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Abstract. During the May—June 2016 International Cooper-
ative Air Quality Field Study in Korea (KORUS-AQ), light
synoptic meteorological forcing facilitated Seoul metropoli-
tan pollution outflow to reach the remote Tachwa Research
Forest (TRF) site and cause regulatory exceedances of ozone
on 24 days. Two of these severe pollution events are thor-
oughly examined. The first, occurring on 17 May 2016,
tracks transboundary pollution transport exiting eastern
China and the Yellow Sea, traversing the Seoul Metropoli-
tan Area (SMA), and then reaching TRF in the afternoon
hours with severely polluted conditions. This case study in-
dicates that although outflow from China and the Yellow Sea
were elevated with respect to chemically unperturbed condi-
tions, the regulatory exceedance at TRF was directly linked
in time, space, and altitude to urban Seoul emissions. The
second case studied, which occurred on 9 June 2016, reveals
that increased levels of biogenic emissions, in combination
with amplified urban emissions, were associated with severe

levels of pollution and a regulatory exceedance at TRF. In
summary, domestic emissions may be causing more pollu-
tion than by transboundary pathways, which have been his-
torically believed to be the major source of air pollution in
South Korea. The case studies are assessed with multiple
aircraft, model (photochemical and meteorological) simula-
tions, in situ chemical sampling, and extensive ground-based
profiling at TRF. These observations clearly identify TRF
and the surrounding rural communities as receptor sites for
severe pollution events associated with Seoul outflow, which
will result in long-term negative effects to both human health
and agriculture in the affected areas.
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1 Introduction

The spatiotemporal characteristics of ozone (O3), nitrogen
dioxide (NO;) and other urban pollutants have been moni-
tored at the ground level within the Seoul Metropolitan Area
(SMA) and throughout the Republic of Korea (commonly
referred to as South Korea) for several decades (Seo et al.,
2014). Although transboundary transport events from other
countries (e.g., China) have been demonstrated (Choi et al.,
2014), several studies have clearly illustrated the impacts of
domestic pollutants on rural receptor sites downwind of the
SMA (Kim et al., 2007; Jeon et al., 2014). Furthermore, neg-
ative effects associated with poor air quality in South Korea
(Ghim et al., 2005) have been connected with increased mor-
tality rates (Lee et al., 2000), and reduction in agricultural
yields (Wang and Mauzerall, 2004).

Recent work with high-resolution satellite records from
Duncan et al. (2016) indicate a decreasing trend in tropo-
spheric NO, columns throughout the SMA from 2005 to
2014 that has been attributed to regulatory (e.g., vehicular)
controls or a transition to low- or zero-emissions vehicles
(Wang et al., 2014). However, during this same time pe-
riod, the observed trend has increased near the petrochem-
ical and industrial regions to the west and southwest of the
SMA. Therefore, due to the complexities and heterogeneity
of emissions within the SMA (Vellingiri et al., 2015), it is im-
portant to assess chemical gradients that may occur among
sites with varying distances from emission sources (Ryu et
al., 2013; Igbal et al., 2014; Jeon et al., 2014; Lee et al.,
2014), including sites that may be rural pollution receptor
sites.

While a dense network of ground level observations over
South Korea exists to monitor pollution, information regard-
ing O3 and its precursors (e.g., oxides of nitrogen; volatile
organic compounds or VOCs, including biogenic VOCs or
BVOCs) above the surface has been sparse. Because of the
lack of chemical profiles, it is difficult to characterize O3
and other pollutants in the air and quantify the impacts of
vertical mixing down to the ground level. Analyses of ver-
tical profiles of O3 at the Olympic Park (OLY, 37.5232° N,
127.1260° E, 26 m a.s.1.) site within the SMA indicate photo-
chemical O3 production in the afternoon hours correspond-
ing mainly to local precursor advection from upwind regions
(the western part of SMA). More recent findings describe the
highest O3 events occurring at rural sites 30 km (Taehwa For-
est: TRF, 37.3123° N, 127.3106°E, 160m a.s.l.; Kim et al.,
2013) and 100 km (Chuncheon, 37.881° N, 127.676° E; Jeon
et al., 2014) from the SMA. Both of those studies linked the
high-pollution events to mobile (vehicular) source emissions
in the presence of natural biogenic emissions (i.e., advection
of SMA emissions away from their origins and into a high-
BVOC environment of increased O3 production efficiency).

To further investigate the vertical distribution of pollu-
tants impacting South Korea, the United States (US) Na-
tional Aeronautics and Space Administration (NASA) and
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the Korean Ministry of the Environment/Korean National
Institute of Environmental Research (NIER) conducted an
international cooperative field experiment with sampling at
both the TRF and OLY sites, entitled the Korea—US Air
Quality (KORUS-AQ, https://espo.nasa.gov/home/korus-aq/
content/KORUS-AQ, last access: 27 March 2019) study. The
KORUS-AQ observation period was specifically chosen to
target local photochemical pollution (which peaks in May—
June) rather than pollution transport which tends to be great-
est in March—April. Differences in daily average (24 h) NO,
(NO+NOg, Fig. 1c) and maximum daily hourly O3 (Fig. 1d)
during the KORUS-AQ study are presented from 10 May
to 11 June 2016. NO, (which is predominantly NO, dur-
ing daytime) can rapidly form Os in the presence of VOCs
and favorable meteorology. The two largest sources within
the South Korea NO, emissions inventory are (1) mobile or
vehicular (such as trucks, passenger cars, taxis, motorcycles,
totaling 41.7 %) and (2) “other” mobile sources (such as con-
struction or agricultural machinery, trains, aircraft, ships, to-
taling 20.0 %) (Lee et al., 2011).

The prevalence of vehicular emissions is apparent in
the urban environment (Fig. 1c) with NO, amounts at
OLY frequently an order of magnitude greater than those
at rural TREF. Herman et al. (2018) has further shown
during the KORUS-AQ study that the difference between
TRF (also referred to as Tachwa Mountain) and OLY in
columnar NO> can be as much as 3.0 DU (Dobson units,
1 DU =2.69 x 10'® molecules cm~2). The concentrations of
surface O3 at TRF during stagnant flow regimes far exceeded
those at OLY (Fig. 1d) on several days during the study,
indicating O3 formation within the SMA is VOC limited,
due to the overabundance of NO, (Jeon et al., 2012, 2014).
However, O3 formation can rapidly increase as the distance
from NO, sources increases. Recent chemical simulations
performed during the KORUS-AQ period by Miyazaki et
al. (2018) also reveal that observed boundary layer Oz can
be as much as a 30 ppbv (parts per billion by volume) dif-
ference between dynamic and stagnant flow regimes. Sup-
porting work at TRF has also shown that fast oxidation rates
(Kim, 2018) and overall oxidation capacity (Jeong et al.,
2018) at TRF can exacerbate severe pollution events.

The differences in daily maximum hourly O3 between
the TRF and OLY sites vary from day to day, but the sites
had mean and 1 h maximum concentrations of 86.1 £21.9
and 80.4 £ 17.5 ppbv, respectively. The South Korean na-
tional standard for O3 is 100ppbv for a 1h average and
60ppbv for an 8h average (http://eng.me.go.kr/eng/web/
index.do?menuld=253, last access: 27 March 2019). Both
sites exceeded the 8 h standard 24 times between 10 May
and 10 June 2016. However, TRF exceeded the national
1h standard 11 times, whereas OLY exceeded on only
3 days. These daily and diurnally varying O3 amounts dur-
ing the KORUS-AQ study at TRF are described with back-
trajectories (Sect. 2.1), synoptic meteorology (Sect. 2.2), and
balloon-borne profiles from TRF (Sect. 3.1.1). Since the evo-
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Figure 1. (a) Map of the Korean Peninsula, (b) inset view (red square from a) of the Olympic Park and Tachwa Research Forest sites,
(c) daily average NOy and (d) maximum hourly O3 at the TRF and OLY sites.

lution of plume composition is a critical component in under-
standing severe O3 exceedances, two contrasting case stud-
ies (17 May, Sect. 3.2, and 9 June,Sect. 3.3) of the 11 TRF
1 h exceedances are examined with aircraft and ground-based
measurements including O3 lidar and ceilometer backscatter
profiles. These are complemented by a photochemical box
model used to calculate net O3 production and are used dis-
tinguish urban and industrial emissions from one of mixed
urban and biogenic origins (Sect. 4).

2 Meteorological analyses
2.1 Back-trajectories

To understand variations in the air mass history as it is ad-
vected towards TRF, 4-D (time, height, latitude, longitude)
back-trajectories were simulated for every day during the
KORUS-AQ study (Fig. 2). The back-trajectory calculations
were performed using the Lagrangian FLEXible PARTicle
dispersion model (FLEXPART, http://flexpart.eu, last access:
27 March 2019; Brioude et al., 2013), driven by the WRF
(Weather Research and Forecasting) model meteorology at
3 km spatial resolution. For this simulation, thousands of “air
parcels” were released at 15:00 KST (Korean Standard Time;
UTC +9h), and their spatial and vertical (Fig. 2b) trajec-
tory locations were followed back in time for 6 h. Chaotic
processes like turbulence or convection were applied in a
stochastic manner to each parcel. At hourly intervals the con-
centration of parcels in each cell of a regular grid was calcu-
lated, thus providing the best statistical estimate of the air
mass location and altitude prior to reaching TRF.

Red trajectory paths in Fig. 2 are used to identify air
masses that were associated with the 11 O3 exceedance days
at TRF (based on the South Korean national standard of
1h standard of 100 ppbv in Fig. 1d). Two of these days,
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17 May and 9 June (detailed in Sect. 4), are shown in yel-
low and orange, respectively. Conversely, days where the
daily 1h O3 at TRF did not exceed 100 ppbv are shown
in blue. Days that exceeded the 1h standard had generally
shorter trajectory paths, indicating they were associated with
more stagnant conditions and weaker synoptic forcing. The
altitudes of exceedance day air masses (Fig. 2b) were also
much closer to the surface (thus closer to ground level an-
thropogenic and biogenic emissions) as compared to non-
exceedance days. Exceedance days at TRF were also associ-
ated with air masses that flowed through or near the southern
portion of the SMA, where they were more likely to inter-
act with local anthropogenic and industrial emission sources
(Igbal et al., 2014).

2.2 Geopotential height anomalies

The Modern-Era Retrospective analysis for Research and
Applications Version 2 (MERRA-2, https://gmao.gsfc.nasa.
gov/reanalysissMERRA-2/, last access: 27 March 2019;
Gelaro et al., 2017) 500 hPa geopotential heights and anoma-
lies (1981-2010 base period) are presented for 17 May
(Fig. 3a) and 9 June 2016 (Fig. 3b) at 21:00 KST. An upper-
level ridge exists on 17 May near northeastern China as
shown by positive geopotential height anomalies. Under a
surface high-pressure and light synoptic forcing, winds were
generally light (e.g., 1-2ms™! observed at TRF) and west-
erly in the morning and afternoon, changing to calm winds at
TREF after 14:00 KST. Based on the back-trajectory (Fig. 2),
the light westerly winds in the morning transported pollu-
tants from the western portion of the SMA to the eastern por-
tion. As the flow became more quiescent in the afternoon,
local emissions were pooled in the southeastern portion of
the SMA and then continued directly into the rural forested
area near TRF. This synoptic system also ushered in warm
(24 and 27°C at 15:00 KST at TRF and OLY, respectively)

Atmos. Chem. Phys., 19, 5051-5067, 2019
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Figure 2. Daily 6 h FLEXPART back-trajectory (a) spatial and (b) vertical locations for all parcels initialized at 15:00 KST at TRF throughout
the KORUS-AQ campaign. The two case studies are 17 May (yellow) and 9 June (orange).

and cloud-free conditions throughout the day. With this syn-
optic meteorology, unimpeded solar radiation, and ample O3
precursor emissions from SMA, TRF reached a maximum
hourly O3 value of nearly 120 ppbv (Fig. 1d) at 17:00 KST,
well above the 100 ppbv South Korean national standard.

In contrast, on 9 June a weak 500 hPa ridge existed over
South Korea, the Yellow Sea, and eastern China with a
450 m height anomaly. Under this multi-day weak synoptic
forcing, the back-trajectory indicates recirculation of the air
mass throughout the Korean peninsula, rather than extended
zonal transport. The air mass appears to have been tracked
near Seoul on the previous day, followed by recirculation
back to the densely forested region south and west of TRF.
Light and northwesterly surface winds occurred in the morn-
ing and afternoon (e.g., 2-3ms~! at TRF), decreasing and
becoming more southerly in the late afternoon (e.g., less than
0.5-1ms~! at TRF after 12:00 KST). Throughout the day,
the light northwesterly transported pollutants from the north-
west to the southeast within the SMA. As the flow reduced in
the afternoon and became more southerly, local fresh (as well
as aged and/or recirculated) emissions were pooled through-
out the southern portion of the SMA, yielding adequate time
to interact with the rural forested area near TRF. This sys-
tem was also associated with much warmer (27 and 31°C
at 15:00 KST at TRF and OLY, respectively) conditions than
those on 17 May, favoring increased emissions of BVOCs,
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such as isoprene (Kim et al., 2015). With weakly forced syn-
optic meteorology, TRF reached a maximum hourly O3 value
of nearly 110 ppbv, exceeding the 1 h 100 ppbv South Korean
national standard.

3 Case studies of pollution transport to TRF
3.1 Methods

Vertical profiles of key atmospheric chemical constituents
measured via aircraft and from ground-based platforms (Ta-
ble 1) during two representative case studies are used to bet-
ter understand transboundary and local transport effects from
urban regions to the rural landscape. To assess the trans-
port and evolution of urban emissions impacting TRF, air-
borne measurements of O3, NO;, CO (carbon monoxide),
SO, (sulfur dioxide), isoprene (CsHg), and toluene (C¢Hs-
CH3) were collected. Downwind plume chemistry is also fur-
ther investigated and fingerprinted using the onboard DC-8
observations and an explicitly constrained 0-D photochemi-
cal box model simulation. Constituent profiles at TRF were
also measured using ground-based instrumentation such as
O3 lidar (Sullivan et al., 2016, 2017), electrochemical cell
(ECC) O3 ozonesondes, and aerosol backscatter. Surface ob-
servations of O3, NO,, toluene, and isoprene at TRF are also
presented.

www.atmos-chem-phys.net/19/5051/2019/
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Figure 3. MERRA-2 500 hPa geopotential heights and anomalies for (a) 17 May and (b) 9 June 2016 at 21:00 KST (TRF marked in black

dot/arrow).

Table 1. Measurement species divided by each platform used throughout the case studies.

Quantity Method

Reference

Hanseo University King Air

03 UV absorption, Teledyne T400

NO, CAPS, Teledyne T500U .

CO UV fluorimetry, AeroLazer (AL5002) Kim etal. (2013)
SO, UV fluorimetry, Thermo 43i

NASA DC-8

03; NO,y Chemiluminescence Weinheimer (2006)

Isoprene, toluene
mass spectrometer (PTR-TOF-MS)

P(0O3) 0-D photochemical box model

Proton-transfer-reaction time-of-flight

Miiller et al. (2014)

Schroeder et al. (2016);
(MCM v3.3, http://mcm.]leeds.ac.uk/MCM/,
last access: 27 March 2019)

NASA B-200 King-Air

NO; slant column GeoTASO

Nowlan et al. (2016)

Taehwa Research Forest (TRF)

O3 Lidar, UV differential absorption
O3, temp., RH, winds  Electro-chemical cell, balloon-borne
O3 UV absorption, Thermo 49i

NO,
Atm. backscatter
Isoprene, toluene

CAPS, Teledyne T500U
Vaisaila CL-51
Proton-transfer-reaction mass
spectrometer (PTR-ToF-MS)

Sullivan et al. (2014, 2015a, b)

Thompson et al. (2007, 2019); Witte et al. (2017)
https://www.thermofisher.com/order/catalog/product/491
(last access: 27 March 2019)
https://www.epa.gov/research (last access: 28 March 2019)
https://www.epa.gov/research (last access: 28 March 2019)
Kim et al. (2010)

The instruments aboard the NASA DC-8 and Hanseo Uni-
versity King Air provide accurate, fast-response measure-
ments of trace gases and can be used in conjunction with
aircraft-based remote sensing instruments in some cases to
extend the characterization of pollution events. The Geosta-
tionary Trace gas and Aerosol Sensor Optimization (Geo-
TASO) airborne instrument was aboard the NASA B-200
King Air performing push broom raster sample routes to
complement flights. Measurements of backscattered solar ra-

www.atmos-chem-phys.net/19/5051/2019/

diation are used to determine slant column (slcol) amounts of
NO; at 250 m x 250 m spatial resolution, providing a quan-
titative spatial distribution of NO» throughout the SMA.

Ozonesonde profiles at TRF
A total of 34 O3z ozonesondes were released from TRF

throughout KORUS-AQ from 10 May to 12 June. After-
noon soundings (31 of the 34 launches between 13:30 and

Atmos. Chem. Phys., 19, 5051-5067, 2019
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16:30KST) of O3 (Fig. 4a) and temperature (Fig. 4b) il-
lustrate day-to-day variability in the first 3kma.s.l. From
10 to 16 May, concentrations were mostly between 70 and
80 ppbv, which were associated with cooler temperatures and
higher synoptic wind speeds. However, by the early after-
noon of 17 May, a stagnant high-pressure system located
over the Yellow Sea (see Fig. 3a) introduced a warmer air
mass, calmer winds, and clearer skies. Through most of the
campaign until 3 June, a similar meteorological setup per-
sisted, providing favorable conditions for rapid O3 produc-
tion to more than 120 ppbv. On 4 and 6 June, intermittent
shower activity events limited O3 production. However, by
9-10 June another high-pressure system (see Fig. 3b) ap-
proached the region, increasing temperatures, suppressing
wind speeds, and fostering O3z build-up. Two case studies
(17 May; 9 June, black boxes) are presented in this section
and Fig. 4 emphasizes the regularity of these enhanced levels
of pollution.

A box-and-whisker plot of the O3 profiles binned in 500 m
layers is also shown in Fig. 4. There were large disparities in
boundary layer O3 throughout the campaign period as com-
pared to free tropospheric conditions. Within the first 2 km,
median, lower quartile, and upper quartile ranges were 76—
95, 6776, and 87-108 ppbv, respectively. There were no out-
liers within this altitude region, indicating the sondes were
consistently sampling increased pollution events on flight
and non-flight days during the campaign. Within the free tro-
posphere from 2 to 6 km, median and lower quartile O3 val-
ues were from 73 to 81 and 66 to 74 ppbv, respectively. This
is markedly larger than the 50—65 ppbv baseline O3 estimates
derived for Trinidad Head, CA; Boulder, CO; and Huntsville,
AL, USA (Stauffer et al., 2016; Kuang et al., 2017). This
highlights the infrequency (i.e., <25 % of the time) of mea-
suring less than 66 ppbv of O3 within the boundary layer and
free troposphere and the subsequent regulatory challenge of
meeting the 8 h Korean O3 standard (60 ppbv).

3.2 Pollution event: 17 May 2016
3.2.1 Aircraft analyses: Hanseo University King Air

The positioning of the large-scale ridge displayed in Fig. 3a
was favorable for transport of Chinese industrial (e.g., CO;
SO,) and urban emissions to the Korean peninsula (Lee et
al., 2008). To assess potential transboundary transport from
other East Asian megacities, trajectories are shown for a full
48h prior to reaching TRF at 17 May at 15:00 KST. The
48 h back-trajectory (top panel, Fig. 5) indicates the air mass
was transported over the eastern China province of Shang-
dong, the Yellow Sea, and SMA prior to reaching TRF. Pol-
lution entering South Korea via this pathway was measured
by NIER instruments (Table 1) aboard the Hanseo Univer-
sity King Air aircraft during the morning of 17 May 2016
(Fig. 5).

Atmos. Chem. Phys., 19, 5051-5067, 2019
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The Hanseo University King Air conducted a sampling
pattern that included a near-ground-level approach in Seoul
and westbound leg out towards the Yellow Sea (green panel,
Fig. 5), a southbound leg directly over the Yellow Sea at two
altitudes (orange panel, Fig. 5), a returning eastbound leg
(magenta panel, Fig. 5), and then finally a northbound re-
turning leg towards Seoul (cyan panel, Fig. 5). During this
pattern, measurements of O3, NO,, CO, and SO, capture
long-range pollution transport across the Yellow Sea. East-
ern China is densely populated with coal-fired power plants,
which are strong emitters of NO,, SO;, and particulate mat-
ter (Zhao et al., 2008). Carbon monoxide and SO, are longer
lived species with lifetimes on the order of 1-2 months
(Miyakazi et al., 2012) and 1-2 days (He et al., 2012), re-
spectively, and are used to support the interpretation of trans-
boundary pollution transport. During the KORUS-AQ study
period, Huang et al. (2018) has further used CO to evaluate
chemical transport models and assess transboundary impacts
on the Korean peninsula.

During the low-level approach to Seoul near 08:55 KST
(denoted with dashed black line, Fig. 5) chemical sampling
of low O3 (20—40 ppbv), high NO, (2040 ppbv), high CO
concentrations (500-700 ppbv), and high SO, (610 ppbv)
are observed in the first 500 m a.s.l. These indicate morning
urban emissions (and subsequent O3 titration) and because of
the proximity to the surface level, these pollutants are largely
associated with local SMA vehicular and industrial morning
emissions. As the aircraft moves westward at 1000 m a.s.1., it
samples a much cleaner air mass but reaches a plume of pol-
luted air near 09:20 KST, associated with increased concen-
trations of O3 (to 90 ppbv), CO (to 500-600 ppbv), and SO,
(to 6-8 ppbv). In conjunction with the 48 h back-trajectory,
this is likely the outflow of aged industrial emission from
eastern China (Zhao et al., 2008) that has been transported
over the Yellow Sea. Similar concentrations of these species
are observed during the southbound leg at 500 ma.s.1., indi-
cating that the vertical distribution of pollutants is relatively
well mixed in the polluted air mass from 500 to 1000 m a.s.1.
During the eastbound leg at 1500 m a.s.1., the aircraft samples
mostly clean air with the exception of a pollution plume at
10:55 KST. As the aircraft returns to the Korean peninsula, it
observes relatively cleaner conditions until it approaches the
southern portion of the SMA near 11:30 KST.

In summary, the westbound in situ observations indicate
transport of polluted air across the Yellow Sea towards South
Korea. The largest chemical perturbations (e.g., 15-40 ppbv
in NOy; 6-10 ppbv in SO,, 200-300 ppbv in CO) during the
flight pattern were spatially correlated with local emission
sources during the initial ground level approach and the final
transect nearing the SMA. The southbound transect indicated
on this day that the background level of O3 is near 60 ppbv
and a 20-30 ppbv enhancement in O3 is observed at 500 m
over the water. However, the increases in NO» are chemically
responsible for rapid O3 production, which were observed in
near-negligible amounts during the transboundary transects.
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Figure 4. Afternoon soundings (13:30 to 16:30 KST) of O3 (a, from ECC O3 ozonesondes) and temperature (b, from concurrent radiosondes)
and a box-and-whisker plot (c¢) illustrate day-to-day variability at TRF. The two case studies (17 May and 9 June) are highlighted with black

boxes.

3.2.2 Aircraft analyses: NASA DC-8

Chemical observations from the NASA DC-8 throughout the
SMA from 15:05 to 15:40KST on 17 May 2016 are pre-
sented (Fig. 6). The aircraft route (Fig. 6a, with arrows) be-
gins in the southern region at 2.1 kma.s.l., moving north-
wards towards TRF and descending to near 1.7 kma.s.l. The
aircraft maintains this altitude on a northward track and turns
westward and descends to near 1.0 km a.s.1. towards Seoul to
perform a near-ground-level pass near the Seoul Incheon air-
port. The aircraft continues at 1.0km a.s.1., overpasses TRF
near 0.5kma.s.l., descends to nearly 0.3kma.s.l., and then
quickly ascends out of the boundary layer. The constituents
shown from the flight path are O3 (Fig. 6b), NO, (Fig. 6¢),
isoprene (Fig. 6d), toluene (Fig. 6e), and O3z production
(P(03), Fig. 61).

Toluene, a reactive aromatic and industrial VOC, is a use-
ful tracer for urban anthropogenic emissions because it is
a highly reactive O3 precursor with a chemical lifetime on
the order of a day. Toluene is a dominant VOC throughout
the SMA and contributes to nearly 60.7 % of the total VOC
emissions (Lee et al., 2011). Isoprene, a BVOC and deriva-
tive of photosynthesis, is largely associated with deciduous
trees (e.g., oak, which accounts for 85 % of broadleaf trees
in South Korea; Lim et al., 2011). Isoprene can enhance pho-
tochemical O3 production, is emitted almost entirely during
the daytime, can form additional oxidative byproducts, and is
released more abundantly with increased temperatures. Pre-
vious results from Kim et al. (2015) indicate that isoprene
accounts for most of the midday hydroxyl radical (OH) re-
activity (11:00-15:00 KST) at TRF and can rapidly increase
O3 production rates.

www.atmos-chem-phys.net/19/5051/2019/

Within the SMA and below 0.5kma.s.1., there is a sig-
nificant chemical perturbation as compared to the free tro-
pospheric concentrations of NO, (40-50 ppbv, Fig. 6¢) and
toluene (57 ppbv, Fig. 6e). These increases both lead to in-
creases in modeled P(O3) (10-20 ppbv h1, Fig. 6f). Iso-
prene is mostly less than 0.3 ppbv during this sampling. The
concentrations of NO; have increased by 10-20 ppbv since
the afternoon Hanseo University King Air sampling (Fig. 5),
indicating a persistent reservoir of reactive nitrogen com-
ing from SMA throughout the day. Additional DC-8 ob-
servations (not shown) indicate NO; accounted for 70 %—
90 % of the total reactive nitrogen during the 17 May over-
pass at TRF. Ozone remains mostly between 70 and 80 ppbv
(Fig. 6b) during the initial descent into Seoul, indicating
emissions are fresh enough that rapid O3 production has not
occurred yet (which is further corroborated with the P(O3)
model output).

As the aircraft moves towards TREF, it samples various spa-
tial chemical gradients. For example, NO, and toluene con-
centrations decrease to near 20-30 ppbv and near 2-3 ppbv,
respectively. An increase in isoprene concentrations to 0.5—
0.8 ppbv corresponds to the forested region southeast of
Seoul. Directly over TRF, O3 concentrations are increased as
compared to those near Seoul by 5-10 ppbv, indicating that
downwind O3 production has increased with diluted levels
of NO,. The aircraft passes TRF and continues its eastward
descent to 0.3 km a.s.1.; O3 concentrations markedly increase
to between 110 and 125 ppbv and P (O3) rapidly increases
to between 20 and 32 ppbvh~!. Although the aircraft sam-
ples nearly negligible concentrations of isoprene and NO;,
toluene concentrations have increased and are comparable to
those sampled near Seoul (3—4 ppbv). This is a strong indica-

Atmos. Chem. Phys., 19, 5051-5067, 2019
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Figure 5. Hanseo University King Air Flight on 17 May 2016 to sample O3, NO,, CO, and SO, over South Korea and the Yellow Sea from
08:50 to 11:34 KST. The 48 h FLEX-PART back-trajectory, which was initialized at 15:00 KST on 17 May 2016, is also shown.

tor of an aged urban air mass containing highly reactive O3
precursors impacting rural sites. In summary, transboundary
pollution transport was observed via the Hanseo University
King Air (Fig. 5) on 17 May, but locally emitted O3 precur-
sors can be confidently attributed as a catalyst for the highest
levels of boundary layer O3 production observed near TRF.

3.2.3 Ground-based observations at TRF

To fingerprint and quantify the transported pollution reaching
TRE, diurnally resolved observations are presented in Fig. 7
for the entirety of 17 May.

Atmos. Chem. Phys., 19, 5051-5067, 2019

08:00 to 12:00 KST. Ceilometer observations (Fig. 7a) and
GSFC O3 lidar observations (Fig. 7b), both containing an
aerosol mixing height retrieval (black line), indicate residual
layers and vertical stratification. Above the boundary layer
between 1000 and 1700 m a.s.l., enhanced aerosol backscat-
ter and concentrations of O3 near 70-80 ppbv are similar
in concentration and altitude to the transboundary pollu-
tion observed during the morning Hanseo University air-
craft flight (Fig. 5). Atmospheric layering also exists below
850ma.s.l., with a distinct high O3 (100-120 ppbv) region
near 600 ma.s.l. and low O3 (20—40 ppbv) and high aerosol
backscatter from 600 to 850 ma.s.l. Although NO; concen-

www.atmos-chem-phys.net/19/5051/2019/
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NASA DC-8 flight 17 May 2016 from 15:05 to 15:40 KST

(a) Altitude
km a.s.l.

(e)

Figure 6. NASA DC-8 measurements of (a) altitude, (b) Os,
(¢) NO3, (d) isoprene, (e) toluene, and (f) modeled P (O3) from the
afternoon science flight on 17 May 2016 from 15:05 to 15:40 KST.
Seoul and TRF are denoted.

trations are enhanced from 5 to 15 ppbv during this segment,
near 09:00 KST, residual layer entrainment appears to occur
as surface O3 (Fig. 7c) abruptly increases from 40 to 60 ppbv.
Increases in nitrate aerosol, either through N>Os hydrolysis
or morning residual layer entrainment, within the SMA dur-
ing the KORUS-AQ study have been further examined by
Kim et al. (2018). Near 11:30 KST, toluene (Fig. 7d) levels
increase to peak values for the day, near 8-9 ppbv, indicat-
ing the transport of urban industrial emissions (including the
increased NO3) to the site is well underway.

12:00 to 19:00 KST. The boundary layer is convectively
well-mixed to 1200 m a.s.l. with O3 concentrations near 85—
95 ppbv, similar to the in situ surface monitor. This plume has

www.atmos-chem-phys.net/19/5051/2019/

similar chemical composition to the plume observed “down-
wind”, or east, of TRF in the DC-8 observations, indicat-
ing O3 production continued as it moved away from the
SMA. O3 concentrations begin to decrease (by 25 ppbv) near
14:00 KST, in conjunction with a 25 ppbv increase in NO»,
conserving total odd oxygen (O, ). Near 15:20 KST, the DC-8
overflew TRF and sampled comparable concentrations of O3
and NO, as the lidar, sonde, and surface measurements. As
emissions continue to photochemically process and advect
over the TRF site, there is a rapid increase in O3, well-mixed
throughout the boundary layer, at TRF between 16:00 and
17:00 KST. Ozone concentrations increase by 60 ppbv and
NO; decreases by 15 ppbv, indicating total O, is not con-
served and a passing plume of urban emissions has arrived
at TRF. Isoprene (Fig. 7d) does not show a rapid change
throughout the day; however, it is near peak concentration
during this time. Concentrations of O3 above 125 ppbv per-
sist until 18:30 KST, although the mixing height decreases
rapidly during this time. The in situ observations indicate
concentrations were above 100 ppbv until 18:30, indicating
polluted conditions persisted well into the evening at the sur-
face and even longer aloft. This later afternoon buildup and
transport is also identified with results from Lennartson et
al. (2018) during the KORUS-AQ study, which indicate TRF
had consistently higher aerosol optical depth (AOD) values
of near 0.4-0.6 in the morning, decreasing throughout the
day and eventually rising again in the early evening at 15:00—
16:00 KST.

19:00-23:00 KST. After sunset (near 19:00KST), in-
creases in aerosol backscatter and O3 near 1500 m a.s.l. are
observed, indicating a stable residual layer persisted into the
evening, trapping pollutants at TRF. As surface O3 quickly
decayed to near 20 ppbv after 19:00 KST, it corresponded to
increases in NOj from near 15 to 20-30 ppbv and toluene
from 2 to 4 ppbv, which corroborate the incoming pollution
plume quantified with the DC-8 observations (Fig. 6c, e).
This indicates TRF was continuously perturbed by local ur-
ban emissions into the evening hours and this has likely af-
fected the next day’s chemical composition (e.g., Fig. 4 indi-
cates O3 at TRF on 18 May exceeded > 100 ppbv). Although
the combined suite of aircraft (Fig. 5) and lidar and ceilome-
ter observations (Fig. 7a, b) suggest transboundary O3z and
pollutants reached the TRF site, the lidar and in situ obser-
vations clearly indicate domestic anthropogenic emissions
were the dominant source of the O3 exceedance at TRF.

3.3 Pollution event: 9 June 2016

3.3.1 Aircraft analyses: NASA DC-8

Chemical observations were made with the NASA DC-8
instruments in a similar pattern to those on 17 May 2016
throughout the SMA from 15:20 to 15:55KST on

9 June 2016 (Fig. 8a, with arrows). However, the aircraft re-
mained at lower altitudes during the flight pattern prior to

Atmos. Chem. Phys., 19, 5051-5067, 2019
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TRF remotely sensed and in situ measurements 17 May 2016
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Figure 7. Time series of (a) ceilometer backscatter profiles and mixing heights, (b) GSFC TROPOZ DIAL O3 profiles, (¢) in situ surface
O3 and NO», and (d) isoprene and toluene concentrations for 17 May 2016. Note: the DC-8 overpass occurred at around 15:30 KST. The

colocated ozonesonde is denoted in (b) with a black triangle.

the initial upper-level pass of TRF. This resulted in low-level
sampling of the forested region and recirculated air mass.
This aged air mass was associated with increased concen-
trations of O3 to over 120 ppbv (Fig. 8b), low concentrations
of NO; (less than 5 ppbv; Fig. 8c), variable concentrations of
toluene (between 5 and 10 ppbv; Fig. 8e), variable concen-
trations of isoprene (between 0.1 and 0.7 ppbv; Fig. 8d), and
P (03) values between 20 and 35 ppbv h! (Fig. 8f).

Atmos. Chem. Phys., 19, 5051-5067, 2019

As the aircraft ascended out of the boundary layer
prior to reaching Seoul, O3 remained above 100 ppbv near
2000 ma.s.l. Mixing heights are 500 m deeper than on
17 May, presumably as a result of warmer temperatures and
greater convective mixing. As the DC-8 ascended out of the
overpass south of Seoul, NO, concentrations reached 20—
30 ppbv, toluene reached 3—6 ppbv, and isoprene exceeded
1.2 ppbv (nearing the peak concentration measured via the

www.atmos-chem-phys.net/19/5051/2019/
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NASA DC-8 flight 09 June 2016 from 15:20 to 15:55 KST
7 (a) Altitude (b) Ozone
{ ; km a.s.l. ; ppbv

(d) Isoprene
pptv

(e)

Figure 8. NASA DC-8 measurements of (a) altitude, (b) Os,
(¢) NO3, (d) isoprene, (e) toluene, and (f) modeled P (O3) from the
afternoon science flight on 17 May 2016 from 15:05 to 15:40 KST.

DC-8 during the entire campaign). This air mass was also as-
sociated with lower values of O3 and P(O3) as compared
to the forest plume south of TRF, at 75-90 ppbv and 10—
20 ppbvh~!, respectively, indicating the anthropogenic and
biogenic emissions were still fresh. Similar to 17 May, as
the aircraft leaves urban Seoul and approaches TRF there
is a strong spatial gradient in nearly all chemical con-
stituents. At TRF, O3 and P(O3) increase to over 120 ppbv
and 30 ppbvh~!, respectively, while NO, decreases to 5—
10 ppbv, indicating O3 production was rapidly occurring and
impacting rural sites downwind of Seoul.

www.atmos-chem-phys.net/19/5051/2019/

NASA B-200 GEOTASO flight 09 June 2016

‘Taehwa Forest

3 5 =
NO; slcol x 10'%cm2

A
:Taehwa Forest

14:00-16:00 KST

Figure 9. Observations of NO; slant columns from the GeoTASO
instrument during the two afternoon science flights on 9 June 2016
from 12:00 to 14:00 and 14:00 to 16:00 KST. TRF and Seoul are
denoted.

3.3.2 Aircraft analyses: NASA B-200

On 9 June 2016, the NASA B-200 performed a morning and
afternoon raster (Fig. 9) of the greater SMA from 12:00 to
14:00 and 14:00 to 16:00 KST, respectively. This yields a
unique view of the concentrations and chemical transport of
NO; throughout the SMA during the afternoon hours. Dur-
ing the 12:00-14:00 KST sampling, there is a clear maximum
in NO; slant columns in the south and west of Seoul. After-
wards, the 14:00-16:00 KST measurements show the advec-
tion of NO; (and presumably other urban pollutants) east-
ward and southward throughout the SMA. During the 14:00-
16:00 flight, large NO, column amounts extend to the south-
eastern portion of the SMA, with enhanced levels of NO;
reaching the edge of TRFE.

3.3.3 Ground-based observations at TRF

To fingerprint and quantify the chemical transport reaching
TRE, diurnally resolved observations are presented in Fig. 10
for the entirety of 9 June.

08:00 to 12:00 KST. Similar to 17 May, vertical profiles of
aerosol backscatter and O3 (Fig. 10a, b) throughout 9 June
indicate residual layering of the atmosphere in the morn-
ing hours. There exist descending layers of aerosols above
the residual layer associated with the recirculation of the air
mass from the previous day. Near 09:00 KST entrainment of
the residual O3 corresponds to an abrupt surface O3 increase
from 20 to 55ppbv (Fig. 10c). TRF is impacted with in-
creased surface NO; (Fig. 10c) towards 30 ppbv and toluene
(Fig. 10d) towards 4 ppbv during this time. Warmer temper-

Atmos. Chem. Phys., 19, 5051-5067, 2019
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TRF remotely sensed and in situ measurements 09 June 2016
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Figure 10. Time series of (a) ceilometer backscatter profiles and mixing heights, (b) GSFC TROPOZ DIAL O3 profiles, (¢) in situ surface
03 and NO», and (d) isoprene and toluene concentrations for 9 June 2016. Note: the DC-8 overpass occurred near 15:30 KST. The colocated

ozonesonde is denoted in (b) with a black triangle.

atures on 9 June compared to 17 May lead to higher daytime
isoprene concentrations (0.5 vs. 0.3 ppbv).

12:00 to 19:00 KST. Boundary layer concentrations of O3
and aerosols are well mixed with steady growth in O3 from
12:00 until 16:30 KST, when a rapid influx of O3 and aerosol
occurs. This occurs after a significant positive perturbation in
isoprene and precedes an abrupt increase in NO; and toluene.
The O3 peak closely corresponds to the O3 sampled via the

Atmos. Chem. Phys., 19, 5051-5067, 2019

DC-8 south and west of TREF, and in conjunction with the
back-trajectory (Fig. 2), it appears O3 was likely advected
through TRF during this time.

19:00to 23:00 KST. As solar radiation declines, in-air con-
centrations of O3 near 100 ppbv mixing to 2000 ma.s.1. are
observed, indicating a stable residual layer persisted into
the evening and likely impacted the next day’s O3 com-
position (e.g., Fig. 4 indicates O3 at TRF on 10 June ex-

www.atmos-chem-phys.net/19/5051/2019/
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Net 03 production rate vs. isoprene - third overpass at TRF
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Figure 11. Photochemical model output of net O3 production, P(O3), for all afternoon flights during the KORUS-AQ study compared to
measured concentrations of isoprene (a) and toluene (b). The case studies described in Sect. 3 are denoted in red (17 May 2016) and blue

(9 June 2016).

ceeded > 100 ppbv). As surface O3 quickly decayed to near
20 ppbv after 19:00 KST, it corresponded to increases in NO;
from near 15 to 20-30 ppbv and toluene from 8 to 10 ppbv,
which points to the incoming pollution plume captured with
the GeoTASO observations (bottom panel, Fig. 9), indicat-
ing TRF was impacted by regional urban emissions into the
evening hours. In conjunction with the aircraft, lidar, and sur-
face in situ observations, this case study emphasizes the role
of domestically produced emissions (both biogenic and an-
thropogenic) in perturbing the chemical composition down-
wind of Seoul.

4 Case studies in the context of the entire KORUS-AQ
study

4.1 Aircraft observation and P (0O3)

Although two case studies are presented to illustrate the con-
trasting types of pollution influences at TRE, it is impor-
tant to assess how representative events were for the entire
KORUS-AQ study. To do this, the chemical observations of
isoprene (Fig. 11a) and toluene (Fig. 11b) aboard the NASA
DC-8 are presented for all remaining afternoon flights (ex-
act dates can be found here: http://www-air.larc.nasa.gov/
missions/korus-aq/, last access: 27 March 2019). Data were
used when the DC-8 aircraft was below 1.5 kma.s.l. within
1° latitude and longitude of the TRF site. They are compared
with the photochemical box model results in order to illus-
trate the relative contribution of VOCs and BVOCs on O3
production during the campaign. In both panels of Fig. 11,
the case studies chosen (17 May — red, 9 June — blue) appear
to be accurate representations of “typical” pollution events
seen at TRF as recorded by all other days (black dots).

www.atmos-chem-phys.net/19/5051/2019/

For isoprene, 17 May had concentrations centered around
0.5 ppbv and were associated with P (O3) values between 5
and 15 ppbv h~!. However, 9 June concentrations of isoprene
were well over 0.5 ppbv, extending to over 2.0 ppbv. These
were associated with P(Oj3) values in excess of 20 ppbv h~!
and nearing 35 ppbv h™!, indicating that biogenic emissions
contributed more to net O3 production on this day than on
17 May. The 9 June case yielded nearly the highest isoprene-
driven O3 production rates during the campaign.

For toluene, 17 May appears to have several focused
regions of toluene nearing 7 ppbv mostly associated with
P (0O3) at or below 15 ppbv h~!. However, there is a subset of
toluene with concentrations between 3 and 5 ppbv that are as-
sociated with P (O3) rates between 20 and 35 ppbvh~!. This
is indicative of the aged urban plume associated with O3 pho-
tolysis reaching the area east of TRF. On 9 June, concentra-
tions of toluene are nearly all below 5 ppbv and are grouped
much closer together. This is indicative of a much more well-
mixed air mass (which was also suggested with the Geo-
TASO observations). Although 9 June was associated with a
larger contribution of isoprene-driven O3 production, it had
a similar concentration of toluene to 17 May, indicating that
both contrasting high-pollution events (and P(O3)) were as-
sociated with high levels of urban pollutants.

4.2 GSFC O3 lidar-derived campaign average

NASA GSFC O3 lidar profiles at TRF during all flight days
during the KORUS-AQ campaign (Fig. 12) can be used to de-
rive a diurnal campaign average (see Sullivan et al., 2015c).
The early morning low O3 feature is prominent in the com-
posite figure, as well as the in-air residual O3 concentra-
tions we have linked to transboundary transport between
65 and 75 ppbv above 500ma.s.]. As solar radiation and

Atmos. Chem. Phys., 19, 5051-5067, 2019
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Figure 12. Composite averaged curtain of GSFC TROPOZ DIAL observations during the KORUS-AQ study period. This comprises 31 days
of lidar data and over 250 h of measurements averaged together, and the analogous surface measurements and solar curve proxy are also

overlaid.

convective mixing increase in the late morning hours (af-
ter 11:00 KST), surface concentrations of O3 correlate bet-
ter with concentrations measured aloft from the lidar. In the
afternoon hours, O3 increases at a rate of 5ppbvh~! be-
tween 500 and 1500 m a.s.1. and peak O3 is observed between
17:00 and 18:00 KST. The difference between in-air and sur-
face concentrations in the evening can be linked to a decou-
pling of the surface layer and rapid depletion and titration of
surface O3 from local NO, emissions. This process isolates
the polluted in-air residual layer during nighttime hours that
will potentially affect downwind locations on the following
morning. This confirms that during the May—June time pe-
riod, the late-day peak O3 occurrence is a persistent feature
and is more enhanced than at the surface.

5 Conclusions

As part of the KORUS-AQ study, nearly continuous chemical
measurements at the surface and within the first 3kma.s.l.
have quantified several of the key pollution features (e.g.,
residual layer O3 entrainment and late-day O3 maxima) re-
sponsible for O3 exceedances observed at a rural site down-
wind of Seoul. The combination of aircraft (NASA DC-8,
Hanseo University King Air, and NASA B-200), in situ (sur-
face level and balloon-borne) and remotely sensed (O3 lidar,
ceilometer) measurements, in conjunction with photochem-
ical model simulations, have produced significant findings
about the origins of pollution reaching TRF that appear to
be representative of other rural sites in South Korea. Two
detailed case studies have been presented, which indicate
a mixture of urban—anthropogenic emissions and biogenic
emissions impacting TRF. These case studies are also char-
acteristic of the entire study (see Fig. 12), suggesting late-
day O3 increases occur frequently at TRF, and that rural sites
in this region may be experiencing long-term negative ef-
fects of O3. Because threshold health effects, mortality rates,
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and crop yield analyses have been historically calculated us-
ing only surface measurements (Lee et al., 2000; Kim et al.,
2004; Wang and Mauzerall, 2004; Ghim et al., 2000), Fig. 12
also indicates that these analyses may be underestimating the
extent of the negative impacts of high O3 at TRF and its sur-
rounding rural areas.

These results clearly demonstrate that Korea is subject
to highly (aged) polluted air masses that cross the Yellow
Sea but are exacerbated by domestic pollution produced
near SMA. This emphasizes a reevaluation of domestic
emission controls, in particular reactive aromatics such as
toluene (e.g., toluene not only contributes to the P(O3)
shown herein, but also contributes to 9% of modeled
secondary organic aerosol over SMA; Nault et al., 2018).
Organic aerosol formation has also been recently inves-
tigated during the KORUS-AQ study period to estimate
relationships between in situ observations and satellite
derived products (e.g., formaldehyde; Liao et al., 2019).
These findings are in line with the detailed Rapid Science
Synthesis  Report (https://kr.usembassy.gov/wp-content/
uploads/sites/75/2017/07/KORUS-AQ-RSSR.pdf, last
access: 27 March 2019) that provides findings from the
KORUS-AQ study which are intended to be useful for policy
makers as they develop air quality mitigation strategies
and continue to identify specific emission sources that
should be targeted for reduction. Direct observations of
free tropospheric O3 were rarely observed below 60 ppbv
during the KORUS-AQ study period (see Figs. 4c and 12),
indicating that the baseline conditions on which South
Korean national regulatory standards are predicated are
trending (Cooper et al., 2014) towards a regime where they
are increasingly unattainable. In order to further assess
transboundary pollution, emission sources, and plume
evolution, there has been an international effort to launch
the Geostationary Environmental Monitoring Spectrometer
(GEMS) to provide hourly measurements of key pollutants
(e.g., O3, NO3, SOy, and particulate matter) over the Korean
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peninsula and the Asia—Pacific region. The KORUS-AQ
analyses offer an exemplary synergistic approach on how to
collect the statistics required by the regulatory agencies of
Korea to improve air quality in both urban and rural settings.

Data availability. Unless otherwise noted, all data used in this
study are available in the KORUS-AQ data archive (http://www-air.
larc.nasa.gov/missions/korus-aq/, last access: 27 March 2019).
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