL schemes. The physics pa-
rameterizations shown with a higher percentage in Fig. 11
appear to contribute more to the spread of the ensemble than
the other parameterizations.

We next explore the characteristics of the individual en-
semble members that are retained in an effort to understand
what member characteristics are important to increase the
spread of the ensemble. Figure 12 shows the mean and stan-
dard deviation of the residuals for each simulation included
in the five-member ensemble of SA and GA. Ensembles ap-
pear to need at least one member with a larger standard devi-
ation to improve the spread for wind speed and wind direc-
tions (see member 23; Fig. 12a–b). Additionally, a member
that has a large PBLH bias (see member 16; Fig. 12c) appears
to be selected, highlighting the need for end members among
the model configurations in order to reproduce the observed
variability in PBLH. We note here that model configuration
14 was not selected when calibrating three variables together.

Figure 11. Frequency with which the physics schemes are used for
the SA (a, c, e) and GA (b, d, e) calibrated ensembles of 10 mem-
bers (a, b), 8 members (c, d) and 5 members (e).

3.3 Propagation of transport uncertainties into CO2
concentrations

The calibrated ensembles found in this study were chosen
based on the meteorological variables and not on the CO2
mole fractions to avoid the propagation of CO2 flux biases
into the solution. We can now propagate these uncertain-

www.atmos-chem-phys.net/19/5695/2019/ Atmos. Chem. Phys., 19, 5695–5718, 2019



5708 L. I. Díaz-Isaac et al.: Calibration of a multi-physics ensemble

Figure 12. Residual (model–data mismatch) mean and standard de-
viation of individual members for wind speed (a), wind direction (b)
and PBLH (c) using the SA- and GA-calibrated sub-ensemble of
five members.

ties, represented by the ensemble spread, into the CO2 con-
centration space. This straightforward calculation is possible
because every model simulation uses identical CO2 fluxes.
We present here the transport errors in both time and space
with the spread in CO2 mole fractions, comparing the initial
(uncalibrated) 45-member ensemble to the calibrated sub-
ensembles.

3.3.1 CO2 error variances

Figure 13 shows the spread of daily daytime average CO2
mole fractions across the different sub-ensemble sizes at
Mead (Fig. 13a, d, g, j), West Branch (Fig. 13b, e, h, k) and
WLEF (Fig. 13c, f, i, l). The spread of the DDA CO2 mole
fractions of the large ensemble (Fig. 13a–c) does not appear
to differ in a systematic fashion from the spread of the cali-
brated small-size ensembles (Fig. 13d–l). While the calibra-
tion has increased the average ensemble spread, none of the
ensembles consistently encompass the observations, either in
terms of meteorological variables (Fig. 12) or CO2 (Fig. 15).
The CO2 differences between the models and the observa-
tions may be caused by CO2 flux or boundary condition er-
rors, the two components impacting the modeled CO2 mole
fractions in addition to atmospheric transport. The cause of
the total difference cannot be determined from the CO2 data
alone. The increased daily variance in CO2 resulting from the
ensemble calibration process is shown in Fig. 14. The eight-
member ensemble often has the maximum CO2 variance. Ta-
ble 5 shows the spread (model–ensemble mean) and RMSE
(model–data) ratio of the CO2 mole fraction for the full and
calibrated 10-member ensembles at each in situ CO2 obser-
vation tower. The ratio of the variances is an estimate of the
contribution of the transport uncertainties to the CO2 model–
data mismatch for the summer of 2008. This table shows that
the transport uncertainties represent about 20 % to 40 % of
the CO2 model–data mismatch. We found that values after
calibration show a slight increase compared to the full en-
semble.

4 Discussion

4.1 Impact of calibration on ensemble statistics

The calibration of the multi-physics/multi-analysis ensem-
ble using SA and GA optimization techniques generated 10-
, 8- and 5-member ensembles with a better representation
of the error statistics of the transport model than the ini-
tial 45-member ensemble. One of our goals was to find sub-
ensembles that fulfil the criteria of Sect. 2.7, independent of
the selection algorithm and for multiple meteorological vari-
ables. Wind speed and wind direction statistics only improve
by a modest amount in the calibrated ensembles as compared
to the 45-member ensemble, while PBLH statistics, namely
the flatness of the rank histogram, show a significant im-
provement in the calibrated ensembles. The variance in the
calibrated ensembles increased relative to the 45-member en-
semble but the potential for improvement was limited by the
spread in the initial ensemble. Stochastic perturbations (e.g.,
Berner et al., 2009) could increase the spread of the initial
ensemble, which, combined with the suite of model config-
urations, could better represent the model errors. Here, we
limited the 45-member ensemble to mass-conserved, contin-
uous flow (i.e., unperturbed) members that can be used in a
regional inversion. Future work should address the problem
of using an underdispersive ensemble before the calibration
of the ensemble.

4.2 Single-variable and multiple-variable ensembles

We first attempted to calibrate the ensemble for each me-
teorological variable (i.e., wind speed, wind direction and
PBLH). Table 3 shows that the different sub-ensembles were
able to follow the criteria presented in Sect. 2.7, but the cal-
ibration of the single-variable ensembles did not allow us to
find a unique sub-ensemble that can be used to represent the
errors of the three variables. Therefore, the joint optimization
of the three variables was required to identify an ensemble
that best represents model errors across the three variables.
By minimizing the sum of the squared rank-histogram scores
of the three variables, the selection algorithm found common
solutions at the expense of less satisfactory rank-histogram
scores than were obtained for single-variable ensembles (see
Table 4). We assumed that each variable was equally impor-
tant to the problem, an assumption that has not been rigor-
ously evaluated. Future work on the relative importance of
meteorological variables on CO2 concentration errors would
help weigh the scores in the selection algorithms.

4.3 Resolution and reliability

The calibrated ensembles show the rank-histogram score
closer to 1 (Table 4), that is, flatter rank histograms (Fig. 9)
compared to the 45-member ensemble (Table 2 and Fig. 6).
The sub-ensembles do have a greater variance than the large
ensemble (i.e., improved reliability) (Fig. 14). However, the
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Table 5. Spread (model–ensemble mean), RMSE (model–data) and ratio (spread2/RMSE2) at each of the in situ CO2 mixing ratio towers,
for the 45-member ensemble and 10-member ensemble calibrated with SA and GA.

Sites 45-member ensemble SA 10-member ensemble GA 10-member ensemble

Spread RMSE Ratio Spread RMSE Ratio Spread RMSE Ratio
(ppm) (ppm) (%) (ppm) (ppm) (%) (ppm) (ppm) (%)

Centerville 4.3 9.3 19.1 4.7 9.6 22.7 4.4 9.4 20.4
Galesville 5.8 10.4 28 5.5 9.9 28.2 5.4 9.6 29.3
Kewanee 5.2 8.5 35.8 4.6 8 29.1 4.7 8.1 31.2
Mead 5.1 9.4 23.7 5 9.1 23.3 4.8 9 20.9
Round Lake 4.5 10.8 16 4.6 10.5 16.7 4.6 10.4 16.4
WBI 5.4 9.4 35.6 5.4 9.1 37.5 5.5 9.2 37.7
LEF 4.6 7.5 37.7 5.1 8.1 40 5.1 8.3 40.1

Figure 13. Ensemble mean and spread (i.e., RMSD) of the DDA at approximately 100 m CO2 concentrations at Mead (first column; a, d, g,
j), WBI (middle column; b, e, h, k) and WLEF (last column; c, f, i, l) towers using SA-calibrated ensembles. Rows from top to bottom are
45-, 10-, 8- and 5-member ensembles. The blue area is the spread of the 45-member ensemble, the green area is the spread is the spread of
the calibrated (10-, 8- and 5-member) ensembles, the black line is the mean of the ensemble, and the red dots are the observations.

spread–skill relationship (i.e., resolution) of the calibrated
ensembles do not show any major improvement compared
to the 45-member ensemble, implying that the spread of the
ensemble does not represent the day-to-day transport errors
well. While the rank histogram suggests that the different cal-
ibrated ensembles have enough spread, the spread–skill rela-
tionship indicates that our ensemble does not systematically
encompass the observations. The disagreement between the
rank histogram and the spread–skill relationship can be as-
sociated with the metric used for the calibration (i.e., rank

histogram) and the biases included in the calibrated ensem-
ble. Using the score of the rank histogram alone may not be
sufficient to measure the reliability of the ensemble (Hamill,
2001); therefore, future down-selection studies should incor-
porate the resolution as part of the calibration process (skill
score optimization). The biases in the model are a complex
problem because there are many sources systematic errors
within an atmospheric model (e.g., physical parameteriza-
tions and meteorological forcing). Future studies should con-
sider data assimilation or improvement of the physics param-
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Figure 14. Sum of the CO2 mixing ratio variance of the large (45-
member) ensemble and the different sub-ensembles selected with
the SA (a) and GA (b) down-selection techniques.

Figure 15. Spatial correlation of CO2 for the 45- (a), 10-(b), 8-
(c) and 5-member (d) ensembles with respect to the location of the
Round Lake tower for DOY 180. This figure uses the calibrated
ensembles of 10, 8 and 5 members found by the SA technique.

eterizations to reduce or remove these systematic errors. To
improve the representation of daily model errors, additional
metrics should be introduced and the initial ensemble should
offer a sufficient spread, possibly with additional physics pa-
rameterizations, additional random perturbations, or modifi-
cations of the error distribution of the ensemble (Roulston
and Smith, 2003).

4.4 Error correlations

Rank histograms, as explained in Sect. 2.3.1, evaluate the en-
semble by ranking individual observations in a relative sense.

The ensembles calibrated using the rank histograms may be
representing the variances over the region correctly but not
the spatial and temporal structures of the errors (Hamill,
2001). These parameters are critical to inform regional in-
versions of correlations in model errors, directly impacting
flux corrections (Lauvaux et al., 2009). In this study, the cal-
ibrated ensembles show an improvement in the meteorolog-
ical variances and an increase in the CO2 variances relative
to the uncalibrated ensemble. However, spatial structures of
the errors were not evaluated and may be impacted by sam-
pling noise. Few members will produce a statistically limited
representation of the model error structures. For example, en-
semble model prediction systems use at least 50 members to
avoid sampling noise and correctly represent time and space
correlations. Figure 15 shows the spatial correlation of 300 m
DDA CO2 errors with respect to the Round Lake site on DOY
180. Error correlations increase significantly as our ensemble
size decreases. With fewer members, spurious correlations
increase, resulting in high correlations at long distances. As-
suming we sample only a few times the distribution of errors,
our ensemble is very likely to be affected by spurious corre-
lations with a variance on the order of 1/N . We conclude
here that our reduced-size ensembles are impacted by sam-
pling noise which would require additional filtering. Previous
studies have suggested objective methods to filter the noise
in small-size ensembles (i.e., Ménétrier et al., 2015) or mod-
eling the error structures using the diffusion equation (e.g.,
Lauvaux et al., 2009). Future work should address the impact
of the calibration on the error structures as this information
is critical in the observation error covariance to assess the
inverse fluxes. Concerning the magnitudes of the error cor-
relation, the calibrated sub-ensembles exhibit a larger con-
trast in correlation values compared to the 45-member error
correlations. Overall, the different ensembles show similar
flow-dependent spatial patterns which demonstrates that the
calibration process, even if generating sampling noise, pre-
serves the dominant spatial patterns in the error structures.
Therefore, the calibrated ensemble is likely to provide a bet-
ter representation of the variances and a similar spatial error
structure for the construction of error covariance matrices in
regional inversions.

5 Conclusions

We applied a calibration (or down-selection) process to a
multi-physics/multi-analysis ensemble of 45 members. In
this calibration process, two optimization techniques were
used to extract a subset of members from the initial ensemble
to improve the representation of transport model uncertain-
ties in CO2 inversion modeling. We used purely meteorolog-
ical criteria to calibrate the ensemble and avoid contaminat-
ing the calibration with CO2 flux errors. The calibrated en-
sembles were optimized using criteria based on the flatness
of the rank histogram. We generated different calibrated en-
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sembles for three meteorological variables; PBL wind speed,
PBL wind direction and PBLH. With these techniques, we
identified sub-ensembles by calibrating the three variables
jointly. Both techniques show that calibrated small-size en-
sembles can reduce the score of the rank-histogram flatness
and therefore improve the representation of the model error
variances with few members (between 5 and 10 members).

The calibration techniques improved the spread (flatness
of the rank histogram) of the ensembles and slightly im-
proved the biases, which were already small in the larger en-
semble, but the calibration did not improve daily atmospheric
transport errors as shown by the spread–skill relationship. We
assessed how the calibrated ensemble errors propagate into
the CO2 mole fractions simulated with identical CO2 fluxes
(i.e., independent of the atmospheric conditions). The spread
from the calibrated ensembles represented from 20 % to 40 %
(Table 5) of the model–data 300 m DDA CO2 mismatches for
summer 2008. These results suggest that additional errors in
CO2 fluxes and/or large-scale boundary conditions represent
a large fraction of the differences between modeled and ob-
served CO2. Error correlations of the calibrated ensembles
were compared to the large ensemble to identify any impact
of the calibration. Compared to the initial error structures,
the calibrated ensembles are most likely affected by sampling
noise across the region, which suggests that additional filter-
ing or modeling of the errors would be required in order to
construct the error covariance matrix for regional CO2 inver-
sion.

Code availability. The code is accessible upon request by contact-
ing the corresponding author (lzd120@psu.edu).

Data availability. Meteorological data were obtained from the Uni-
versity of Wyoming’s online data archive (http://weather.uwyo.edu/
upperair/sounding.html, last access: 20 July 2018) for the 14 rawin-
sonde stations. The tower atmospheric CO2 concentration dataset is
available online (https://doi.org/10.3334/ORNLDAAC/1202, Miles
et al., 2013) from the Oak Ridge National Laboratory Dis-
tributed Active Archive Center, Oak Ridge, Tennessee, USA
https://doi.org/10.3334/ORNLDAAC/1202 (Miles et al., 2013). The
other two towers (Park Falls – WLEF; West Branch – WBI)
are part of the Earth System Research Laboratory/Global Mon-
itoring Division (ESRL/GMD) tall tower network (Andrews et
al., 2014; https://www.esrl.noaa.gov/gmd/ccgg/insitu/, last access:
20 July 2018). The WRF model results are accessible upon request
by contacting the corresponding author (lzd120@psu.edu).
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Appendix A

Figure A1. Diagram of the rank-histogram process and selection of sub-ensembles based on the rank-histogram score.

Figure A2. Diagram of the simulated annealing algorithm process.
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Figure A3. Diagram of the genetic algorithm.
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Figure A4. Rank-histogram score of calibrated sub-ensembles of different size generated by simulated annealing (a–c) and the genetic
algorithm (d–f). Each bar represents the frequency of that score for the three different variables: wind speed (WSPD), wind direction (WDIR)
and PBL height (PBLH).
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