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Abstract. In this paper we present a new description of sta-
tistical probability density functions (pdfs) of polar meso-
spheric clouds (PMCs). The analysis is based on observa-
tions of maximum backscatter, ice mass density, ice particle
radius, and number density of ice particles measured by the
ALOMAR Rayleigh–Mie–Raman lidar for all PMC seasons
from 2002 to 2016. From this data set we derive a new class
of pdfs that describe the statistics of PMC events that is dif-
ferent from previous statistical methods using the approach
of an exponential distribution commonly named the g distri-
bution. The new analysis describes successfully the proba-
bility distributions of ALOMAR lidar data. It turns out that
the former g-function description is a special case of our new
approach. In general the new statistical function can be ap-
plied to many kinds of different PMC parameters, e.g., max-
imum backscatter, integrated backscatter, ice mass density,
ice water content, ice particle radius, ice particle number den-
sity, or albedo measured by satellites. As a main advantage
the new method allows us to connect different observational
PMC distributions of lidar and satellite data, and also to com-
pare with distributions from ice model studies. In particular,
the statistical distributions of different ice parameters can be
compared with each other on the basis of a common assess-
ment that facilitates, for example, trend analysis of PMC.

1 Introduction

First studies of probability distributions of polar mesospheric
clouds (PMCs) were reported by Thomas (1995) using data
from the UVS (ultraviolet spectrograph) instrument on board
the Solar Mesosphere Explorer (SME) satellite and from
the Solar Backscatter Ultraviolet (SBUV) instrument on

the Nimbus-7 satellite over the period 1978–1986, measur-
ing scattered limb albedo at 265 nm and nadir albedo at
273.5 nm, respectively. Thomas (1995) introduced empirical
measures in the statistical analysis of PMC brightness distri-
butions. He showed that the frequency distribution of PMC
albedo derived from both SME and SBUV satellite data can
be approximated by an (normalized) exponential probability
function, see Fig. 3 in Thomas (1995). Secondly, the author
also proposed to use cumulative frequency numbers (the so-
called g function) of clouds, g(A), exceeding a certain albedo
A in order to better represent the exponential populations.
Examples of g distributions are plotted on a semilogarithmic
scale in Fig. 4 in Thomas (1995), clearly indicating an ap-
proximately linear behavior of cumulative frequencies in a
logarithmic format.

In the following years many observational PMC analyses
of seasonal statistics have been published frequently using
the g function, e.g., reports from Wind Imaging Interferome-
ter (WINDII) and Polar Ozone and Aerosol Measurement II
data (Shettle et al., 2002), SBUV data (Deland et al., 2003),
Student Nitric Oxide Explorer (SNOE) data (Bailey et al.,
2007), ice water content data derived from SBUV (DeLand
and Thomas, 2015), or ALOMAR lidar data (Fiedler et al.,
2017). Also model analyses have used the g function inves-
tigating trends and long-term changes in PMC parameters
(Lübken et al., 2013; Berger and Lübken, 2015).

The g-function approach has been relatively successfully
applied to many kinds of different PMC parameters as
brightness, albedo, maximum backscatter ratio, integrated
backscatter, ice water content, ice mass densities, ice parti-
cle size, or ice particle number density since frequency his-
tograms of all these parameters have sometimes a nearly, at
least piecewise, exponential shape. Furthermore, sometimes
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PMC data seem to fit almost perfectly to exponential distri-
butions, particularly when using cumulative standardizations
of data (Thomas, 1995). An example of a good exponential
fit is the frequency distribution of ALOMAR backscatter data
that are discussed in Sect. 3.1.1. On the other hand, in some
statistical applications it is obvious that the exponential ap-
proach describes the data rather insufficiently, see examples
of ice mass density, ice radius, and ice number density in
Sect. 3.1.2. Therefore it is a desirable task to provide some
more aspects on the theory of PMC statistics.

This paper makes an attempt to investigate in more de-
tail the statistics of probability density functions (pdfs) of
PMC climatology for various ice parameters. In the follow-
ing we analyze a PMC data record of maximum backscatter,
ice mass density, ice particle radius, and number density from
the period 2002–2016 measured by the ALOMAR Rayleigh–
Mie–Raman (RMR) lidar. From the analysis of these ALO-
MAR data, we derive a new class of pdfs of PMC distribu-
tions that, as we will show, modifies and improves the ex-
ponential (g-function) approach as introduced by Thomas
(1995).

2 Description of ALOMAR lidar data

The data set obtained by the ground-based RMR lidar, lo-
cated at the Arctic station ALOMAR (69◦ N, 16◦ E), consists
of occurrence frequency, brightness, and altitude of PMC.
The RMR lidar is in operation on a routine basis during the
summer seasons (PMC season: 20 May to 20 August) since
1997. Since summer 2002 the lidar system has the general ca-
pability to run in a multiple wavelength (3-color) mode. We
briefly summarize the 3-color lidar technique: laser pulses at
three separated wavelengths (355, 532, 1064 nm) are emit-
ted, scattered back by air molecules and ice particles in the
atmosphere, and collected by telescopes. The received light
is recorded by single photon counting detectors with an in-
tegration time of 15 min. After separation of the ice parti-
cle and molecular backscatter signal, we extract three verti-
cal profiles of so-called backscatter coefficients, which are
a measure of height-dependent brightness of the ice cloud.
At the height of maximum backscatter (MBS) at 532 nm we
calculate three MBS values. We assume that at the altitude
of MBS, typically located near 83 km, the actual shape of
the ice particle distribution can be described by a normal
distribution. Then we derive from the three measured MBS
values the characteristics of the normal distribution with
mean ice radius, ice number density, and variance (Baum-
garten et al., 2007). Finally, we also estimate from these ice
parameters the actual ice mass density (IMD) at the MBS
height. Such a Gaussian assumption has been widely used in
PMC data processing of lidar and satellite data, e.g., ALO-
MAR lidar (Baumgarten et al., 2010) and AIM satellite with
SOFIE/CIPS instruments (Hervig and Stevens, 2014; Bailey
et al., 2015). Also microphysical model studies show strong

evidence of Gaussian-distributed ice particles at the height
of maximum brightness of PMC, e.g., Berger and von Zahn
(2002) and Rapp and Thomas (2006).

In this paper we will analyze the climatology of all ice
seasons from 2002 until 2016 merging all 15 seasons to one
data record. Within this combined data set we then get a total
numberN of 8597 observations, which is sufficiently numer-
ous in order to avoid excessive statistical irregularities in a
frequency histogram of the data.

3 The exponential probability distribution (g function)

In general, the seasonal climatology of PMC events with
measured ice parameters, such as integrated backscatter,
maximum backscatter, column ice mass, albedo, or ice mass
density, has been supposed to follow an exponential distribu-
tion that we name E(x) with ice parameter variable x. In the
following we summarize the general characteristics of the ex-
ponential distribution that allows us to compute a numerical
test for exponentially distributed data. The properties of the
exponential probability distribution will be also compared
with the characteristics of our new probability distribution
approach introduced in Sect. 4.

The general form of the exponential distributionE(x)with
scale parameter α > 0 is defined as a pdf given by E(x)=
α exp(−αx) that fulfills the normalization condition of a pdf
with

∫
∞

0 E(x)dx = 1. Thomas (1995) defined the g function
g(x) as the cumulative probability Ecum with

g(x)= Ecum(x)=

∞∫
x

αe−αx dx′ = e−αx . (1)

Taking the logarithm of E yields a straight line ln(E)=
lnα−αx. For a given class of values [x1;x2] the likeli-
ness of this class is proportional to the area enclosed by the
continuous probability distribution and is obtained by inte-
grating E on the segment length (bin size) 1x = x2− x1 as∫ x2
x1
Edx =−e−αx2 + e−αx1 .

A statistical analysis of ice parameters has to take into ac-
count the aspect of specific sensitivities of different instru-
ments. For example the ALOMAR lidar is generally sen-
sitive to a backscatter signal larger than a threshold about
2–3× 10−10 m−1 sr−1 (Fiedler et al., 2017). When consid-
ering a threshold (xth) the exponential pdf E(x) is normal-
ized according to A

∫
∞

xth
E(x)dx = 1 with a scaling factor

A= exp(αxth). We summarize the properties of the expo-
nential distribution taking into account a threshold in Ap-
pendix A.

For a threshold of zero (xth = 0) we get the regular ex-
ponential distribution E(x) that has the mean µ= 1/α; me-
dian ν = ln(2)/α; mode η = 0, which is the value that occurs
most frequently in the data sample; variance σ 2

= 1/α2; and
standard deviation σ = 1/α. Note that the exponential distri-
bution has the unique property that the mean µ and standard
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deviation σ are identical, see also Eqs. (A1) and (A4). In
combination with the median (Eq. A2), these equations form
a simple statistical constraint, namely

µ− xth = σ = (ν− xth)/ ln(2). (2)

This allows us to test whether a given observational data sam-
ple shows good conformity with an exponential (g-function)
distribution.

For a given data sample xi (i = 1, . . .,N ) assuming a
threshold xi > xth we use the common estimates of mean m
and variance s2 (standard deviation s) with

m=
1
N

N∑
i

xi, s
2
=

1
N − 1

N∑
i

(xi −m)
2, x > xth. (3)

In addition we also calculate the median m̃ and mode m̂.
Hence testing a data sample to be exponentially distributed
means that mean, median, and standard deviation of the sam-
ple have to fulfill the following identity:

µ− xth = σ =
ν− xth

ln(2)
−→m− xth = s =

m̃− xth

ln(2)
. (4)

We will use this condition to analyze the ALOMAR data with
respect to possible exponential (g-function) distributions.

3.1 Analysis of ALOMAR data on exponential
distributions (g function)

3.1.1 Analysis of maximum backscatter data

We investigate the frequency distribution of MBS at 532 nm
in units of 10−10 m−1 sr−1. We assume a threshold of 3 that
corresponds to the instrumental sensitivity of the ALOMAR
lidar. Then we sort the x=MBS data to a bin size of one
per class starting from the threshold value and calculate a
frequency histogram. Finally, we normalize the histogram so
that the sum of all frequency classes equals one.

Figure 1a shows the frequency distribution of x=MBS
data in a semilogarithm diagram. The first impression is that
the data points are almost perfectly approximated by a lin-
ear regression besides some statistical noise. This indicates
that an exponential function describes the distribution of data
with a high accuracy. Figure 1b shows the distribution his-
togram in an original nonlogarithmic representation. We see
that the exponential fit matches the data histogram with a
high precision. The good quality of the fit is characterized
by a small relative error of 6.5 % that is calculated as a sum
of 100% ·

∑M
j |Ej −Xj | for x > 3 with theoretical exponen-

tial frequencies Ej and normalized frequencies Xj of data x
per class j with a total of M classes. The high quality of
the fit is also supported by the fact that theoretical mean,
median, mode, and standard deviation (µ, ν, η, σ ) using
Eqs. (A1)–(A4) and estimates of mean, median, mode, and
standard deviation (m, m̃, m̂, s) from the data sample de-
rived from Eq. (3) all coincide within their error bars. Now

we perform the proposed exponential (g-function) test with
m−xth = s = (m̃−xth)/ ln(2), see Eq. (4), and insert the val-
ues from the data sample of mean (m= 12.0± 0.3), median
(m̃= 9.0± 0.4), and standard deviation (s = 9.2± 0.5). The
error uncertainties have been estimated with bootstrap meth-
ods. We find thatm−xth = 12.0−3= 9±0.3, s = 9.2±0.5,
and (m̃−xth)/ ln(2)= (9.0−3)/0.69315= 8.7±0.6. Hence
the identity is fulfilled when allowing for uncertainties intro-
duced by statistical errors. We conclude that lidar MBS data
are very likely exponentially distributed and follow a g func-
tion.

3.1.2 Analysis of ice mass density, ice radius, and ice
number density data

Now we investigate other ice parameters from the ALOMAR
data set with respect to exponential distributions, namely the
frequency distributions of IMD in units of mg m−3 (thresh-
old 20, bin size of 2), ice radius r in units of nm (thresh-
old 20, bin size of 1), and ice number density n in units
of cm−3 (threshold 30, bin size of 10). We will show that
these parameters do not follow an exponential distribution
(g function). In Fig. 2a we plot the frequency distribution for
y= IMD data in a semilogarithmic diagram. We show in the
following that the data points have no dominant linear shape.
There exist systematic deviations from data and the theoreti-
cal exponential fit. In comparison to the fit curve, data points
are systematically smaller at y = 20–40. Vice versa, data
points substantially exceed fit values in the range y = 40–
90. Also, frequencies in all classes below the threshold are
significantly smaller than a proposed exponential fit. Indeed,
the frequency histogram in the nonlogarithmic frame shows
these systematic deviations between data and exponential fit
even more pronounced, see Fig. 2b. With a relative error of
about 19 % the exponential curve fails to satisfactorily fit the
data. Also, significant differences exist between fit and data
parameters of mean, median, mode, and standard deviation
(Fig. 2b). Finally, we apply the exponential (g-function) test
for IMD data and get the following results: finding the mean
(m= 62.5±1.3), median (m̃= 53.5±1.4), and standard de-
viation (s = 35.2±1.2) directly calculated from the data sam-
ple, we get m−yth = 62.5−20= 42.5 not equal to s = 35.2
not equal to (m̃− yth)/ ln(2)= (53.5− 20)/0.69315= 48.3.
Hence the condition of identity is not satisfied even allowing
for uncertainties introduced by statistical errors again calcu-
lated from bootstrap methods. That is why we have to con-
clude that the lidar IMD data are very likely not exponen-
tially distributed. When we investigate a possible exponen-
tial distribution for ice radius r and ice number density n
data, see Fig. 2c–f, we even see larger discrepancies between
data and exponential fits with, for example, relative errors of
about 29 %, also indicating that both r and n are very likely
not exponentially distributed. This is supported by the fact
that the test of mean, median, and variance fails again and
shows large inequalities.
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Figure 1. (a) Logarithm of frequency distribution of maximum backscatter (x=MBS) in units of 10−10 m−1 sr−1 (gray points x > 3; black
circles 0< x < 3). The bin size is 1x = 1. The straight line (solid red) has been derived from a least-squares fit to MBS data with x > 3.
(b) Same as (a), but original nonlogarithmic frequency distribution (gray bars x > 3; black bars 0< x < 3). The exponential fit derived from
panel (a) is shown as a red curve. Values of mean, median, and standard deviation are given to compare fit and original data taking into
account a threshold of xth = 3. The relative error given in percent describes the quality of exponential fitting, see text for details.

We summarize that ice mass density, ice radius, and ice
number density do not follow an exponential distribution in
contrast to maximum backscatter. In the following section
we will show that this is reasonable and is based on the fact
that a functional link between MBS and the other data sets of
IMD, r and n does miss a linear relationship.

3.2 Test of linearity between maximum backscatter
and ice mass density, ice radius, ice number density
data

Linearity between MBS and IMD, ice radius r and ice num-
ber density n data, is a necessary and sufficient condition that
also shows that IMD, r and n data, samples are exponen-
tially distributed, see next section. In the following we will
test this constraint. Figure 3a shows a scatter plot in a log-
arithmic frame for simultaneously measured MBS and IMD
data. In order to test a linear relationship between x=MBS
and y= IMD we introduce a general fit function described
by a power law condition as

y(x)= cxd ⇔ x(y)= (y/c)1/d (5)

with the two constants c (linear constant) and d (power con-
stant). Only for d = 1 we expect a perfect linear dependence
between x and y. First of all, the logarithmic values of x and
y do not yet have a high linear correlation (R = 0.54), see
Fig. 3a. Since the correlation coefficientR is unequal one, the
two regression lines resulting from y(x) : lnx 7−→ lny and
x(y) : lny 7−→ lnx differ from each other. This means that
the best choice of a regression fit is determined by a straight
line through the two regression points, which are defined by
the means plus/minus standard deviations of logarithmic x
and y data. Note that the positions of regression points also
relate to the half-width of the angle that is spanned by the
two regression lines y(x) and x(y). For our mean regres-

sion line we estimate d = 0.873. The statistical error for d
is1d =±0.012 with a confidence level of 95 %, which indi-
cates a significant nonlinearity. Hence we conclude that the
pdf describing the distribution of IMD data is very likely not
an exact exponential function and its cumulative distribution
does not follow precisely a g-function description because
the criterion of “linearity” is violated. In Fig. 3b we show a
second example for the correlation between MBS and ice ra-
dius n. Again the correlation is about R = 0.55, but now the
power constant is even much smaller with d = 0.497, which
is far away from unity. Finally, we investigated the linear-
ity between MBS and ice number density n where we find a
weak negative correlation of R =−0.15 (not shown here). A
best fit analysis yields a power value of d =−0.534, which
again fails significantly the constraint of unity. Hence we
conclude that ice radius and ice number density distributions
should also not follow exponential (g-function) distributions.

4 A new probability density function for PMC
parameters

In this section we will present the major part of the new sta-
tistical approach in order to describe frequency distributions
of different PMC parameters.

There exists a general mathematical method (“integration
by substitution”) that provides the opportunity to transform
between pdfs with different statistical variables. This is done
by the following procedure: assuming a given pdf P(x) with
variable x, then the transformation from x to a new variable
y(x) with a new pdf Q(y) is specified by

Q(y)= ‖∂x/∂y‖ ·P(x(y)) (6)

with x(y) being the inverse function of y(x). Here the ab-
solute value of the derivative ∂x/∂y has to be calculated so

Atmos. Chem. Phys., 19, 4685–4702, 2019 www.atmos-chem-phys.net/19/4685/2019/
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Figure 2. (a) Logarithm of frequency distribution of ice mass density (y= IMD) in units of mg m−3 (gray points y > 20; black circles
0< y < 20). The bin size is1y = 2. The straight line (solid red) has been derived from a least-squares fit to IMD data with y > 20. (b) Same
as (a), but original nonlogarithmic frequency distribution (gray bars y > 20; black bars 0< y < 20). The exponential fit derived from (a)
is shown as a red curve. Values of mean, median, and standard deviation are given to compare fit and original data taking into account a
threshold of yth = 20. The relative error given in percent describes the quality of exponential fitting. (c, d) Same, but for ice radius r in units
of nm with bin size 1r = 1 and threshold rth = 20. (e, f) Same, but for ice number density n in units of 1 cm−3 with bin size 1n= 10 and
threshold nth = 30.

that the new pdf Q is defined positively everywhere. In or-
der to apply this approach one needs generally two require-
ments (1) Any transformation between the two pdfs, P and
Q, needs an initial guess in one of the two pdfs, either P
or Q. (2) An analytic formula of a forward and backward
model must be available that describes the functional depen-

dence between the two statistical ice variables x and y. In the
following we discuss how we satisfy these two requirements.

We apply this method for two ice parameters, namely
MBS with variable x and an unknown ice parameter named
u (e.g., this unknown ice parameter might be ice particle ra-
dius). For condition (1), we use the hypothesis that the distri-
bution of maximum backscatter data (MBS) is perfectly rep-
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Figure 3. (a) Maximum backscatter (x=MBS) versus ice mass density (y= IMD) in a logarithmic frame for all data with correlation
coefficient R and regression parameters c and d, see text for more details. Regression points p1/2 = [m±1m;n±1n] are calculated with

m= 1/N
∑N
i lnxi , n= 1/N

∑N
i lnyi , 1m=

√
1/N

∑N
i (lnxi −m)

2, and 1n=
√

1/N
∑N
i (lnyi − n)

2. Mean and median are calculated
from original nonlogarithmic data. The solid line shows the mean regression defined by regression points and corresponding c and d values.
Dashed lines result from simple regression analysis of y(x) : x⇒ y and x(y) : x⇒ y. (b) Same for x=MBS versus ice radius r .

resented by an exponential pdf and its cumulative distribution
is described by a g function according to Eq. (1). For con-
dition (2), we assume a power form of a fit function used in
Eq. (5) that also allows us to analytically calculate the inverse
function. We discuss a suitable justification of this assump-
tion in Sect. 6.2. Hence the forward model is u(x)= cxd and
the backward model is x(u)= (u/c)1/d . Then the new dis-
tribution U for the arbitrary ice parameter u using Eq. (6) is
given by

U(u)=‖∂x/∂u
/
| ·E(x(u)) (7)

=

∥∥∥∥ 1
du
·

(u
c

)1/d
∣∣∣∣ ·αe−α(u/c)1/d .

Equation (7) can be simplified to a more general form with

U(u)= ã |̃b|ub̃−1e−ãu
b̃

, ã = α

(
1
c

)1/d

, b̃ =
1
d
. (8)

In a next step we introduce, in an arbitrary manner, a third
ice parameter named z for which we assume again the same
power law (Eq. 5) now valid between z and u as

z(u)= c̃ud̃ ⇔ u(z)= (z/̃c)1/d̃ .

Again we apply Eq. (6) and calculate the unknown pdf Z(z):

Z(z)=‖∂u/∂z‖ ·U(u(z))

=

∥∥∥∥ 1
d̃z
·

(z
c̃

)1/d̃
∥∥∥∥ · ãb̃((z/̃c)1/d̃)b̃−1

e−ã(z/̃c)
b̃/d̃

=

∥∥∥∥∥ ãb̃d̃
∥∥∥∥∥ · z−1

(
(z/̃c)1/d̃

)b̃
e−ã(z/̃c)

b̃/d̃

.

At first glance the algebraic expression for Z looks particu-
larly complex, but Z can be transformed to a general form

with a = ã(1/̃c)b̃/d̃ and b = b̃/d̃ as

Z(z)= a|b|zb−1e−az
b

(a > 0,b 6= 0). (9)

Equation (9) represents our final result. The pdf Z(z) de-
scribes the general form of the new statistical distribution.
Note that the algebraic expressions of Eqs. (8) and (9) for-
mally coincide. This means that any probability distribution
of a new ice parameter that is connected to other ice param-
eters through our functional power law (Eq. 5) can be de-
scribed by the general pdf given by Eq. (9). The constants
a and b represent two free parameters in the Z distribution,
which we name the scale parameter a and the shape param-
eter b. Obviously, the Z pdf is identical with an exponential
pdf (or g function) in the limit b = 1. This shows the close in-
terconnection of the new Z pdf to the commonly used expo-
nential (g-function) approach. We will show in the following
that any distribution from so different ice parameters, such as
maximum backscatter, ice mass density, ice radius, and num-
ber density of ice particles, can be described on a uniform
basis with a high accuracy by Z . Vice versa this indicates
that these ice parameters are connected depending on each
other by the uniform power law relation (Eq. 5), more details
are discussed in Sect. 6.2.

5 Application of the Z distribution to real data

5.1 General properties of the Z distribution

In this section we first show some general characteristics of
the new Z distribution. From these properties we derive con-
ditions and constraints that will allow to estimate the specific
values of the two free constants in Z , the scale parameter a
and shape parameter b, for a given data sample.
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First we show that Z is a correct pdf satisfying the nor-

malization condition
∞∫
0
Zdz= 1:

∞∫
0

Zdz=

∞∫
0

a|b|zb−1e−az
b

dz= −
|b|

b
e−az

b

∣∣∣∣∞
0
= 1.

The definition range of Z(z;a,b) is z ≥ 0, a > 0, and b 6= 0
with Z(z < 0)= 0 and

Z = a|b|zb−1e−az
b

, (10a)

ln(Z)= ln(a|b|)+ (b− 1) · ln(z)− azb, b > 0.

For a negative b the distribution Z is described by

Z = a|b|
(

1
z

)|b−1|

e−a(1/z)
|b|

, (10b)

ln(Z)= ln(a|b|)+ |b− 1| · ln(1/z)− a(1/z)|b|, b < 0.

The cumulative form of Z for b > 0 is given by

Zcum(z)=

∞∫
z

Zdz′ = e−az
b

, (11a)

ln(Zcum)=−az
b, ln(| ln(Zcum)|)= ln(a)+ b ln(z).

For b < 0 we have to choose the cumulative calculation in
reverse order starting the integration at zero. Naming the re-
verse cumulative with index zero as Z0

cum we get

Z0
cum(z)=

z∫
0

Zdz′ = e−a(1/z)
|b|

= e−az
b

, (11b)

ln(Z0
cum)=−az

b, ln(| ln(Z0
cum)|)= ln(a)+ b ln(z).

Only the cumulative descriptions from Eqs. (11a) and (11b)
allow us, in principle, to roughly estimate the constants a
and b for a given data sample using the double-logarithmic
functional dependence, whereas the direct logarithm of Z
(Eqs. 10a, 10b) offers no possibility to solve for a and
b. However, the method calculating the double-logarithmic
cumulative is not recommended. Several numerical tests
showed that a stable estimation of a and b from noisy data
applying this double-logarithmic approach is an almost im-
possible task. Instead, we propose two different methods that
rely on much more powerful principles (see next Sect. 5.2).
Additionally, we have to take care of a possible negative
value of b that can be only identified using Eq. (11b). In
fact such a case occurs in the analysis of ALOMAR data.
In Sect. 5.3 we will give an example where only a negative
slope parameter describes the distribution of number density
of ice particles.

Generally, theZ distribution has the ability to characterize
many different types of distributions, see Fig. 4. Especially

the shape parameter b determines the shape of the Z distri-
bution describing nonlinear exponential, exponential, right-
skewed, left-skewed, or symmetric curves. For 0< b < 1 the
pdf increase is nonlinear and exponentially accelerated to in-
finity as z approaches zero. For b = 1 the pdf is exactly an
exponential distribution having a positive finite value for z
equal zero. For b > 1, the function tends to zero as z ap-
proaches zero. When b is between 1 and 2, the function
is right-skewed and rises to a peak quickly, then decreases
for large z. When b has an approximate value between 3
and 4, the function becomes symmetric and bell-shaped like
a normal distribution. Note that exact symmetry is given
for a skewness equal to zero, which is true at z= 3.60232.
For b values larger than approximately 5, the function be-
comes again asymmetric changing the skewness to the left.
For b < 0, the function is skewed to the right and decreases
steeply towards zero as z approaches zero. Note that Z is
never negative and owns a local maximum described by the
mode whenever b is negative or larger than 1. Finally we see
that a double-logarithmic presentation of cumulative func-
tions describes linear shapes with slope b, see Fig. 4j–l.

It is interesting to note that our new Z distribution is
closely related to a more general Weibull distribution (Wilks,
1995). Nevertheless there is a difference concerning the
shape parameter b, which in our case is not only defined for
positive values but also for negative values. Such a case is
disregarded by a classical 2-D Weibull distribution.

Now we shortly summarize the mathematical descriptions
of median, mode, mean, variance, and standard deviation pa-
rameters of Z for the case of a zero threshold. The calcula-
tions are described in detail in Appendix B for the general
case of a nonzero threshold.
Median:

ν =

(
ln2
a

)1/b

. (12a)

Mode:

η =

(
b− 1
ab

)1/b

for b > 1, b < 0; (12b)

η = 0 for 0< b ≤ 1.

Mean:

µ=
0
(
b+1
b

)
a

1
b

. (12c)

Variance and standard deviation:

σ 2
=

0
(
b+2
b

)
a

2
b

−µ2, σ =

√√√√0
(
b+2
b

)
a

2
b

−µ2. (12d)

The expressions of mean and variance use the gamma func-

tion 0(t)=
∞∫
0
xt−1e−xdx. Notice that the gamma function is
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Figure 4. (a–c) Examples of Z(z) function with different parameter values a and b, see Eq. (10). (d–f) Same but for ln(Z) from Eq. (10);
(g–i) same but for Zcum from Eq. (11); (j–l) same but for ln(| ln(Zcum)|) from Eq. (11).

defined for all real values of t except t = 0 and all negative
integer values of t . Note also that median, mode, mean, vari-
ance, and standard deviation parameters of Z coincide with
those of an exponential distribution in the limit as b equals 1.

5.2 Two computational methods to estimate the free
parameters a and b of Z from a given data sample

In this section we present two numerical methods to calcu-
late the scale parameter a and shape parameter b describing
the new Z distribution. First of all, since any measurement
depends on a specific instrumental sensitivity, we have to in-
troduce a threshold that we name zth. The remaining data
sample consists of N observations zi with zi > zth. Then we
calculate the mean m and standard deviation s of data zi us-
ing Eq. (3), and also the median value m̃ from data zi .

Method (1): we investigate the corresponding theoretical
moments from Z . In Appendix B we derive the theoretical
mean µ (Eq. B5) and median ν (Eq. B3) for the Z distri-
bution with a threshold constraint. Taking the estimates of
mean m and median m̃ from the sample as best proxies for
the theoretical mean µ and median ν values of Z , we get the

following equations:

ν =

(
ln2
a
+ zbth

)1/b

−→ a =
ln2

m̃b− zthb
, (13a)

µ=−
A|b|0

(
b+1
b
,azbth

)
ba1/b −→ 0 (13b)

= m · ba1/b
+A|b|0

(
b+ 1
b

, azbth

)
.

Note that the use of a threshold constraint involves the intro-
duction of a scaling factor A= exp(azbth), which is present
in Eq. (13b). Inserting the algebraic term of a (right side of
Eq. 13a into the right side zero-equation Eq. 13b) and using
the threshold value of zth yields an equation only for b, which
has to be computed iteratively. Once a numerical value of b
has been estimated with a sufficient accuracy, we insert this b
value into the upper right equation to get the numerical value
for a.

We note that in classical statistics the method of moments
determines a and b from the mean and variance equations.
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In principle this approach should be possible here too, but in
practise the algebraic structure of the variance equation is too
complicated, see Eq. (B6) in Appendix B. This means that
the variance equation, if at all, is only iteratively solvable,
whereas the use of the median equation offers an analytical
transformation to a. Generally, we recommend to apply the
proposed method using the mean and median equations. This
straight-forward method is easy to program and produces re-
liable estimates of parameters a and b.

Method (2): we also present a second method using a max-
imum likelihood approach, see Appendix C. The parameters
are again calculated from two equations (Eq. C5) with

1
a
=−zbth+

∑
zbi

N
, (14)

0=
1
b
+ a · lnzth · z

b
th+

∑
lnzi
N
− a ·

∑
lnzi · zbi
N

.

Interestingly, the left equation includes a term 1/N
∑
zbi ,

which is the mean of the sample values weighted by power b,
whereas the right equation includes the mean 1/N

∑
lnzi of

logarithmic data and 1/N
∑
zbi lnzi . This shows a similarity

to the computation of regression points used in Fig. 3. We
insert a into the right equation that yields a unique equation
for b, which again can be solved iteratively. Once b is fixed,
the left equation allows us to determine a. In the following
we will test our lidar data samples with these two procedures
and we will show that both methods produce almost identical
results.

5.3 Z distributions applied to ALOMAR data

Applications of the Z distribution to ALOMAR data of max-
imum backscatter (x), ice mass density (y), ice particle ra-
dius (r), and ice number density (n) are shown in Fig. 5.
Note that thresholds have been computed from the regres-
sion functions (Eq. 5) described in Sect. 3.2 on the basis
of xth = 3× 10−10 m−1 sr−1, resulting in yth = 22 mg m−3,
rth = 22.3 nm, and nth = 662 cm−3. The values of scale pa-
rameter a and shape parameter b have been calculated with
the method of mean and median equations (method 1).
Then the theoretical curves of Z and theoretical values of
mean, median, mode, and standard deviation have been cal-
culated by inserting the values of a, b, and threshold zth into
Eqs. (B1)–(B6). Obviously the pdf Z sometimes has no sim-
ple exponential shape, which is the case for ice mass density,
ice radius, and ice number density. As we see in Fig. 5 all Z-
pdf curves (in blue) match the original data histograms with a
high accuracy. The relative error is in a range of about 6 %–
10 % except that ice number density has a relative error of
15 %. When we compare the mean, median, mode, and stan-
dard deviation derived from the theoretical distribution and
corresponding estimates from data samples, we see a precise
coincidence of mean and median values. Not surprising this
is due to the fact that the parameters a and b have been com-
puted by the mean and median method, which guarantees

the preservation of mean and median values. Nevertheless
standard deviation and mode also always show a good agree-
ment within the error range. A closer look to the maximum
backscatter distribution shows that MBS data are almost per-
fectly exponentially distributed with b = 0.931, which is not
too far away from b = 1 for an exact exponential pdf. As
we had already shown, see Sect. 3.1.1, MBS data are very
likely exponentially distributed, now the Z-distribution anal-
ysis confirms this result. Hence we conclude that the com-
monly used exponential (g-function) analysis might only be
a reasonable statistical method in the case of analyzing MBS
lidar data.

In contrast to MBS, the Z distribution of IMD shows a
function that converges rapidly to zero for small IMD values.
The distribution is described with b = 1.355, which signifi-
cantly deviates from b = 1 for a precise exponential function.
Note that the mode of the data sample at 40 mg m−3 differs
from the theoretical mode of 23 mg m−3 because of a rela-
tively high statistical noise in the data. But mean, median,
and standard deviation values agree almost perfectly. Simi-
lar to IMD, the ice radius distribution indicates a significant
nonexponential behavior with b = 1.833. The distribution
converges to zero as the radius approaches zero. The curve
is skewed to the right and has a maximum at r = 25.8 nm,
which differs only slightly from the mode of the data sample
at r = 27.8 nm. Again mean, median, and standard deviation
values agree almost perfectly.

The sample of ice number density shows a completely dif-
ferent behavior with a slope parameter that is negative with
b =−0.819. The physical meaning is that the parameter ice
number density is negatively correlated with all other ice pa-
rameters. For example, large ice numbers n correspond to
small ice radii, IMD and MBS values. As a consequence this
leads to a threshold of n in the reverse direction, that is from
large values to small values defined by n < nth = 662 cm−3.
One can see this feature in the right tail of Z(n) plotted as
a dashed curve, see Fig. 5d. The reverse behavior is also
present for small values of n. Small values of n are measured
for very bright PMC events with large MBS that have small
occurrence rates. Therefore, the number of small ice parti-
cles has a relatively high uncertainty due to their low occur-
rence frequency, and it is this statistical error that produces
some deviations from the fit curve to the data in the range
of n= 0–80 cm−3. We note that the numerical procedure
computing the pair (a, b) from the method of mean/median
(Eqs. 13a, 10b) has automatically detected the existence of a
negative slope parameter b without any a priori information.

Now we repeat the analysis using method 2. Figure 6 sum-
marizes the (a,b) values and statistical moments calculated
from the method of maximum likelihood estimators. As can
be seen the maximum likelihood approach computes almost
identical results for all ice parameters. We have also added
in Fig. 6a–c the histogram bars (in black) for all data be-
ing smaller than the threshold. Please keep in mind that the
calculation of theoretical distribution curves is based exclu-
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Figure 5. Frequency distributions and Z-function analysis of ALOMAR data. Parameters a and b have been estimated with the mean and
median methods. The relative error given in percent describes the quality of the Z-function fit; (a) maximum backscatter data x. (b) ice mass
density y; (c) ice particle radius r; (d) ice number density n, see text for more details.

sively on data larger than the threshold. Hence, decreasing
or increasing a threshold will change the specific values of
a and b. Figure 6d shows the ice number density distribu-
tion where we have added in the histogram (in black) all data
being larger than the threshold. Again, also the maximum
likelihood method has automatically detected the existence
of a negative slope parameter b for the ice number density
distribution.

6 Discussion

6.1 Construction of artificial data

In the derivation of the Z distribution we used the as-
sumption that all ice parameters of maximum backscatter
x=MBS, ice mass density y= IMD, ice particle radius r ,
and ice number density n are connected with one another by
the power law given in Eq. (5). In Sect. 5.3 we showed that
the Z pdf describes with a high accuracy each distribution of
these ice parameters, which, in turn, means that indeed there
exists at least an approximative power law between ice pa-
rameters. We discuss a suitable justification of this power law
relation in more detail in Sect. 6.2. In the following we will
show that the use of aZ distribution allows us to construct ar-

tificial unknown data samples of various ice parameters that
approximate true data to a high degree. We think that such
an application is one of the most beneficial outcomes from
the new Z-distribution approach. We explain the numerical
procedure by the help of a practical example.

We already showed a linear dependance in the logarithmic
frame using linear regression (LR) for maximum backscatter
and ice particle radius, see Fig. 3b. Hence we can compute ar-
tificial ice radius proxies r̃i , named as LR proxy of true data
ri , as a function of MBS-data xi from the regression power
law function (Eq. 5) with r̃i = cxdi and with power law coef-
ficients c = 13.509 and d = 0.497. Figure 7a shows a com-
parison between LR proxy and original ice radius data where
we test the identity of the two data samples. The correlation
coefficient is the same as shown in Fig. 3b with R = 0.55.
Mean and median values of proxy and original data are al-
most identical, and a regression analysis shows a perfect
identity (c = 1.000 and d = 1.000). Now we calculate the
frequency histogram of LR proxy ice radii, see Fig. 7b, and
compare the histogram with the original Z distribution of ice
radii already shown in Fig. 5c. We find that the LR proxy ap-
proximates the mean, median, mode, and standard deviation
values of the original Z distribution with an relative error of
9.5 % comparable to the original error of 9.1 %. We conclude
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Figure 6. Same as Fig. 5, but parameters a and b have been estimated from the maximum likelihood method. (a–c) Maximum backscatter,
ice mass density, and ice radius: gray bars indicate values larger than the threshold and black bars indicate values smaller than the threshold.
(d) Ice number density: gray bars indicate values smaller than the threshold and black bars indicate values larger than the threshold.

that a linear regression analysis of logarithmic data offers a
good opportunity to approximate data, provided that a pair of
data samples exists that allows for the calculation of power
law coefficients c and d from regression methods.

Now the Z-distribution approach offers a more gen-
eral possibility to derive artificial data samples without any
knowledge of correlation and regression coefficients. Indeed
we will show that results from the Z approach are very close
to results from a regression analysis. Again, our goal is to ap-
proximate ice radius data from a given maximum backscat-
ter data sample. But now we suppose that no data of ice
particle radii r exist, hence any correlation and regression
analysis is not possible. First, we assume that a data sam-
ple of x = MBS of number N exists and also its Z distri-
bution Z(x,ax,bx) with ax = 0.140 and bx = 0.931 is well
known, see Fig. 5a. Secondly, we assume that we know a
priori the form of the Z distribution Z(r,ar ,br) of ice ra-
dius r , e.g., with values of parameters ar and br from Fig. 5c
(ar = 1.269× 10−3, br = 1.833). Please keep in mind that
such information about scale and shape parameters of the ice
radius distribution could be also provided from independent
satellite measurements that are capable of measuring ice par-
ticle radii, e.g., AIM-SOFIE.

Our new proxy method (Z proxy) requires the fol-
lowing transformations. We first transform the xi values

(i = 1, . . .,N ) into the z domain with xi 7−→ zi : z= axx
bx
i

followed by a second transformation with zi 7−→ ri : ri =

(zi/ar)
1/br resulting in

xi 7−→ zi 7−→ ri : ri =

[
ax · x

bx
i

ar

]1/br

= c · xdi (15)

with

c =

(
ax

ar

)1/br
, d =

bx

br
.

Note that the derivation of c and d in Eq. (15) is based on
the same mathematical steps when we developed the Z dis-
tribution from Eqs. (8) to (9). Inserting the ax , bx , ar , and br
values into Eq. (15) determines the power law coefficients for
Z proxy r̃ with c = 12.994 and d = 0.508. These values do
not exactly coincide with c and d values obtained from the
regression method, see above, but the identity test betweenZ
proxies and true ice radii shows a very good coincidence, see
Fig. 7c. Again, mean and median values of proxy and orig-
inal data are practically identical, and a regression analysis
shows an almost perfect identity (c = 1.095 and d = 0.980).
Finally we calculate a frequency histogram of Z proxies, see
Fig. 7d, and find a good agreement between proxies and true

www.atmos-chem-phys.net/19/4685/2019/ Atmos. Chem. Phys., 19, 4685–4702, 2019



4696 U. Berger et al.: Probability density distributions of PMC

Figure 7. (a) Proxy p of ice radius versus original ice radius data without any threshold. The proxy has been derived from maximum
backscatter data using the fit function that has been estimated by linear regression (LR proxy) between original logarithmic MBS and ice
radius data, see Fig. 3b. (b) Frequency distribution of LR proxy (gray and black histogram) with a threshold rth = 23.3 nm. For comparison
we also plot the original Z-pdf curve (blue) from the analysis of original ice radius data, see Fig. 5c. The relative error describes the accuracy
between LR-proxy data and original Z-function fit. (c) Same as (a), but for Z-proxy data resulting from the Z-pdf analysis of MBS data,
see text for more details; (d) same as b with Z-proxy data.

pdf. Mean, median, and standard deviations of Z-proxy data
correspond perfectly to original ice radius data, and the rela-
tive error has now even decreased to 9.2 %.

We summarize that we present a new method in order
to construct artificial data samples provided Z-descriptions
of these data sets exist. By means of a consecutive arrang-
ing of ice parameters starting at a given data sample, this
method allows us to construct any artificial data sample
within (x,y,r,n). This method can also be applied to other
data sets, e.g., ice parameter measurements from satellite ob-
servations. For example, a data sample of ice water content
(IWC) obtained from satellite measurements might be ana-
lyzed in terms of a Z distribution estimating the scale and
shape parameters a and b of the IWC distribution. This would
allow us to establish a connection between satellite IWC
data to lidar data samples (x,y,r,n) through Eq. (15), hence
the satellite IWC data could be transferred to lidar maxi-
mum backscatter, ice mass density, ice particle radius, and
ice number density. Vice versa the knowledge of a satellite
IWC Z distribution would allow us to transform lidar obser-
vations into IWC proxies and compare these with the original

IWC observed by the satellite. We think that our proposed
transformation method could be very helpful to connect dif-
ferent ice parameter data from different instruments, either
from satellite observations or ground-based measurements.
We also think that this new approach might be important in
trend analysis of PMC.

In the next section we will discuss the power law assump-
tion (Eq. 5) and the physical meaning of the shape parameter
b, which might be introduced as a new trend variable in the
analysis of PMC long-term changes.

6.2 Discussion of the power law assumption between
PMC parameters

In this section we discuss some theoretical aspects of the
power law dependence on ice parameters in order to validate
the justification of Eq. (5). We use again the assumption as
already discussed in Sect. 2 that at the altitude of maximum
brightness (MBS) and ice mass density (IMD) there exists in
the real atmospheric background an ice particle distribution
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that is perfectly Gaussian-distributed (Ni) as

Ni(τ )=
1

σi
√

2π
exp

(
−

1
2

(
τ − ri

σi

)2
)
.

We also assume that the geometric shapes of these ice par-
ticles are spheres with ice radii τ with mean radius ri and
variance σ 2

i . Again index i = 1, . . .,N relates to the ith mea-
surement in a given data sample of number N . Ni is nor-
malized to

∫
∞

0 Ni(τ )dτ = 1. When we assume an ice num-
ber density of ni particles per cubic centimeter we get the
expression

∫
∞

0 ni ·Ni(τ )dτ = ni . Note that mean ice radii ri
and ice number densities ni are elements of our lidar data
climatology, which we have introduced in Sect. 2.

Furthermore, we assume from the analysis of lidar ob-
servations (three-color measurements) that the relation of
mean radius and variance is according to σi = 0.4 ri for
ri < 37.5 nm and σi = 15 nm for ri ≥ 37.5 nm (Baumgarten
et al., 2010). This assumption has also been applied in the
analysis of AIM/SOFIE-CIPS PMC satellite data (Lumpe
et al., 2013; Hervig and Stevens, 2014). In order to sim-
plify calculations we apply this relation σi = 0.4 ri also for
ri larger than 37.5 nm. We now investigate the question of
which backscatter lidar and ice mass signals result from such
an ice distribution.

We compute the mass of a spherical ice particle with ra-
dius τ as 4/3πρiceτ

3 with density of ice ρice = 932 kg m−3.
The backscatter signal from a single ice particle is calculated
as aLτ

5.8 with the lidar constant aL = 1.5× 10−11 m2. Then
the maximum backscatter xi and ice mass density yi are es-
timated by an integration of the radius distribution from zero
to infinity as

xi = aLn

∞∫
0

τ 5.8Ni(τ )dτ

= aLn

∞∫
0

τ 5.8 1

0.4 ri
√

2π
exp

(
−

1
2

(
τ − ri

0.4 ri

)2
)

dτ

yi =
4
3
πρicen

∞∫
0

τ 3Ni(τ )dτ

=
4
3
πρicen

∞∫
0

τ 3 1

0.4 ri
√

2π
exp

(
−

1
2

(
τ − ri

0.4ri

)2
)

dτ

assuming a constant number density n of ice particles. Only
the integral of yi is analytically computable with a solution
in which the error function defined by the integral erf(x)=

2/
√
π
∫ x

0 exp(−t2)dt is part of the solution:

xi =
4
3
πρicen

[
37
50
r3
i erf

(
5(τ − ri)
√

8ri

)
−

√
2

125
√
π
ri

(
25τ 2
+ 25riτ + 33r2

i

)
exp

(
25τ
4ri
−

25
(
τ 2
+ r2

i

)
8r2
i

)]∞
0

.

The integral for xi includes the term τ 5.8 that arises from
Mie-scatter theory for light scattering of a wavelength of
532 nm (ALOMAR RMR lidar) at spheres in a range of radii
with 1–100 nm. The exponential value of 5.8 approximates
exact Mie-scatter calculations with a relative error less than
0.5 % in this radii range. Unfortunately, the integral can only
be solved analytically if the exponent is an integer number
as 5 or 6. Nevertheless, we are able to solve this integral by
means of numerical methods with the specific exponent of
5.8. In a next step, we construct analytical approximations
fx(ri) and fy(ri) for both integral solutions using a typical
value of n= 200 cm−3 with

fx(ri)= xi = a1aLnr
5.8
i ,

fy(ri)= yi = a2
4
3
πρicenr

3
i .

The linear constants a1 and a2 with values a1 = 4.20 and
a2 = 1.47 are optimal dimensionless parameters. fy approx-
imates the analytical solution of yi with a relative error less
than 0.7 % in the range ri = [0,45 nm], and less than 1.2 %
in the range ri = [45,70 nm]. A precise solution of xi re-
sulting from numerical methods of integration is approxi-
mated by fx with a relative error less than 0.3 % in the range
ri = [0,45 nm], then the relative error increases linearly to a
maximum error of 5 % at ri = 70 nm. We find that the solu-
tions fx and fy approximate the general power law condi-
tion p = cqd (Eq. 5) inside a small error range. Hence these
analytical examples show that MBS is a function of ice ra-
dius proportional to ∼ r5.8 (d = 5.8), the same is also true
for IMD (∼ r3, d = 3). It also follows that MBS and IMD
are consequently connected through a power law condition
with MBS∼ IMD5.8/3 (d = 5.8/3= 1.93).

But the new form of the Z-distribution technique opens
up whole new perspectives for the validation of the analyti-
cal examples based on the ALOMAR lidar data samples. We
transform the z distribution of IMD into the MBS domain us-
ing Eq. (15) with yi 7−→ zi : zi = ayy

by
i and zi 7−→ xi : xi =

(zi/ax)
1/bx that gives

x =

[
ay · y

by

ax

]1/bx

= c · yd (16)

with

c =

(
ay

ax

)1/bx
, d =

by

bx
.
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We insert into Eq. (16) the values of ax = 0.140, bx = 0.931,
ay = 4.321× 10−3, and by = 1.355 from Fig. 5a and b and
get c = 0.023 and d = 1.46. The power constant (d = 1.46)
derived from the shape parameters bx and by of the Z-
distribution analysis of real ALOMAR IBS and IMD data
is significantly different from the power estimate (d = 1.93)
belonging to the analytical example that necessitates vari-
ous assumptions, e.g., Gaussian-distributed ice particles at
the height of maximum backscatter, constant ice particle
number, or spherical shape of ice particles. Hence, we con-
clude that the determination of shape parameters b from a Z-
distribution analysis of observational data therefore provides
a qualitative indication of the actual microphysical state that
controls real ice formation processes. This leads to the idea
that as a future task long-term changes in PMC formation
might be characterized by potential long-term changes in b
that indicate long-term changes in atmospheric background
conditions and microphysical ice constraints of ice forma-
tion.

7 Summary and conclusions

In this study we present a new method to describe statisti-
cal probability density functions (pdfs) for different ice pa-
rameters of PMC. We analyze a climatology of ice seasons
from 2002 until 2016 as measured by the ALOMAR lidar.
From this data set we derive ice cloud parameters of maxi-
mum backscatter, ice mass density, ice radius, and ice num-
ber density whose occurrence frequencies are investigated
with respect to exponential distributions. We show that only
maximum backscatter follows an exponential distribution,
whereas ice mass density, ice radius, and ice number den-
sity frequencies fail to fit satisfactorily to an exponential dis-
tribution. The reason for these deviations from exponential
behavior is based on the fact that these ice parameters are not
linearly dependent on each other.

We introduce a new probability density distribution
(Z function, see Eq. 9) that instead assumes a general power
law relation among ice parameters, see Eq. (5). The new
Z distribution is described by two free constants with scale
parameter a and the shape parameter b. We point out that the
new distribution is closely related to a more general Weibull
distribution. The new distribution has been applied to maxi-
mum backscatter, ice mass density, ice radius, and ice num-
ber density data from the ALOMAR data set. As a result all
data distributions are described with a high accuracy by Z .
We discuss that the exponential distribution (g function) is a
special case of the more general Z function with shape pa-
rameter b = 1. We present two numerically stable methods
(method of mean and median, method of maximum likeli-
ness) that allow to derive the values of free constants a and b
describing the actual Z-function shape for a given data sam-
ple.

Perhaps the most important application of the new method
is the possibility to construct unknown data sets for different
ice parameters that approximate true data to a high degree.
We show in Sect. 6.1 that a linear regression analysis in a
logarithmic data frame offers a good opportunity to approx-
imate data provided that a pair of data samples exists that
allows for the calculation of power law coefficients c and d
from regression methods. TheZ-distribution approach offers
a more general possibility to derive artificial data samples
without any knowledge of correlation and regression coeffi-
cients. This allows for the connection of different observa-
tional PMC distributions of lidar and satellite data, and also
with distributions resulting from ice model studies. In par-
ticular, the statistical distributions of different measured ice
parameters can be compared with each other on the basis of
a common assessment that again should be helpful in com-
bining trend analysis of PMC long-term time series from dif-
ferent observational data sets.

Data availability. The ALOMAR lidar data are available at:
ftp://ftp.iap-kborn.de/data-in-publications/BergerACP2019/
(Baumgarten, 2019).
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Appendix A: Properties of the exponential distribution
(g function)

When considering a threshold (xth) the exponential pdf E(x)
is normalized according to A

∫
∞

xth
E(x)dx = 1 with a scaling

factorA= exp(αxth). It follows that the meanµ is then given
by

µ=

∞∫
xth

x ·AE(x)dx′

=A

∞∫
xth

x ·αe−αxdx′

=−A
(αx+ 1)e−αx

α

∣∣∣∣∞
xth

= 0− (−)eαxth
(αxth+ 1)e−αxth

α
.

This yields for the mean

µ= xth+ 1/α. (A1)

The median ν denotes the boundary of separating the higher
half from the lower half of the distribution with

0.5=

∞∫
ν

A ·E(x)dx′ = A

∞∫
ν

α exp(−αx)dx′ = −Ae−αx
∣∣∞
ν

=0− (−)eαxth · e−αν .

The equation is solved for the median with

ν = xth+ ln(2)/α. (A2)

The mode is the value η at which AE(x) takes its maximum
value

η = xth. (A3)

The variance σ 2 in an exponential distribution considering a
threshold is calculated with

σ 2
=

∞∫
xth

(x−µ)2 ·AE(x) dx′ = A

∞∫
xth

(x−µ)2 ·αe−αx dx′

=−
A(α (x−µ)(α (x−µ)+ 2)+ 2)e−αx

α2

∣∣∣∣∞
xth

=0− (−)eαxth
(α (xth−µ)(α (xth−µ)+ 2)+ 2)e−αxth

α2 .

Inserting µ= xth+ 1/α simplifies the algebraic expression
and shows that the variance σ 2 (standard deviation σ ) is in-
dependently from a given threshold:

σ 2
= 1/α2. (A4)

Appendix B: Properties of Z distribution

In the following all quantities take into account a threshold
zth. We introduce a scaling factor A= exp(azbth). Setting the
threshold to zero means a scaling factor A= 1 and gives the
regular expressions for cumulative pdf, median, mode, mean,
and variance, see Eqs. (12a)–(12d).

Probability density function Z(z ≥ zth, a > 0, b 6= 0):

Z(z)= A · a|b|zb−1e−az
b

, (B1)

1=

∞∫
zth

eaz
b
th · a|b|zb−1e−az

b

dz.

Cumulative form of Zcum:

Zcum(z)=A

∞∫
z

a|b|zb−1e−az
b

dz (B2)

=−Ae−az
b
∣∣∣∞
z
= A · e−az

b

, z ≥ zth.

Median ν:

0.5=

∞∫
ν

Zdz=

∞∫
ν

Aa|b|zb−1e−az
b

dz

=−Ae−aν
b
∣∣∣∞
ν
= Ae−aν

b

−→ ν =

(
ln(2A)
a

)1/b

(B3)

=

(
ln2+ ln(eaz

b
th)

a

)1/b

=

(
ln2
a
+ zbth

)1/b

.

Mode η:

∂Z
∂z
=0=−A · a|b|zb−2

(
abzb− b+ 1

)
e−az

b

(B4)

−→ η =

(
b− 1
ab

)1/b

(b > 1, b < 0).

Mean µ:

µ=

∞∫
zth

zZdz= A

∞∫
zth

a|b|zbe−az
b

dz (B5)

=−

A|b|0
(
b+1
b
, azbth

)
ba

1
b

.
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Details of calculation:
Substitute

u= a
b+1
b zb+1

−→ dz=
1

(b+ 1)a
b+1
b zb

du∫
Aa|b|zbe−az

b

dz=
Aa|b|

ba
1
b
+1
+ a

1
b
+1
·

∫
e−u

b
b+1 du

We solve

∫
e−u

b
b+1 du=−

(b+ 1)0
(
b+1
b
,u

b+1
b

)
b

Inserting

Aa|b|

ba
1
b
+1
+ a

1
b
+1
·

∫
e−u

b
b+1 du

=−

Aa|b|(b+ 1)0
(
b+1
b
,u

b+1
b

)
b
(
ba

1
b
+1
+ a

1
b
+1
)

Re-substitute

=−
Aa|b|(b+ 1)0( b+1

b
,azb)

b
(
ba

1
b
+1
+ a

1
b
+1
)

=−

A|b|0
(
b+1
b
,azb

)
ba

1
b

.

Here we use the gamma function 0(a)=
∞∫
0
ta−1e−tdt and

the incomplete gamma function 0(a,x)=
∞∫
x

ta−1e−tdt . No-

tice that the gamma function is defined for all real values of
a except a = 0 and all negative integer values of a. The same
applies to 0(a,x) with x ≥ 0.
Variance σ 2:

σ 2
=

∞∫
zth

(z−µ)2Zdz

= A

∞∫
zth

ab(z−µ)2zb−1e−az
b

dz

= −Aµ2e−az
b

−

A
[
0
(
b+2
b
, azb

)
− 2a

1
b µ0

(
b+1
b
, azb

)]
a

2
b

∣∣∣∣∣∣
∞

zth

=

A
[
0
(
b+2
b
, azbth

)
− 2a

1
bµ0

(
b+1
b
, azbth

)]
a

2
b

−µ2,

for

A= 1, zth =0 : σ 2
=

0
(
b+2
b

)
a

2
b

−µ2 (B6)

=

0
(
b+2
b

)
−02

(
b+1
b

)
a

2
b

=

20
(

2
b

)
−

1
b
02
(

1
b

)
ba

2
b

.

Appendix C: Estimation of parameters (a,b) using the
maximum log-likelihood method

For a single observation, the likelihood function l of Z is
calculated from Eq. (B1). Given a sample of N observa-
tions with threshold zth, the likelihood function l(a,b)=∏N
i=1Z(zi) is

l(a,b)= eNaz
b
th(a|b|)N

N∏
i=1
zb−1
i e−az

b
i . (C1)

Taking the logarithm of l yields the log-likelihood function
L(a,b)= ln(l)=

∑N
i=1 ln(Z(zi))

L(a,b)= (C2)

Nazbth+N(lna+ ln |b|)+ (b− 1)
N∑
i=1

ln(zi)− a
N∑
i=1

zbi .

The derivative with respect to parameter a is

∂L(a,b)

∂a
=N · zbth+

N

a
−

N∑
i=1

zbi , (C3)

and for parameter b

∂L(a,b)

∂b
= (C4)

N · a · lnzth · z
b
th+

N

b
+

N∑
i=1

lnzi − a
N∑
i=1

zbi lnzi .

Setting each of the derivatives equal to zero yields for
a and b.

1
a
=−zbth+

∑
zbi

N
, (C5)

0=
1
b
+ a · lnzth · z

b
th+

∑
lnzi
N
− a ·

∑
lnzi · zbi
N

.

These are the maximum-likelihood estimators for scale pa-
rameter a and shape parameter b.
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