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Abstract. Semi-volatile and intermediate-volatility organic
compounds (SVOCs and IVOCs) from anthropogenic
sources are likely to be important precursors of secondary
organic aerosol (SOA) in urban airsheds, yet their treatment
in most models is based on limited and obsolete data or com-
pletely missing. Additionally, gas-phase oxidation of organic
precursors to form SOA is influenced by the presence of ni-
tric oxide (NO), but this influence is poorly constrained in
chemical transport models. In this work, we updated the or-
ganic aerosol model in the UCD/CIT (University of Cali-
fornia at Davis/California Institute of Technology) chemical
transport model to include (i) a semi-volatile and reactive
treatment of primary organic aerosol (POA), (ii) emissions
and SOA formation from IVOCs, (iii) the NOx influence on
SOA formation, and (iv) SOA parameterizations for SVOCs
and IVOCs that are corrected for vapor wall loss artifacts
during chamber experiments. All updates were implemented
in the statistical oxidation model (SOM) that simulates the
oxidation chemistry, thermodynamics, and gas–particle par-
titioning of organic aerosol (OA). Model treatment of POA,
SVOCs, and IVOCs was based on an interpretation of a com-
prehensive set of source measurements available up to the

year 2016 and resolved broadly by source type. The NOx in-
fluence on SOA formation was calculated offline based on
measured and modeled VOC : NOx ratios. Finally, the SOA
formation from all organic precursors (including SVOCs and
IVOCs) was modeled based on recently derived parameteri-
zations that accounted for vapor wall loss artifacts in cham-
ber experiments. The updated model was used to simulate a
2-week summer episode over southern California at a model
resolution of 8 km.

When combustion-related POA was treated as semi-
volatile, modeled POA mass concentrations were reduced by
15 %–40 % in the urban areas in southern California but were
still too high when compared against “hydrocarbon-like or-
ganic aerosol” factor measurements made at Riverside, CA,
during the Study of Organic Aerosols at Riverside (SOAR-1)
campaign of 2005. Treating all POA (except that from ma-
rine sources) to be semi-volatile, similar to diesel exhaust
POA, resulted in a larger reduction in POA mass concentra-
tions and allowed for a better model–measurement compar-
ison at Riverside, but this scenario is unlikely to be realistic
since this assumes that POA from sources such as road and
construction dust are semi-volatile too. Model predictions
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suggested that both SVOCs (evaporated POA vapors) and
IVOCs did not contribute as much as other anthropogenic
precursors (e.g., alkanes, aromatics) to SOA mass concentra-
tions in the urban areas (< 5 % and < 15 % of the total SOA
respectively) as the timescales for SOA production appeared
to be shorter than the timescales for transport out of the urban
airshed. Comparisons of modeled IVOC concentrations with
measurements of anthropogenic SOA precursors in southern
California seemed to imply that IVOC emissions were un-
derpredicted in our updated model by a factor of 2. Correct-
ing for the vapor wall loss artifact in chamber experiments
enhanced SOA mass concentrations although the enhance-
ment was precursor-dependent as well as NOx-dependent.
Accounting for the influence of NOx using the VOC : NOx
ratios resulted in better predictions of OA mass concentra-
tions in rural/remote environments but still underpredicted
OA mass concentrations in urban environments. The up-
dated model’s performance against measurements combined
with the results from the sensitivity simulations suggests that
the OA mass concentrations in southern California are con-
strained within a factor of 2. Finally, simulations performed
for the year 2035 showed that, despite reductions in VOC and
NOx emissions in the future, SOA mass concentrations may
be higher than in the year 2005, primarily from increased
hydroxyl radical (OH) concentrations due to lower ambient
NO2 concentrations.

1 Introduction

Organic aerosol (OA) is an important yet uncertain compo-
nent of atmospheric aerosol (Fuzzi et al., 2015; Jimenez et
al., 2009) and has large impacts on air quality, climate, and
human health (Pachauri et al., 2014). Combustion sources
such as motor vehicles, biomass burning, and food cooking
are significant contributors to atmospheric OA from urban
to regional to global scales (Bond et al., 2004). Yet, in ur-
ban environments where combustion emissions are a domi-
nant source, atmospheric models often underpredict total OA
mass concentrations (e.g., Carlton et al., 2010). Models based
on older parameterizations also predict much lower contri-
butions of secondary organic aerosol (SOA) in urban areas
(e.g., Volkamer et al., 2006; Jathar et al., 2017a) and may
overemphasize the role of mobile sources (e.g., Ensberg et
al., 2014), suggesting that combustion-related OA and other
urban sources may not be well represented in models. There
is a need to improve the treatment of combustion-related OA
in atmospheric models since these improvements (i) will al-
low for better predictions of air quality that are needed to mit-
igate climate and health impacts from anthropogenic com-
bustion sources and (ii) will facilitate improved understand-
ing of additional potentially missing sources.

Research over the past decade has made major inroads
in understanding the sources and properties of combustion-

related OA (Gentner et al., 2017). Combustion sources di-
rectly emit organic particles (primary organic aerosol, POA)
and also emit gaseous organic compounds that are oxidized
in the atmosphere to form secondary organic aerosol. A sig-
nificant fraction of the combustion-related POA mass is now
understood to be semi-volatile – that is, material that exists in
a dynamic equilibrium between the vapor and particle phases
(Grieshop et al., 2009a, b; Huffman et al., 2009; Kuwayama
et al., 2015; Lipsky and Robinson, 2006; May et al., 2013a,
b, c; Robinson et al., 2007). This POA is formed as vapors
in the combustion exhaust cool-down to become supersat-
urated and condense on existing seed aerosol (Robinson et
al., 2010). After emission, some of this POA evaporates with
atmospheric dilution since the aerosol mass available for par-
titioning decreases as the POA is transported away from
source regions. Further, diurnal changes in temperature lead-
ing to changes in the vapor pressure can also cycle POA be-
tween the two phases. Both vapor and particle forms of semi-
volatile POA have been shown to photochemically react in
the atmosphere to add or remove organic material from the
particle phase (Miracolo et al., 2010) and become more oxy-
genated (Kroll et al., 2009), although the vapors react much
faster. In addition, all combustion processes are now believed
to include emissions of an important additional class of
SOA precursors: intermediate-volatility organic compounds
(IVOCs) (Jathar et al., 2014). Gas-chromatography mass-
spectrometry applications have suggested that they are pri-
marily composed of high-molecular-weight linear, branched,
and cyclic alkanes (carbon numbers greater than 12) and aro-
matics (Gentner et al., 2012; Zhao et al., 2014, 2017). Model
IVOCs have been shown to form SOA efficiently in cham-
ber experiments (Chan et al., 2009; Lim and Ziemann, 2009;
Presto et al., 2010; Tkacik et al., 2012) and have been hypoth-
esized to account for a large fraction of the SOA formed from
the photooxidation of motor vehicle exhaust and biomass
burning emissions (Jathar et al., 2014; Zhao et al., 2017).
The emissions and atmospheric properties (e.g., volatility, re-
activity, SOA mass yields) of POA and IVOCs are known
(or very likely) to vary by source (e.g., mobile sources ver-
sus biomass burning), and hence atmospheric models need
to include a source-resolved treatment to accurately predict
source contributions to OA and fine particulate matter.

Most commonly used chemical transport models (e.g.,
CMAQ, CAMx, PMCAMx, WRF-Chem, GEOS-Chem)
have been updated to include a semi-volatile and reactive
treatment of POA and emissions and SOA formation from
IVOCs (Ahmadov et al., 2012; Koo et al., 2014; Murphy and
Pandis, 2009; Pye and Seinfeld, 2010). However, their repre-
sentation in models has been based on limited data and there
are major differences between the implementations in dif-
ferent models. For example, in most models, with a few ex-
ceptions (e.g., most recent research version of the OA model
in CMAQ developed by Koo et al., 2014), the gas–particle
partitioning of POA was modeled based on measurements
performed on a small off-road diesel engine from more than
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a decade ago (Robinson et al., 2007) and IVOC emissions
were based on data gathered from two medium-duty diesel
vehicles from two decades ago (Schauer et al., 1999). Models
have assumed that these data are representative of emissions
from modern diesel-powered sources and the POA and IVOC
properties from diesel sources are similar to those from other
sources. New source data are now available to update POA
and IVOC emissions estimates in chemical transport models.
Further, the most common schemes to model SOA formation
from POA vapors and IVOCs use a single lumped precursor
to simulate SOA formation from all sources (e.g., Pye and
Seinfeld, 2010) or use an ad hoc aging routine that continu-
ously reduces the volatility of the precursor oxidation prod-
ucts until they partition into the particle phase (Robinson et
al., 2007). While some of these schemes have been validated
against experimental data (Fountoukis et al., 2016; Hodzic
and Jimenez, 2011; Murphy et al., 2017; Zhang et al., 2015),
most have assumed that all sources have the same rate and
potential to form SOA and, in some cases, ignore fragmen-
tation reactions tied to multigenerational chemistry. Ad hoc
aging schemes can overestimate net aerosol mass yields from
an SOA precursor and can sometimes overpredict ambient
SOA mass concentrations too, especially over larger regional
scales (Dzepina et al., 2009, 2011; Hayes et al., 2015; Jathar
et al., 2016). Recently, a host of studies have quantified the
volatility of POA emissions from over 100 unique sources
and measured SOA formation in more than 100 chamber ex-
periments across six broad source classes: on- and off-road
gasoline and diesel sources, wood stoves, and biomass burn-
ing (Gordon et al., 2014a, b; Hennigan et al., 2011; May et
al., 2013a, b, c, 2014; Tkacik et al., 2017). These data offer a
comprehensive set of measurements to inform and update the
source-resolved semi-volatile and reactive behavior of POA
and the emissions and SOA formation from IVOCs in atmo-
spheric models.

SOA formation is strongly influenced by the presence of
NOx (Camredon et al., 2007; Chhabra et al., 2010; Loza
et al., 2014; Ng et al., 2007b). For most SOA precursors,
with the exception of alkanes (Loza et al., 2014) and certain
sesquiterpenes (Ng et al., 2007b), environmental chamber
data suggest that the reaction chemistry at low-NOx , or more
precisely low-NO, conditions (< 2 ppbv) produces more SOA
than at high-NOx conditions (> 50 ppbv and up to∼ 1 ppmv)
(Camredon et al., 2007; Chhabra et al., 2010; Loza et al.,
2014; Ng et al., 2007; Zhang et al., 2014). The consensus
seems to be that at low-NOx conditions such as those found
in remote continental or marine regions the peroxy radical
(RO2) – formed immediately after the reaction of the pre-
cursor with the oxidant – combines with the hydroperoxy
radical (HO2) or RO2 to form lower-volatility hydroperox-
ides or organic peroxides (Kroll and Seinfeld, 2008). Low-
NO conditions in remote regions, and in some cases in urban
regions that have recently witnessed dramatic reductions in
NOx concentrations, can promote autooxidation reactions to
form extremely low volatility organic compounds (Ehn et al.,

2014; Praske et al., 2018). At high-NOx , or more precisely
high-NO, conditions such as those found in urban regions
or biomass burning plumes, the RO2 reaction with NO ei-
ther leads to the formation of alkoxy radicals that can then
fragment the carbon backbone or to the formation of organic
nitrates where both reactions result in more volatile products
(Kroll and Seinfeld, 2008). Most atmospheric models (e.g.,
CMAQ, WRF-Chem, GEOS-Chem) have incorporated this
knowledge to account for the influence of NOx on the mag-
nitude, composition, and spatial distribution of SOA.

In the mostly commonly used scheme (i.e., Henze et al.,
2008), RO2 reacts with HO2 to form “low-NO” SOA or with
NO to form “high-NO” SOA. The HO2 : NO ratio determines
the branching ratio for RO2 and controls the SOA formed
under varying NOx levels. The SOA yields under the low-
and high-NOx conditions are parameterized based on cham-
ber data gathered under low- and high-NOx conditions re-
spectively. Despite being widely implemented, this scheme
has one key limitation that might tend to bias the NOx-
dependent predictions of SOA. This scheme relies on an ac-
curate prediction of NO and HO2 to determine the branching
ratio for the RO2 radical. Although NO predictions can be
validated against routine measurements and most chemical
mechanisms seem to predict NOx (NO+NO2) within a fac-
tor of 2, there are very few ambient data to validate model
predictions of HO2. For example, as will be shown later, we
find that predictions of HO2 concentrations from the use of a
typical gas-phase chemical mechanism (SAPRC-11) in a 3-D
model at Pasadena, CA, were almost an order of magnitude
lower when compared against measurements at the same site
in 2010 (Griffith et al., 2016). In this case, underpredicting
HO2 concentrations by an order of magnitude could shift the
scheme to produce most of the SOA via the high-NO path-
way. In contrast, box models that have used the regional at-
mospheric chemistry mechanism (RACM) have shown good
model–measurement comparisons for HO2 concentrations in
polluted regions (Griffith et al., 2016; Hofzumahaus et al.,
2009). Regardless, gas-phase chemical mechanisms that use
the aforementioned scheme need to ensure accurate predic-
tions of HO2 and NO concentrations to simulate the influence
of NOx on SOA formation.

In this work, we update the organic aerosol model in the
UCD/CIT (University of California at Davis/California In-
stitute of Technology) chemical transport model to include
a semi-volatile and reactive treatment of POA, emissions
and SOA formation from IVOCs, the NOx influence on
SOA formation, and SOA parameterizations for semi-volatile
and intermediate-volatility organic compounds (SVOCs and
IVOCs) that are corrected for vapor wall loss artifacts during
chamber experiments. All of these updates are implemented
in the statistical oxidation model (SOM) that simulates the
oxidation chemistry, thermodynamics, and gas–particle par-
titioning of OA. Model inputs for POA and IVOCs are based
on an interpretation of a comprehensive set of source mea-
surements and resolved broadly by the source type. The NOx
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influence on SOA formation is calculated offline based on
measured and modeled VOC : NOx ratios and NOx concen-
trations. Finally, the SOA formation from SVOCs and IVOCs
is modeled based on recently derived parameterizations that
account for vapor wall loss artifacts in chamber experiments.
Building on our earlier work (Cappa et al., 2016; Jathar et
al., 2015, 2016), these updates within the framework of the
SOM have improved the representation of OA in a chemical
transport model.

To help the reader, we provide a brief overview of the dif-
ferent sections in this manuscript (section numbers in paren-
theses). Section 2 discusses details of the chemical trans-
port model (2.1), organic aerosol model (2.2), simulations
performed (2.3), and measurements used for model evalua-
tion (2.4). In Sect. 3, we first describe the emissions (3.1),
spatial distribution (3.2), and precursor contributions to OA
(3.3), followed by the influence of vapor wall losses (3.4) and
NOx (3.6) on SOA formation. In the same section, we de-
scribe results from sensitivity simulations performed on the
most sensitive inputs (3.5). Next, we compare model predic-
tions of SOA precursors (4.1), OA (4.2), and POA and SOA
(4.3) mass concentrations, and OA elemental composition
(4.4) against measurements in southern California. Finally,
we highlight key findings from this work in the summary and
discussion Sect. 5.

2 Methods

2.1 Chemical transport model

We used the UCD/CIT regional chemical transport model
(Kleeman and Cass, 2001) to simulate the emissions, trans-
port, chemistry, and deposition of air pollutants over the
state of California at a grid resolution of 24 km and over
southern California (see Fig. S1 in the Supplement) us-
ing a nested 8 km grid from 20 July to 2 August 2005.
The results and analysis were focused on model predic-
tions over southern California because the region, with ap-
proximately 15 million people, is home to one of the most
polluted cities in the United States (Los Angeles; ALA,
2017). The time period for simulation was primarily cho-
sen because the model has been previously evaluated for
this time period (Jathar et al., 2016) and applied to ex-
amine important sources and formation pathways of OA
(Cappa et al., 2016; Jathar et al., 2015, 2016, 2017b). The
recent literature describes the latest version of the UCD/CIT
model but we provide a very brief description of the mod-
els and inputs used in this work. Anthropogenic emissions
for California were developed using the California Regional
PM10/PM2.5 Air Quality Study (CRPAQS) inventory of 2000
but scaled to match conditions in 2005. Wildfire emissions
were based on the model FINN (Fire Inventory from Na-
tional Center for Atmospheric Research) (Wiedinmyer et al.,
2011) although they were not found to significantly con-

tribute to OA during the simulated time period (Docherty
et al., 2011). Biogenic emissions were based on the model
MEGAN (Model of Emissions of Gases and Aerosols from
Nature) (Guenther et al., 2006). The Weather Research
and Forecasting (WRF) v3.4 model (https://www.mmm.
ucar.edu/weather-research-and-forecasting-model, last ac-
cess: 25 March 2019) was used to produce hourly meteo-
rological fields. National Centers for Environmental Predic-
tion’s (NCEP) NAM (North American Mesoscale) analysis
data were used to set the initial and boundary conditions for
WRF. The gas- and particle-phase initial and hourly vary-
ing boundary conditions were based on the results from the
global model MOZART-4/NCEP (Emmons et al., 2010). The
gas-phase chemistry was modeled using SAPRC-11 (Carter,
2010).

2.2 Organic aerosol model

2.2.1 Statistical oxidation model (SOM)

In this work, we use the statistical oxidation model developed
by Cappa and Wilson (2012). The SOM is a semi-explicit and
parameterizable model that simulates the oxidation chem-
istry, thermodynamics, and gas–particle partitioning of OA
and its precursors. The SOM has been used to model SOA
formation in chamber (Cappa et al., 2013; Cappa and Wilson,
2012; Zhang et al., 2014) and flow reactor (Eluri et al., 2018)
experiments and was recently coupled with SAPRC-11 (gas-
phase chemical mechanism) in the UCD/CIT model (Jathar
et al., 2015) to investigate the role of chamber-based vapor
wall losses (Cappa et al., 2016) and multigenerational aging
(Jathar et al., 2016) on the ambient SOA burden. In this work,
we used an updated version of the SAPRC-SOM model em-
bedded in the UCD/CIT model that included the POA and
IVOC updates described in Sect. 2.2.2. A detailed description
of the mathematical and numerical formulation of the SOM
can be found in earlier literature but a brief description of the
SOM framework follows. The SOM uses a two-dimensional
carbon–oxygen grid to describe and track the evolution of
the gas- and particle-phase organic carbon that is known to
yield OA. Each grid cell in the SOM represents an organic
species with the molecular formula CxH2x+2−zOz, where
x = NC and z= NO. This species is expected to capture the
average properties (e.g. volatility, reaction rate constants) of
species with the same number of carbon (NC) and oxygen
(NO) atoms that are formed from a given SOA precursor.
Each species, in the gas and particle phases, is assumed to
react with the hydroxyl radical (OH). Operationally, OH is
not consumed within the SOM as the chemistry captured
in the SOM overlaps with that represented in the gas-phase
mechanism (i.e., SAPRC-11). Reactions with the OH radi-
cal result in functionalization or fragmentation of the organic
species and the distribution of the reaction products is tracked
in the carbon–oxygen grid. Six precursor-specific adjustable
parameters are assigned for each SOM grid: four parame-
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ters that define the molar yields of the four functionalized,
oxidized products (Pfunc); one parameter that determines the
probability of functionalization or fragmentation (mfrag); and
one parameter that describes the relationship between NC,
NO, and volatility (1LVP). In the model, the probability of
fragmentation is modeled as a function of the O : C ratio
since species with higher O : C ratios have been shown to
fragment much more easily than species with lower O : C ra-
tios (Chacon-Madrid and Donahue, 2011). All SOM species
properties (e.g., OH reactivity, volatility) are described in
terms of NC and NO.

Seven SOM grids were used to represent SOA forma-
tion from nine different precursor classes: (i) long alkanes,
(ii) benzene, (iii) high-yield aromatics, (iv) low-yield aro-
matics, (v) isoprene, (vi) monoterpenes, (vii) sesquiterpenes,
(viii) semi-volatile POA (SVOC), and (ix) IVOCs. Long
alkanes as a precursor class include linear, branched, and
cyclic alkanes roughly up to a carbon number of C13, and
they represent speciated alkanes present in existing emissions
inventories. These long alkanes are distinct from the alkanes
that might be present in SVOCs and IVOCs. High-yield and
lower-yield aromatics include all speciated aromatic com-
pounds present in existing emissions inventories and, sim-
ilar to the long alkanes precursor class, are distinct from
the aromatics that might be present in SVOCs and IVOCs.
Classes (i) through (vii) have been included in previous ap-
plications of the SOM and we refer the reader to our earlier
publications for more details (Cappa et al., 2016; Jathar et
al., 2015, 2016). Classes (viii) and (ix) were included in this
work for the first time. The SOA formation from monoter-
penes and sesquiterpenes (classes vi and vii) was modeled
in the same SOM grid since both precursors used the SOM
parameter sets for α-pinene. Similarly, the SOA formation
from SVOCs and IVOCs was modeled in the same SOM grid
and both used the SOM parameter set for n-dodecane; sensi-
tivity simulations were performed using the SOM parameter
set for toluene. SOM parameters were determined from fit-
ting the observed SOA volume produced in chamber exper-
iments, with and without accounting for losses of vapors to
the chamber walls. Details about how the vapor wall losses
were modeled are described in Zhang et al. (2014) and Cappa
et al. (2016). Briefly, loss of vapors to the Teflon walls of the
chamber was modeled reversibly where the first-order uptake
to the walls was assumed to be 2.5× 10−4 s−1 and the re-
lease of vapors from the walls was modeled using absorptive
partitioning theory with the Teflon wall serving as an absorb-
ing mass with an effective mass concentration of 10 mg m−3.
Recent work has argued that vapor wall loss rates in Teflon
chambers are much higher (larger than a factor of 5) than
those used by Cappa et al. (2016) to derive the SOM parame-
terizations (Huang et al., 2018; Krechmer et al., 2016; Sunol
et al., 2018). The use of a higher wall loss rate will tend to
increase SOA aerosol mass yields further. This new under-
standing will need to be considered in the future.

We used low- and high-NOx-specific parameter sets to
simulate SOA formation separately under low- and high-
NOx conditions respectively since the current version of the
SOM cannot account for continuous variation in NOx . The
SOM parameters used for the nine different classes and seven
different grids are listed in Table 1. Parameters for all species
except for isoprene were from Cappa et al. (2016). The pa-
rameters for isoprene were from Hodzic et al. (2016), which
included updates for the reactions rate constants for the first
generation products from isoprene photooxidation. Jathar et
al. (2016) investigated the influence of oligomerization re-
actions by allowing irreversible conversion of particle-phase
SOM species into a single non-volatile species and found that
the oligomerization pathway (as simulated) did not substan-
tially affect the OA mass concentration in southern Califor-
nia. Hence, the oligomerization pathway was not considered
in this work. We also did not include the formation of ex-
tremely low volatility organic compounds from oxidation of
SOA precursors such as α-pinene (Ehn et al., 2014) and alka-
nes (Praske et al., 2018) through autooxidation pathways,
which will very likely be addressed in future versions of the
SOM.

2.2.2 Model inputs

Semi-volatile and reactive POA (SVOC). POA from gaso-
line, diesel, biomass burning, and food cooking sources was
treated as semi-volatile and reactive. POA from all other
sources (e.g., marine, dust) was assumed to be non-volatile
in all simulations except one where we explored the sensi-
tivity in model predictions to this assumption (see Sect. 2.3
for more details). Semi-volatile POA was modeled by dis-
tributing POA emissions from the emissions inventory in the
SOM grid as hydrocarbon species modeled as linear alka-
nes, i.e. as species with no oxygen (i.e., CxHz). The hy-
drocarbon/linear alkane distribution in the SOM grid was
determined by refitting the volatility distributions published
by May and coworkers (May et al., 2013a, b, c) such that
the hydrocarbon distribution reproduced the observed gas–
particle partitioning behavior; the hydrocarbon distributions
are listed in Table S1 in the Supplement. We assumed all on-
and off-road gasoline exhaust POA to have the same hydro-
carbon/linear alkane distribution as the volatility distribution
determined by May et al. (2013a) from data for 51 light-
duty gasoline vehicles. Almost three-quarters of the light-
duty gasoline vehicles used in May et al. (2013a) were man-
ufactured in or prior to 2005 (the year modeled in this work)
and they did not find the POA volatility distribution data to be
sensitive to the model year of the vehicle. Hence, the volatil-
ity distribution used in this work should still be representa-
tive of the vehicle fleet in 2005. Based on tests performed on
eight light-duty gasoline vehicles, Kuwayama et al. (2015)
found that the POA volatility for their vehicles was consistent
with that determined by May et al. (2013a) for about half the
vehicles but substantially lower for the other half. They hy-
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Table 1. SOA precursors and SOM parameters used in this work. VWL: vapor wall loss corrected; 1LVP: change in vapor pressure linked
to addition of one oxygen atom; Pfunc: molar yields of species that add one to four oxygens per reaction (Pf1 through Pf4 ); mfrag: exponent
influencing the probability of fragmentation.

SOA precursors SAPRC species/ SOM surrogate VWL NOx 1LVP Pfunc mfrag Reference

SOM grid Pf1 Pf2 Pf3 Pf4

SVOC/IVOC POA+IVOC n-Dodecane/ No Low 1.54 0.717 0.278 0.0028 0.0022 0.122 Loza et al. (2014)
toluene High 1.39 0.927 0.0101 0.018 0.0445 0.098

Alkanes ALK Yes Low 1.83 0.999 0.001 0.001 0.001 2
High 1.47 0.965 0.001 0.002 0.032 0.266

Benzene BENZ Benzene No Low 2.01 0.769 0.001 0.0505 0.180 0.0593 Ng et al. (2007a)
High 1.7 0.079 0.001 0.919 0.001 0.535

Yes Low 1.97 0.637 0.001 0.002 0.360 0.0807
High 1.53 0.008 0.001 0.991 0.001 0.824

High-yield ARO1 Toluene No Low 1.84 0.561 0.001 0.001 0.438 0.010 Zhang et al. (2014)
aromatics High 1.24 0.003 0.001 0.001 1.010 0.222

Yes Low 1.77 0.185 0.001 0.002 0.812 1.31
High 1.42 0.856 0.001 0.002 0.141 4.61

Low-yield ARO2 m-Xylene No Low 1.76 0.735 0.001 0.002 0.262 0.010 Ng et al. (2007a)
aromatics High 1.68 0.936 0.001 0.002 0.061 0.010

Yes Low 2.05 0.102 0.001 0.878 0.019 1.08
High 1.46 0.001 0.001 0.942 0.056 0.0671

Isoprene ISOP Isoprene No Low 2.26 0.973 0.001 0.001 0.026 0.010 Chhabra et al. (2011);
High 1.94 0.952 0.001 0.030 0.016 0.063 Hodzic et al. (2016)

Yes Low 2.25 0.1646 0.5164 0.3012 0.0179 0.0244
High 1.93 0.988 0.0002 0.0116 0.0009 0.51

Monoterpenes/ TRP α-Pinene No Low 1.87 0.001 0.869 0.078 0.053 0.010 Chhabra et al. (2011)
sesquiterpenes High 1.62 0.068 0.633 0.275 0.024 0.035

Yes Low 1.97 0.419 0.426 0.140 0.014 0.305
High 1.91 0.500 0.422 0.070 0.008 0.16

pothesized that the lower POA volatility could be attributed
to fuel oxidation products. The findings of Kuwayama et
al. (2015) suggest that the volatility distribution used in this
work may overestimate the evaporation of POA with dilu-
tion. We assumed all on- and off-road diesel exhaust POA
to have the same hydrocarbon/linear alkane distribution as
the volatility distribution determined by May et al. (2013b)
from data for two medium-duty diesel trucks, three heavy-
duty diesel trucks, and a single off-road diesel engine. May et
al. (2013b) did not report on differences in the POA volatility
distribution between vehicles that did or did not use a mod-
ern emissions control system (diesel particulate filter, DPF;
and/or diesel oxidation catalyst, DOC). Hence, we assumed
that the volatility distribution used here was still represen-
tative of the mostly non-DPF and non-DOC vehicle fleet in
2005. We assumed residential wood combustion and wild-
fires to have the same hydrocarbon/linear alkane distribution
as the volatility distribution determined by May et al. (2013c)
from a selection of 15 different fuels. We assumed food cook-
ing to have the same hydrocarbon/linear alkane distribution
as that for wildfires. Recent work suggests that food cooking
OA may be significantly less volatile than wildfire OA (Lou-
varis et al., 2017; Woody et al., 2016). To examine the influ-

ence of this finding, we performed sensitivity simulations to
model the POA from food cooking sources using the volatil-
ity distribution of Louvaris et al. (2017). This work, similar
to the most recent implementation in the Community Multi-
scale Air Quality (CMAQ) model (Koo et al., 2014; Woody
et al., 2016), included a source-resolved treatment of semi-
volatile POA that was tied to a comprehensive set of source
measurements.

The reactive behavior of POA was modeled by assuming
that the POA vapors (i.e. SVOCs) (represented as a hydro-
carbon distribution) and their products participated in gas-
phase oxidation and formed SOA similar to linear alkanes
and utilized the SOM parameter set for n-dodecane. The sur-
rogate, in this case n-dodecane, only informs the multigen-
erational oxidation chemistry of the precursor, and the actual
compound of interest (e.g., a C15 linear alkane) can have a
different SOA mass yield than that of n-dodecane. The re-
action rate constants with OH for the parent hydrocarbons
were assumed to be similar to the carbon-equivalent linear
alkane. We should note that the presence of branched and
cyclic alkanes and aromatic compounds in the SVOCs would
require the use of a higher reaction rate constant with OH as
these compounds are more reactive with OH than carbon-
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equivalent linear alkanes. The equivalence to linear alkanes
while not perfect was probably a good assumption for gaso-
line and diesel sources since alkanes account for a substan-
tial fraction of gasoline and diesel fuel (Gentner et al., 2012)
and lubricating oil (Caravaggio et al., 2007) and are a domi-
nant organic class in both gas- and particle-phase emissions
from mobile sources (Brandenberger et al., 2005; Hays et
al., 2017; Schauer et al., 1999, 2002b)(Worton et al., 2014).
However, alkanes do not make up a significant fraction of
the gas- and particle-phase emissions from biomass burning
(Hatch et al., 2015; Schauer et al., 2001; Stockwell et al.,
2015) or food cooking (Schauer et al., 2002a), and hence it is
unlikely that linear alkanes are good surrogates to model the
oxidation of SVOCs from these sources. To test the sensitiv-
ity of the model predictions to the surrogate used to model
SOA formation from SVOCs, we ran sensitivity simulations
where we modeled the SVOCs as a mixture of aromatic com-
pounds using the SOM parameter set for toluene (see ratio-
nale in Sect. 2.4).

Intermediate-volatility organic compounds. We included
IVOC emissions from gasoline, diesel, and biomass burning.
We assumed none of the other sources emitted IVOCs for all
simulations except one where we explored the sensitivity in
model predictions to this assumption (see Sect. 2.4 for more
details). The IVOC emissions estimates and their potential to
form SOA was based on the work of Jathar et al. (2014). In
Jathar et al. (2014), IVOC emissions, defined as the sum of
all unspeciated compounds, were determined as a mass frac-
tion of the total non-methane organic gas (NMOG) emissions
for three different source categories: gasoline vehicles, diesel
vehicles, and biomass burning. Here, the IVOCs, as unspe-
ciated organic compounds, are new SOA precursors added
to the emissions inventory and regardless of their chemi-
cal makeup are distinct from the speciated precursors such
as long alkanes and aromatics already present in existing
emissions inventories. IVOCs were assumed to be 25 % of
the NMOG emissions for on- and off-road gasoline exhaust,
20 % of the NMOG emissions for on- and off-road diesel
exhaust, and 7 % of the NMOG emissions for residential
wood combustion and wildfires. The IVOC : NMOG frac-
tions did not appear to be statistically different for the gaso-
line and diesel sources manufactured before or after 2005,
and hence those fractions were assumed to be representative
of the source fleet in 2005. No IVOCs were considered for
the food cooking source but recent work suggests that they
might play a role in influencing the OA evolution from a mul-
titude of food cooking sources (Kaltsonoudis et al., 2017; Liu
et al., 2017). We assumed that the NMOG emissions in the
emissions inventory accounted for most of the gas-phase or-
ganic compound mass that included the IVOCs, and hence
the addition of IVOC emissions meant that the non-IVOC
emissions had to be reduced to conserve total NMOG mass.
Recent literature suggests that IVOCs could be lost to walls
of the sampling hardware (e.g., tubing, bags) (Pagonis et al.,
2017) and therefore would be excluded in the NMOG mea-

surement. Our assumption should result in conservative esti-
mates for the influence of IVOC emissions on SOA forma-
tion.

Following Jathar et al. (2014), the IVOCs were modeled
as a C13 hydrocarbon for those from on- and off-road gaso-
line sources and as a C15 hydrocarbon for those from on-
and off-road diesel sources and biomass burning. The oxida-
tion of the IVOC hydrocarbons and their reaction products
and the subsequent SOA formation were modeled assuming
equivalence to a linear alkane and using the SOM param-
eter set for n-dodecane. As mentioned earlier, n-dodecane
only informs the multigenerational oxidation chemistry of
the precursor, and the actual compound of interest (e.g., a
C13 or C15 linear alkane) can have a different SOA mass
yield than that of n-dodecane. The equivalent linear alkane
to model SOA formation from IVOCs in Jathar et al. (2014)
was based on fitting the SOA formation observed in cham-
ber experiments (Gordon et al., 2014a, b; Hennigan et al.,
2011), and hence the choice of the hydrocarbon in this work
was experimentally constrained. Jathar et al. (2014) used lin-
ear alkanes as a surrogate as the SOA formation from linear
alkanes was well studied when they developed the param-
eterization and the SOA mass yields increased predictably
with the carbon number of the precursor. Recent applica-
tion of gas-chromatography mass spectrometry to combus-
tion emissions has found that IVOCs are mostly composed of
branched and cyclic alkanes and aromatic compounds (Gen-
tner et al., 2012; Koss et al., 2018; Zhao et al., 2016, 2017).
So while it would have been more appropriate to model the
IVOCs as an alkane–aromatic mixture, this choice would
not have substantially changed the model predictions in the
work as the SOA formation from this alkane–aromatic mix-
ture would still be constrained to the same chamber experi-
ments. We will consider the recent detailed speciation work
surrounding IVOCs in future applications of this model. In
this work, we also investigated the sensitivity in model pre-
dictions to the use of an aromatic compound (i.e., toluene) as
a surrogate instead of an alkane (i.e., n-dodecane) to model
SOA formation from IVOCs (see rationale in Sect. 2.4).

Recently, Zhao and coworkers (Zhao et al., 2015, 2016)
used thermal-desorption gas-chromatography mass spec-
trometry (TD-GC-MS) to measure IVOC emissions in gaso-
line and diesel exhaust and speciated/classified the IVOCs
as a mixture of linear, branched, and cyclic compounds re-
solved by carbon number. We should note that Zhao et
al. (2015, 2016) defined IVOCs as the sum of speciated and
unspeciated hydrocarbons roughly larger than a C12 alkane,
which was different from the definition adopted by Jathar et
al. (2014). In their first paper, Zhao et al. (2015) found IVOCs
to be about 60 % of the NMOG mass emissions for tailpipe
exhaust from older diesel vehicles/engines (ones without par-
ticle filters or oxidation/reduction catalysts). In this work
we used an IVOC : NMOG ratio of 0.2 and likely underes-
timated IVOC emissions from diesel sources by a factor of
2.5. Zhao et al. (2015) concluded that the effective IVOC
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yield based on their speciation was comparable to the yield
of the C15 linear alkane used in this work, but the applica-
tion of that yield overpredicted the chamber SOA data from
Gordon et al. (2014a) by a factor of 1.8; virtually all of the
SOA predicted by Zhao et al. (2016) was from the oxidation
of IVOCs. If one assumed that the effects from lower IVOC
emissions (factor of 2.5) were roughly balanced by the use
of higher SOA yields (factor of 1.8), then the SOA forma-
tion from diesel sources was probably well represented in
our work.

In their second paper, Zhao et al. (2016) found the IVOCs
to be only about 4 % of the NMOG mass emissions in gaso-
line exhaust but we used an IVOC : NMOG ratio of 0.25 in
this work. This suggests that we may be overestimating the
gasoline exhaust IVOC emissions by approximately a fac-
tor of 6 in this work. Based on the speciation performed,
Zhao et al. (2016) estimated that the IVOCs collectively
had an SOA yield between 19 % and 24 % at an OA mass
concentration of 9 µg m−3 (9 µg m−3 was the average end-
of-experiment concentration in the chamber experiments of
Gordon et al., 2014a), which was slightly more than twice
the SOA yield for a C13 linear alkane (7 %–12 %) – used to
model gasoline IVOCs in this work – at the same OA mass
concentration. However, application of the Zhao et al. (2016)
SOA yields for IVOCs underpredicted the observed cham-
ber SOA formation for newer gasoline vehicles by a factor
of ∼ 2. Since IVOC oxidation accounted for slightly less
than half of the SOA formed (with the other half coming
from single-ring aromatics), the IVOC SOA yields in Zhao
et al. (2016) would need to be tripled to explain the cham-
ber SOA measurements. If we assumed that the effects from
higher IVOC emissions (factor of 6) were approximately bal-
anced by the use of lower SOA yields (factor of 2× 3= 6),
then the SOA formation from gasoline sources in this work
was probably well represented in our work. To summarize,
the IVOC emissions estimates and the surrogates used to
model SOA formation from IVOCs from gasoline and diesel
sources in this work, while different from those suggested in
Zhao et al. (2015, 2016), are still consistent with the SOA
measurements made by Gordon et al. (2014a, b). In a fu-
ture version of the model, we will aim to include the IVOC
emissions estimates of Zhao et al. (2015, 2016) and update
the SOA parameterizations accordingly. It is likely that these
might slightly alter the spatiotemporal distribution of IVOC
SOA in the modeled domain.

2.2.3 Modeling the NOx dependence on SOA formation

Previous applications of the SOM have simulated SOA un-
der low- and high-NOx conditions separately since the SOM,
in its current form, cannot model the continuous evolu-
tion of SOA under varying NOx conditions using the lo-
cal NO/HO2. Predictions from either of these simulations
(Jathar et al., 2016) or the average of these simulations
(Cappa et al., 2016) likely do not accurately characterize the

evolution or spatial distribution of SOA since NOx concen-
trations exhibit strong spatial variability with higher concen-
trations in urban (e.g., traffic) and source (e.g., wildfires) re-
gions. For example, since most precursors have higher SOA
yields under low-NOx conditions than under high-NOx con-
ditions, the use of an average is expected to overestimate
SOA in high-NOx urban areas and underestimate SOA in
low-NOx rural/remote continental areas.

In this work, we used two different offline techniques to
account for the influence of NOx on SOA formation. For both
methods, we assumed that the 3-D model predictions based
on the low- and high-NOx SOA parameterizations bounded
the minimum and maximum ambient SOA mass concen-
trations. Xu et al. (2015) found that the SOA formation
from isoprene photooxidation was maximized at intermedi-
ate NOx levels with lower values at the extreme NOx levels,
suggesting that our bounding assumption may not necessar-
ily hold for all precursor species. Presto and Donahue (2006)
found that the SOA from α-pinene ozonolysis under varying
NOx conditions could be estimated by interpolating the SOA
formed between the low- and high-NOx conditions using the
VOC : NOx ratio. Hence, in the first method, we used the
VOC : NOx ratios from the low- and high-NOx chamber ex-
periments as our bounds and used the 3-D-model-predicted
VOC : NOx ratio to interpolate between the minimum and
maximum SOA mass concentrations predicted from the low-
and high-NOx simulations. Previous work (e.g., Camredon
et al., 2007; Xu et al., 2015) has also found SOA formation
to vary along a NOx scale, and hence, in the second method,
we used NOx concentrations from the low- and high-NOx
chamber experiments and the 3-D model predictions to per-
form the interpolation. For each method, we performed the
interpolation on the SOA mass concentrations assuming a
linear or logarithmic dependence on the VOC : NOx ratios
and NOx concentrations. The linear dependency was chosen
for simplicity while the logarithmic dependency was chosen
to mimic the visual trends in SOA and VOC : NOx or NOx
reported in previous work and also to produce the highest
response in the SOA formation with NOx . The VOC : NOx
ratio and the NOx concentration served as an approximate
surrogate for the HO2 : NO ratio used in most atmospheric
models to simulate the NOx-dependent SOA formation. The
NOx-adjusted SOA concentrations (SOAeff) from each pre-
cursor at each grid cell were calculated from model predic-
tions from the low- and high-NOx simulations using the fol-
lowing equations:

SOAeff = SOAhigh NOx

+
SOAlow NOx −SOAhigh NOx

(VOC : NOx)low NOx − (VOC : NOx)high NOx

× ((VOC : NOx)model− (VOC : NOx)high NOx ), (1)
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SOAeff = SOAhigh NOx

+
SOAlow NOx −SOAhigh NOx

log(VOC : NOx)low NOx − log(VOC : NOx)high NOx

× (log(VOC : NOx)model− log(VOC : NOx)high NOx ),

(2)

SOAeff = SOAlow NOx

−
SOAlow NOx −SOAhigh NOx

(NOx)high NOx − (NOx)low NOx

× ((NOx)model− (NOx)low NOx ), (3)
SOAeff = SOAlow NOx

−
SOAlow NOx −SOAhigh NOx

log(NOx)high NOx − log(NOx)low NOx

× (log(NOx)model− log(NOx)low NOx ), (4)

where SOAlow NOx and SOAhigh NOx are model predictions
of SOA from using the low- and high-NOx parameterizations
respectively, (VOC : NOx)low NOx and (VOC : NOx)high NOx
are the initial VOC : NOx ratios from the chamber exper-
iments used to develop the low- and high-NOx SOA pa-
rameterizations, (VOC : NOx)model is the model-predicted
VOC : NOx ratio in the model grid cell, (NOx)low NOx and
(NOx)high NOx are the NOx concentrations from the cham-
ber experiments used to develop the low- and high-NOx
parameterizations, and (NOx)model is the model-predicted
NOx concentration in the model grid cell. Equations (1) and
(3) assume linear dependence while Eqs. (2) and (4) as-
sume logarithmic dependence. For the (VOC : NOx)model ra-
tio, the VOC is the sum of all organic species tracked in
the SAPRC-11 gas-phase chemical mechanism, including all
IVOCs and gas-phase SVOCs. NOx is the sum of NO and
NO2. The VOC : NOx ratios and the NOx concentrations
from the chamber experiments used in the equations were
gathered directly from the primary references and are listed
in Table 2. When the (VOC : NOx)model or (NOx)model val-
ues were lower or higher than the chamber values in Table 2,
the SOA formation was set to model predictions from the
bounding simulations.

We acknowledge that this approach to modeling the NOx
influence on SOA formation is limited and is sensitive to the
following assumptions: (i) the VOC : NOx ratio plus NOx
concentration is a good proxy to model the HO2 : NO ratio
and the branching between low- and high-NOx SOA forma-
tion; (ii) the low- and high-NOx chamber experiments for a
particular precursor bound the minimum and maximum SOA
formed; (iii) the SOA response between the low and high
NOx levels varies linearly or logarithmically with VOC :
NOx ratios and NOx concentrations; and (iv) the model-
predicted VOC concentrations at each grid cell, summed
across a mixture of organic compounds, are analogous to the
initial VOC concentrations from the chamber experiment to
calculate VOC : NOx ratios. There are few experimental data

to test these assumptions and these need to be investigated
in future work. In addition to modeling the influence of NOx
on ambient SOA concentrations, this approach allowed us
to explore the influence of reductions in NOx emissions and
concentrations on ambient OA concentrations in the future.

2.3 Simulations

The Base simulation – representing our most comprehensive
simulation – included the updates described in Sect. 2.2.2: a
source-resolved semi-volatile and reactive treatment of POA,
source-resolved SOA formation from SVOCs and IVOCs,
and correction of the subsequent SOA formation for vapor
wall losses in chambers. The Base simulation included sub-
simulations at two resolutions (24 and 8 km) with two NOx
parameterizations (low and high NOx).

Additional simulations were designed and performed with
two objectives in mind: (i) to examine the influence of each
update included in this work and (ii) to test the sensitivity in
model predictions to uncertainties inherent in the updates and
other model inputs. A set of four simulations was performed
to systematically study the influence of model updates. These
included the following simulations where only one update
was made over the previous configuration: (1) Traditional
– non-volatile POA, no IVOCs, SOA from VOCs, and no
correction for chamber vapor wall losses; (2) SVOC – semi-
volatile POA, no IVOCs, SOA from SVOCs and VOCs, and
no correction for chamber vapor wall losses; (3) IVOC –
semi-volatile POA; IVOCs; SOA from SVOCs, IVOCs, and
VOCs; and no correction for chamber vapor wall losses; and
(4) Base – semi-volatile POA; IVOCs; SOA from SVOCs,
IVOCs, and VOCs; and correction for chamber vapor wall
losses. Successive differences in model predictions between
the Traditional, SVOC, IVOC, and Base simulations were
used to systematically examine the influence of the semi-
volatile and reactive POA, IVOCs, and chamber vapor wall
losses respectively.

A set of six simulations were performed to study uncer-
tainties in model inputs. The SVOCmax (5) simulation as-
sumed that POA from all sources (all POA except marine
POA) was semi-volatile and modeled using the volatility
distribution for diesel exhaust POA. Diesel POA was cho-
sen since it was the most volatile of the volatility distribu-
tions used in this work. This simulation bounded the max-
imum loss in POA mass to evaporation. The IVOCmax (6)
simulation assumed that all sources (combustion and non-
combustion except biogenic sources) emitted IVOCs, which
were estimated using an IVOC:NMOG ratio of 0.2 and al-
lowed to form SOA equivalent to a C15 alkane. This sim-
ulation provided an upper-bound estimate to the contribu-
tion of IVOCs to ambient SOA although the IVOC emissions
and their potential to form SOA could be even higher than
that assumed here. The No Aging (7) simulation assumed
no multigenerational aging or, in other words, the emitted
precursor was allowed to react with OH and form four func-
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Table 2. Low and high VOC : NOx ratios in ppb ppb−1 and NOx concentrations in ppbv from chamber experiments used to model the
influence of NOx on SOA formation.

SOM surrogate (VOC : NOx)low NOx (NOx)low NOx (VOC : NOx)high NOx (NOx)high NOx Reference

n-Dodecane 17.0a < 2 0.09 343 Loza et al. (2014)
Benzene 207a < 2 1.98 169 Ng et al. (2007a)
Toluene 46.3a,b < 0.8 0.76b 50 Zhang et al. (2014)
m-Xylene 12.1a,c < 2 0.10 943 Ng et al. (2007a)
Isoprene 24.5a < 2 0.29 937 Chhabra et al. (2010)
α-Pinene 33.1a < 2 0.05 844 Chhabra et al. (2010)

a Minimum VOC : NOx ratios since these assume a NOx concentration of 0.8 ppbv in the chamber. b Average of six experiments performed by Zhang et al. (2014).
c Average of two experiments performed by Ng et al. (2007a).

Table 3. Names and descriptions of the simulations performed in this work.

No. Name Semi-volatile & IVOC Vapor wall Additional details
reactive POA losses for SVOC,
(SVOC) IVOC, and VOC

1 Traditional No No No Same as model of Cappa et al. (2016)
2 SVOC Yesb No No –
3 IVOC Yesb Yes No –
4 Base Yesb Yes Yes Base case model used in this work
5 SVOCmax

a Yesb Yes Yes SVOCs modeled as per diesel parameterization
6 IVOCmax

a Yesb Yes Yes IVOCs modeled as per diesel parameterization
7 No Aginga Yesb Yes Yes No multigenerational aging
8 VOCspec

a Yesb Yes Yes VOC speciation from May et al. (2014)
9 Aromatica Yesb Yes Yes S/IVOCs modeled using the toluene parameterization
10 SVOCcooking

a Yesc Yes Yes SVOCs from food cooking modeled using the volatility
distribution of Louvaris et al. (2017)

a Same as the Base simulation but with differences noted in the “Additional details” column. b Assumes volatility of food cooking POA to be similar to volatility of
biomass burning. c Uses measured volatility of food cooking POA.

tionalized products with no further oxidation. This simula-
tion investigated the influence of multigenerational aging on
ambient SOA. The VOCspec (8) simulation updated the VOC
speciation for on- and off-road gasoline and diesel vehicles
based on a comprehensive set of measurements performed
on an in-use fleet (May et al., 2013a, b). This simulation ex-
amined the influence of updated emissions profiles on the
non-IVOC contribution to SOA. The Aromatic (9) simulation
assumed that the oxidation of SVOCs and IVOCs to form
SOA was modeled using toluene. There were two reasons for
choosing toluene. First, both mono- and polycyclic aromatic
compounds are found in gasoline and diesel fuel (Gentner
et al., 2012) and in tailpipe emissions from mobile sources
(Zhao et al., 2015, 2016), and oxygenated aromatic com-
pounds such as phenols, guaiacols, and syringols are found in
biomass burning emissions (Schauer et al., 2001; Stockwell
et al., 2015). Second, aromatic compounds, similar to alka-
nes, have been studied in detail for their potential to form
SOA and are recognized to form more SOA than linear alka-
nes for the same carbon number. This simulation provided an
upper-bound estimate for SOA formation from the oxidation

of SVOCs and IVOCs. Finally, the SVOCcooking (10) simula-
tion used a hydrocarbon/linear alkane distribution based on
the measured volatility distribution of Louvaris et al. (2017)
to represent POA from food cooking sources. This simulation
examined the effect of a more realistic volatility distribution
for food cooking POA on mass concentrations of POA and
SOA from SVOCs.

The UCD/CIT model was run on the High Performance
Computing Cluster run by Engineering Network Services at
Colorado State University. Although the number of cores var-
ied based on availability, on average each simulation used
96 cores and required 5 days to execute 19 simulated days.
Since each set included four sub-simulations, each simula-
tion required ∼ 5 days and all simulations in this work re-
quired ∼ 180 days of computational time.

2.4 Measurements for model evaluation

Model predictions were evaluated against gas-phase mea-
surements of SOA precursors and particle-phase measure-
ments of OA mass concentrations and composition. Here, we
briefly describe the primary measurement data and any post-
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processing of the data we performed prior to undertaking the
model evaluation.

Gas-phase measurements of SOA precursors were from
two different sources. The first source was routine daily-
averaged measurements of single-ring aromatics made by the
South Coast Air Quality Management District (SCAQMD,
2017) in southern California at three different sites: north
Los Angeles, Riverside, and Long Beach. While measure-
ment data were available at three other sites, data were not
available for 2005, our modeled year, and hence not included.
These gas-chromatography-based measurements were avail-
able every 12th day and included the following aromatic
species: benzene, toluene, o/m/p-xylene, ethyl-benzene, and
styrene. Since there was little overlap between the mod-
eled episode (14-day period over July–August) and avail-
able aromatic data, the measurement data were averaged over
a 3-month period in the summer (15 May to 15 Septem-
ber) and then compared to the episode-averaged model pre-
dictions. The second source was gas-chromatography mass-
spectrometry measurements of single-ring aromatics (Bor-
bon et al., 2013) and IVOCs (Zhao et al., 2014) made at
the Pasadena ground site in the months of May and June of
2010 as part of the CalNex campaign. The single-ring aro-
matics were measured every hour and included the follow-
ing species: benzene, toluene, o/m/p-xylene, ethyl-benzene,
and styrene. The IVOCs were measured every 3 h and in-
cluded most of the reduced and oxidized organic species with
a carbon number larger than 12. Since these measurements
were from a different time period, we compared campaign-
averaged measurements against episode-averaged model pre-
dictions.

Particle-phase measurements were from two different
sources as well. The first source was routine daily-integrated
measurements of organic carbon (OC) in southern Cal-
ifornia from four sites in the Chemical Speciation Net-
work (CSN; central Los Angeles, Riverside, Simi Valley,
and Escondido) and six sites in the Interagency Monitor-
ing of Protected Visual Environments (IMPROVE) network
(San Rafael, Riverside-Rubidoux, San Gorgonio Wilderness,
Joshua Tree NP, Agua Tibia, and San Gabriel). The CSN
is a network of ∼ 50 urban measurement sites across the
United States where pollutant concentrations are typically
higher, more variable, and representative of local sources,
and measurements are made once every 3 days. IMPROVE
is a network of∼ 200 rural/remote continental sites typically
located in national parks across the United States where pol-
lutant concentrations are lower, less variable, and represen-
tative of regional influences, and measurements are made
once every 3 days. Over the 14-day episode modeled in this
work, three measurements from the CSN and five measure-
ments from the IMPROVE network were available for com-
parison. We used an organic-aerosol-to-organic-carbon ratio
(OA : OC) of 1.6 to calculate OA at the CSN sites (Docherty
et al., 2011, measured an OA : OC ratio of 1.77 during the
SOAR-1 campaign, after correction with the updated calibra-

tion of Canagaratna et al., 2015) and a ratio of 2.1 to calcu-
late OA at the IMPROVE sites (Turpin and Lim, 2001). The
CSN data are artifact corrected but we subtracted 0.5 µg m−3

from the calculated OA mass concentrations to blank cor-
rect the data (Subramanian et al., 2004). The IMPROVE data
are both blank and artifact corrected. We note that a nega-
tive evaporation artifact has been reported at IMPROVE sites
in the southeast US (Kim et al., 2015), but it is not known
whether such an artifact may be present in this region and
no correction has been made. The second source was par-
ticle measurements made at the ground site in Riverside as
part of the SOAR-1 campaign during the summer of 2005
(Docherty et al., 2008, 2011). These measurements included
hourly-averaged mass concentrations and elemental ratios of
H : C and O : C for OA, as well as estimates of the POA–
SOA split based on results from a positive matrix factoriza-
tion analysis.

3 Results

3.1 POA and SOA precursor emissions

Gas- and particle-phase emissions of organic compounds in
the 8 km southern California domain, averaged over the 14-
day episode, are shown in Fig. 1. The 8 km domain, shown
in Fig. S1 in the Supplement, includes the entire Los An-
geles metropolitan statistical area, parts of the Pacific Ocean,
and forested areas surrounding the urban area. The emissions
are color-coded by source type and include all species that
contribute to direct emissions and atmospheric formation of
OA. These do not include emissions of marine POA since
those were calculated in line in the UCD/CIT model. Since
the POA repartitioned between the gas and particle phases
after emission, POA was split into POA and SVOC that rep-
resented the particle and gas portions of POA partitioned
at an urban OA mass concentration of 9 µg m−3. We chose
9 µg m−3 to partition POA because the campaign-averaged
OA mass concentration at Riverside during SOAR-1 was
9 µg m−3. If one discounts the POA emissions in the “other”
category (which is mostly made of road, agricultural, and
construction dust), the repartitioning results in about 60 % of
the POA emitted evaporating as SVOC vapors; these vapors
oxidize in the atmosphere to form SOA. As noted earlier, a
relatively more volatile treatment compared to that described
in the recent literature suggests that we may have overesti-
mated the POA evaporation from food cooking sources. Mo-
bile sources accounted for 20 % of the POA and 35 % of the
SVOC vapors and competed with food cooking as an impor-
tant source of primary emissions and one which accounted
for 15 % of the POA and 44 % of the SVOC vapors. IVOC,
long-alkane, and aromatic emissions were roughly on the
same order of magnitude but taken together were approxi-
mately an order of magnitude larger than the POA emissions.
This suggests that even at low SOA mass yields (say < 10 %),
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Figure 1. Episode-averaged gas- and particle-phase organic emis-
sions in metric tons per day over the 8 km southern California do-
main resolved by source. POA and SVOC represent the particle-
and gas-phase emissions partitioned to an OA mass concentration
of 9 µg m−3. SVOC, IVOC, long alkanes, aromatics, and biogenics
represent gas-phase emissions of precursor species that are modeled
to form SOA. We note that recent measurements suggest that POA
from food cooking sources is less volatile than assumed in these
results.

the OA formed from the oxidation of these precursors could
quickly exceed direct emissions of POA.

Emissions of total IVOCs were slightly lower than those
for long alkanes (by ∼ 30 %) and aromatics (by ∼ 40 %) but
a factor of 2 higher than the sum of POA and SVOCs. Previ-
ously, IVOC emissions have been estimated by scaling POA
emissions by a factor of 1.5 to 3 derived from gas–particle
partitioning calculations (Dzepina et al., 2009; Shrivastava et
al., 2008) and from atmospheric measurements (Ma et al.,
2017). While our estimates for IVOC emissions are within
the previously used range, our estimates were informed by a
broader suite of source measurements, which will help re-
duce the uncertainty in IVOC emissions and related SOA
formation in atmospheric models. IVOC emissions from mo-
bile sources were similar to aromatic emissions but twice the
long-alkane emissions from the same source. We note that
in this work we only considered IVOC emissions from com-
bustion sources, but recent work suggests that volatile chem-
ical products present in sources such as pesticides, coatings,
cleaning agents, and personal care products may be a large
source of IVOCs in urban environments (McDonald et al.,
2018).

Mobile sources – dominated by gasoline use – accounted
for a much larger fraction of the anthropogenic SOA pre-
cursors (85 % of IVOCs, 27 % of long alkanes, and 55 % of
aromatics) in this study. Hence, mobile source regulation on
precursor emissions from gasoline vehicles (e.g., limits on
emissions of unburned hydrocarbons) has and could have a

much larger influence on controlling ambient OA than regu-
lating direct emissions of POA, although this ultimately de-
pends on the extent of conversion of these species to SOA.
Finally, biogenic precursor emissions of isoprene, monoter-
penes, and sesquiterpenes were about a factor of 3 higher
than the combined emissions of SVOCs, IVOCs, long alka-
nes, and aromatics and will continue to be an important
source of SOA in southern California. However, their impact
on urban OA/SOA will be smaller since these emissions are
primarily limited to regions outside the urban areas.

3.2 Spatial distribution of OA concentrations and bulk
composition

In Fig. 2 we plot predictions of the 14-day-averaged mass
concentrations for OA, POA, SOA, and contributions from
three lumped SOA precursors (long alkanes and aromatics,
SVOC and IVOCs, and biogenic VOCs) from the Base case
simulation. We used the terminology developed by Mur-
phy et al. (2014) to describe the SOA from the different
sources. To reiterate, the Base case simulation included a
semi-volatile treatment of POA; SOA formation from oxida-
tion of SVOCs, IVOCs, and VOCs; multigenerational aging;
and SOA parameterizations that accounted for the influence
of chamber vapor wall losses. The mass concentrations in
Fig. 2 account for SOA formation under varying NOx levels
as per Eq. (2) (logarithmic dependence on the VOC : NOx ra-
tio). We chose Eq. (2) because it produced the highest SOA
mass concentrations and presented an upper bound on SOA
formation.

The highest OA mass concentrations were found in
three general regions: the densely populated Los Angeles–
Orange–Riverside County region, likely attributed to heavy
transportation emissions; along the coast as a result of sea
spray emissions; and in biogenic-VOC-dominated areas. In
central Los Angeles (grid cell containing the CSN site), OA
accounted for 38 % of the modeled non-refractory PM2.5
mass concentration with 20, 25, and 18 % contributions from
sulfate, nitrate, and ammonium aerosol. A sensitivity sim-
ulation that turned emissions of marine POA off suggested
that the marine POA mass concentrations in central Los An-
geles were ∼ 0.9 µg m−3, which were considerably higher
than the coastal measurements made during CalNex in 2010
(Hayes et al., 2013). Measured mass concentrations of POA
over the open ocean west of California were ∼ 0.2 µg m−3

during CalNex in 2010, and it was expected that these mass
concentrations would be substantially lower by the time they
were transported to central Los Angeles (Hayes et al., 2013).
Sea spray emissions in the UCD/CIT model are based on the
parameterization of Gong et al. (2003) and may need to be
revisited in the future.

The broader spatial trends of OA, POA, and SOA were in
line with results from earlier chemical transport model stud-
ies that have treated POA as semi-volatile and modeled SOA
formation from SVOCs and IVOCs (Ahmadov et al., 2012;
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Figure 2. The 14-day-averaged model predictions of mass concentrations for OA, POA, SOA, aV-SOA, aS/I-SOA, and bV-SOA in µg m−3

over the southern California domain from the Base simulation. We note that recent measurements suggest that POA from food cooking
sources is less volatile than assumed in these results.

Jathar et al., 2017a; Koo et al., 2014; Robinson et al., 2007;
Tsimpidi et al., 2010). POA mass concentrations were high-
est in upwind (e.g., 3.4 µg m−3 in central Los Angeles) and
lower in downwind (e.g., 2.7 µg m−3 in Riverside) locations
as the POA emissions that were transported away from the
source region evaporated with dilution. SOA mass concen-
trations, in contrast to POA, had a more regional presence
with lesser differences between the upwind and downwind
regions (e.g., 2.4 µg m−3 in Riverside vs. 2.2 µg m−3 in cen-
tral Los Angeles) or in regions with high emissions of bio-
genic VOCs (e.g., 2.5 µg m−3 inside the Los Padres National
Forest). To assess the relative contribution of POA and SOA
to total OA, we plot the POA : SOA ratio in Fig. S2, which
suggests a POA : SOA ratio of ∼ 1.6 in near-source regions
and lower elsewhere, e.g., ∼ 0.4, 0.8, and 1.2 in represen-
tative marine, biogenic-VOC-dominated, and urban down-
wind regions. These POA : SOA splits qualitatively aligned
with the hydrocarbon-like and oxygenated organic aerosol
(HOA and OOA) splits estimated in aerosol mass spectrom-
eter datasets in urban locations worldwide (Jimenez et al.,
2009; Zhang et al., 2007). However, we predict POA : SOA
∼ 1 for Riverside during SOAR-1, compared to a measured
ratio of ∼ 0.25 (Docherty et al., 2008), which indicates that
SOA may still be underestimated in the model. A compari-
son of the OA composition predictions with the aerosol mass
spectrometer measurements is described in Sect. 4.

Panels (d) through (f) show contributions of three distinct
SOA precursor classes to total SOA. Alkane and aromatic
VOCs – included as SOA precursors in most atmospheric
models – appeared to contribute a maximum of 1.2 µg m−3 of
what we refer to as aV-SOA downwind of the source region.
The majority of this aV-SOA (75 %) originated from aro-

matic precursors, implying that alkane VOCs are unlikely to
contribute much to the anthropogenic SOA or total OA bur-
den in urban areas, consistent with our earlier work (Cappa
et al., 2016; Jathar et al., 2016). We note that emissions in-
ventories typically only include alkane species with carbon
numbers less than 12 (Pye and Pouliot, 2012), and longer
alkanes with carbon numbers larger than 12 are included as
part of the POA, SVOC, and IVOC emissions. Together aS-
SOA and aI-SOA mass concentrations exhibited a similar
spatial pattern over the domain but were substantially lower
than the aV-SOA mass concentrations – reaching a maximum
of only 0.5 µg m−3. The lower aS-SOA and aI-SOA mass
concentrations were somewhat contrary to earlier work that
has argued that SVOCs and IVOCs are an equal or domi-
nant precursor of anthropogenic SOA when compared to aV-
SOA, especially in urban areas (Jathar et al., 2014, 2017a;
Woody et al., 2016). The reason for these lower concentra-
tions can be partially attributed to the precursor-dependent
influence of accounting for vapor wall losses in chamber ex-
periments (probed in greater detail in Sect. 3.4). Biogenic
SOA or bV-SOA mass concentrations exceeded 3.2 µg m−3

in regions with high biogenic emissions but were slightly
less than 1 µg m−3 in urban regions where the POA mass
concentrations were the highest. Previous work has sug-
gested that the bV-SOA in urban regions is formed outside
but later transported to the urban region (Hayes et al., 2015;
Heo et al., 2015). Overall, the averaged results over the ur-
ban areas appeared to be split evenly between POA, anthro-
pogenic SOA (aV-SOA+ aS-POA+ aI-SOA), and biogenic
SOA (bV-SOA).
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3.3 Precursor contributions to OA and SOA

We examined the absolute OA mass concentrations and pre-
cursor contributions to SOA in central Los Angeles across
four different simulations to better understand the effect of
successive updates: semi-volatile and reactive POA, IVOCs,
and accounting for vapor wall losses. We chose central Los
Angeles (grid cell containing the CSN site) as our study area
as it is representative of an urban location with a large popu-
lation density and suffers from some of the poorest air quality
in the United States (ALA, 2017); results from the sensitivity
simulations in Sect. 3.5 are also discussed at this specific site.
Results at other urban locations (e.g., Riverside, Simi Valley)
had similar SOA precursor fractional contributions although
the absolute concentrations did vary a little (see Fig. S3). In
Fig. 3, we plot the 14-day-averaged, precursor-resolved OA
mass concentrations and precursor contributions to SOA in
Los Angeles from two pairs of four different simulations.
The two pairs represent model predictions based on the low-
and high-NOx parameterizations.

Semi-volatile and reactive POA. Differences in the Tra-
ditional and SVOC simulations were used to highlight the
influence of including a semi-volatile and reactive treat-
ment of POA. The semi-volatile POA treatment resulted in
evaporation of the primary POA emissions from combustion
sources (on- and off-road gasoline and diesel, woodsmoke,
biomass burning, and food cooking) and reduced POA mass
concentrations by 35 % in central Los Angeles. A ratio of
the POA mass concentrations from the SVOC simulation
to those from the Traditional simulation suggested that the
POA mass was reduced by approximately 30 % to 50 % in
the urban environment around the central Los Angeles site
(Fig. S4). Overall, the POA reductions appeared to be smaller
than those implied by the volatility distributions of May and
coworkers (May et al., 2013a, b, c) and those simulated in
other atmospheric models (Robinson et al., 2007). For gaso-
line, diesel, and biomass burning, May and coworkers (May
et al., 2013a, b, c) proposed a 45 % to 80 % reduction in
POA mass concentrations at ambient OA mass concentra-
tions between 1 and 10 µg m−3. This difference was mainly
because we only modeled certain combustion-related POA
to be semi-volatile (i.e., gasoline, diesel, biomass burning,
and food cooking sources) while earlier modeling work has
considered POA from all sources to be semi-volatile (e.g.,
marine, dust). The use of a less volatile and more realistic
food cooking POA than that used in this work (informed by
the works of Woody et al., 2016, and Louvaris et al., 2017)
would tend to further increase the discrepancy between our
work and the findings of May and coworkers. Hu et al. (2014)
found that the combustion sources considered to be semi-
volatile in this work accounted for about half of PM2.5 mass
concentrations in Los Angeles. The POA mass reductions
shown here are conservative and might have been larger if
there was evidence that sources other than those consid-

Figure 3. The 14-day-averaged model predictions of POA and SOA
mass concentrations and precursor contributions at the central Los
Angeles site from the sensitivity simulations that examined the in-
fluence of updates made in this work. Panel (a) shows absolute con-
centrations and panel (b) shows precursor contributions. The legend
at the bottom tracks how the different pathways (i.e., SOA forma-
tion from SVOCs; SOA formation from IVOCs; and correction for
chamber vapor wall losses, VWL) were turned on for the different
simulations. Model predictions from the low- and high-NOx simu-
lations are shown separately. Model predictions to the extreme right
are from accounting for the influence of NOx on SOA formation
using Eq. (2). We note that recent measurements suggest that POA
from food cooking sources is less volatile than assumed in these
results.

ered here (e.g., marine, dust) produced POA that was semi-
volatile too, although this scenario seems unlikely.

Allowing the POA vapors or SVOCs to react resulted in
only a small fraction of their oxidation products condensing
back as aS-SOA. For example, of the 1.75 µg m−3 of POA
lost at the central Los Angeles site, only 0.082 µg m−3 for
the low-NOx simulations and 0.068 µg m−3 for the high-NOx
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simulations was regained as aS-SOA from oxidation reac-
tions. This implied a very low chemical conversion efficiency
(∼ 4 %) for the POA-to-SVOC-to-aS-SOA pump within the
urban area (Miracolo et al., 2010). The SVOCs, at an ambient
concentration of 9 µg m−3, from gasoline exhaust, diesel ex-
haust, and biomass burning emissions had an average carbon
number between 18 and 20. Calculations with a box model
version of the SOM suggested that the SOA mass yields for
C18 and C20 alkanes were between 33 % and 86 % where the
range includes yields for low-NOx and high-NOx parameter-
izations. One possible explanation for the difference between
the chemical conversion efficiency in the 3D model and box
model yields was that only a small fraction of the SVOCs
had the opportunity to react with OH and form SOA before
they were transported out of the urban area. If we assume
that most of the sS-SOA in the grid cell that contains the
Los Angeles site was from the oxidation of SVOCs released
in that grid cell and from grid cells that are up to two grid
cells away, our results do not appear unrealistic. For exam-
ple, for an SOA precursor with an OH reaction rate constant
of 2.4× 10−11 cm−3 molecules−1 s−1 (average value from a
C18 and C20 linear alkane) and an SOA mass yield of 60 %
(average from the SOA mass yield range described earlier for
a C18 and C20 linear alkane), the chemical conversion effi-
ciency would be 3.5 %–15 % with a daily-averaged OH con-
centration of 1.5× 106 molecules cm−3 and a reaction time
of 0.5–2.3 h. A reaction time of 0.5 to 2.3 h corresponds to a
transport of 4 km (half a grid cell) and 20 km (2.5 grid cells)
at an average wind speed of 2.4 m s−1 (Weather Spark).

The low- and high-NOx parameterizations had little effect
on the aS-SOA mass concentrations presumably because the
n-dodecane-based parameterization used for semi-volatile
POA exhibited marginal differences in SOA production un-
der low- and high-NOx environments (Loza et al., 2014). Fi-
nally, SOA parameterizations based on including the vapor
wall loss effect only marginally increased the aS-SOA mass
concentrations, especially when viewed in light of the SOA
increases from other precursors. We examine the precursor-
resolved vapor wall loss effect in more detail in Sect. 3.4. For
the Base simulations, the aS-SOA mass concentrations were
a factor of 10 and 2 lower than the aV-SOA mass concentra-
tions for the low- and high-NOx parameterizations respec-
tively.

IVOC. Differences in the SVOC and IVOC simulations
were used to determine the influence of including SOA for-
mation from IVOCs. For both the low- and high-NOx sim-
ulations, IVOCs contributed marginally to the aI-SOA mass
concentrations in Los Angeles (∼ 0.045 µg m−3) and else-
where too (see Figs. S3 and S4). The aI-SOA mass concen-
trations were about half of the aS-SOA mass concentrations
for both the low- and high-NOx simulations. When compared
to the aV-SOA mass concentrations, the aI-SOA mass con-
centrations were slightly lower for the high-NOx simulations
(∼ 35 %) but about a factor of 3.3 lower for the low-NOx
simulations. The inclusion of vapor wall losses seemed to

make aI-SOA as or more important than aS-SOA but still
less important than aV-SOA; the aI-SOA mass concentra-
tions were a factor of 3.2 and 2.9 lower than the aV-SOA
mass concentrations for the Base simulations for the low-
and high-NOx simulations respectively. Our simulations im-
ply that IVOCs might be as influential as SVOCs as a bulk
class of SOA precursors, but they were still less important
than the traditional SOA precursors (that included long alka-
nes and aromatics) in contributing to ambient SOA levels. In
this work, the IVOC contribution to SOA was smaller com-
pared to that from traditional SOA precursors mostly because
IVOC emissions were only about a third of the traditional
SOA precursors (see Sect. 3.1 for details on emissions). So
although IVOCs have higher SOA yields than most of the tra-
ditional SOA precursors, the significantly lower IVOC emis-
sions more than offset the increased SOA formation from
higher yields. While there are exceptions (e.g., Tsimpidi et
al., 2010; Jathar et al., 2017a), our results did not align with
previous box (e.g., Dzepina et al., 2009; Hayes et al., 2015;
Ma et al., 2017) and 3-D (e.g., Bergström et al., 2012; Zhang
et al., 2013) modeling literature that has found IVOCs to be
similar to or more important than traditional SOA precur-
sors in contributing to ambient SOA levels. Below we discuss
three main reasons for this inconsistency.

First, some previous estimates of IVOC emissions are
likely to be less representative of the in-use gasoline- and
diesel-powered sources and unconstrained for biomass burn-
ing sources. IVOC emissions in most atmospheric models
have previously been determined by scaling emissions of
POA or by calculating partitioning with the measured POA,
with scaling factors typically on the order of 1.5 (e.g., Shri-
vastava et al., 2008) but as large as 3 (e.g., Dzepina et
al., 2009). These factors have been calculated from emis-
sions data from two medium-duty gasoline vehicles built
more than two decades ago and a POA volatility distribution
from a small off-road diesel engine (Robinson et al., 2007).
Additionally, since POA is semi-volatile the POA mass in
the particle phase will change with OA loading, which can
complicate the use of a scaling based on POA (but this is
addressed by the partitioning method used in some studies).
Zhao et al. (2015) provided some evidence for this where
they found that the POA-based scaling did not work that well
for modern diesel vehicles and instead recommended the use
of an NMOG-based scaling. We note that Ma et al. (2017)
used the IVOC estimates of Zhao et al. (2015) and still found
IVOCs to be comparable to VOCs in terms of SOA produc-
tion in the Los Angeles area. Second, the SOA formation
from IVOCs in most models to date has not been experimen-
tally constrained. Most schemes to model SOA formation
from IVOCs have relied on an ad hoc aging scheme where
IVOCs and their oxidation products react with the OH radical
to form lower-volatility products with ultimate SOA yields
of 100 % (Robinson et al., 2007). These schemes do not ac-
count for fragmentation reactions and have not been com-
prehensively validated against experimental data. Jathar et
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al. (2016) showed that such schemes may significantly over-
estimate the net aerosol production from SOA precursors. Fi-
nally, most models use SOA parameters that do not account
for the effect of vapor wall losses in chamber experiments.
This effect and its particular influence on the IVOC contri-
bution to SOA is discussed in Sect. 3.4. In this work, we
(i) rely on a comprehensive set of IVOC emissions estimates
made from measurements performed on more representative
sources, (ii) model fragmentation reactions during IVOC ox-
idation, (iii) to some degree constrain SOA formation from
IVOCs with chamber experiments, (iv) to some degree ac-
count for the influence of vapor wall losses in chamber ex-
periments, and (v) include all of the previously mentioned
updates in a chemical transport model. Hence, we argue that
our findings on the IVOC contribution to SOA might be more
robust than those modeled in earlier studies.

Traditional VOCs. For the Base simulations in Los Ange-
les, aromatics accounted for 33 % of the total SOA in Los
Angeles and were the most important anthropogenic precur-
sor of SOA. Alkane contributions to SOA were less than
10 % for both the low- and high-NOx simulations. Biogenic
VOCs accounted for 46 % and 55 % of the total SOA for
the low- and high-NOx simulations respectively and were
clearly the most important precursor of SOA at the central
Los Angeles site. After accounting for the influence of NOx
based on Eq. (2), the isoprene, monoterpene, and sesquiter-
pene contributions to bV-SOA were 23 %, 68 %, and 9 % re-
spectively, suggesting a strong monoterpene contribution to
SOA in southern California. As biogenic VOCs react very
quickly with OH and O3 (chemical lifetimes of a few hours),
most of the biogenic SOA at this site was likely formed out-
side the urban airshed and transported to this location, as sug-
gested by Kleeman et al. (2007), Hayes et al. (2015), and Heo
et al. (2015).

3.4 Influence of vapor wall losses

SOA parameterizations that accounted for the influence of
vapor wall losses in chambers seemed to have had a large ef-
fect on the absolute mass concentrations of SOA. This can
be seen by comparing model results between the IVOC and
Base simulations in Fig. 3. The SOA mass concentrations
were enhanced by a factor of 10.1 and 2.6 for the low- and
high-NOx simulations respectively and consistent with previ-
ous 3D simulations (Cappa et al., 2016). However, they were
slightly higher than the range of enhancements reported by
Zhang et al. (2014) and estimated by Krechmer et al. (2016)
based on analyses of chamber data. The SOA enhancements
resulted in an OA enhancement of 1.66 and 1.14 in the low-
and high-NOx simulations, which were lower than the SOA
enhancements since SOA only accounted for a fraction of the
OA mass. Differences in enhancements in the low- and high-
NOx simulations suggest that the vapor wall loss effect was
modified by the NOx level where the enhancement may be
lower in urban source regions with higher NOx but higher in

Figure 4. Ratio of model predictions from the Base simulation that
accounts for the influence of vapor wall losses to model predictions
from the IVOC simulation that does not account for the influence of
vapor wall losses. Ratios are calculated from the 14-day-averaged
results for the whole domain and are resolved by precursor. Panels
(a) and (b) show results from the low- and high-NOx simulations
respectively.

rural/remote continental regions with lower NOx . Since ur-
ban SOA mass concentrations are usually higher than those
in rural/remote continental regions, an implication of this
NOx-modified enhancement is that accounting for vapor wall
loss artifacts will tend to reduce gradients in SOA mass con-
centrations between urban and rural/remote continental re-
gions and make SOA more of a regional pollutant similar to
ozone (O3).

Different precursors contributed in varying degrees to the
SOA enhancement. The precursor-resolved enhancements
are visualized in Fig. 4 where we plot the ratio of the 14-day-
averaged model predictions of the SOA mass concentrations
from the Base simulation to those from the IVOC simulation
for each grid cell in the southern California domain (dots)
and overlay box–whisker plots based on those data. For all
precursors the enhancements were higher for the low-NOx
simulations compared to the high-NOx simulations. SVOCs
showed the smallest enhancement at both the low and high
NOx levels (median of 1.6 and 1.2) and hence their fractional
contribution to total SOA was reduced in the Base simulation
when compared to the IVOC simulation. Alkanes showed
the largest enhancement in the low-NOx simulations (median
of 94) and the second largest enhancement in the high-NOx
simulations (median of 4.5). Despite the large enhancements,
alkanes still contributed marginally to total SOA in the Base
simulations because the baseline contribution of alkanes to
SOA was small in the IVOC simulations (< 3 %). IVOCs ex-
hibited a larger enhancement (median of 17 and 2.9) com-
pared to SVOCs and a smaller enhancement compared to
alkanes in both simulations, despite using the same surro-
gate (i.e., n-dodecane) to model SOA formation. The reason
for varying enhancements in SVOC, IVOCs, and alkanes, de-
spite using the same surrogate (i.e., n-dodecane), was that the
vapor-wall-loss-related enhancement was inversely related to
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the carbon number where larger carbon number precursors
(e.g., SVOC that had an average carbon number of 18 to 20)
showed smaller enhancements and smaller carbon number
precursors (e.g., alkanes that included species between car-
bon numbers of 6 to 12) showed larger enhancements. The
simplest explanation for this inverse relationship is that larger
precursors and their oxidation products, relatively speaking,
have shorter chemical lifetimes and undergo fewer chemical
reactions before condensing, which make them less suscep-
tible to being lost to the walls (see Fig. S5 where we plot
the vapor-wall-loss-related enhancement in SOA yields as a
function of the carbon number at an OA mass concentration
of 9 µg m−3). Of the two other important precursors, aro-
matics displayed the largest enhancement in the high-NOx
simulations (median of 6.6) and were tied with IVOCs for
the second largest enhancement in the low-NOx simulations
(median of 16) while biogenic VOCs showed the lowest en-
hancement after SVOC in both the low-NOx and high-NOx
simulations. Accounting for vapor wall loss artifacts is ex-
pected to result in an increase in the aromatic contribution
to SOA when compared against biogenic VOCs. Vapor wall
loss rates in Teflon chambers might be much higher (∼ factor
of 5) than those used in this work to develop the SOM pa-
rameterizations (Huang et al., 2018; Krechmer et al., 2016;
Sunol et al., 2018), the use of which will tend to increase
SOA mass concentrations even further. This new understand-
ing will need to be considered in the future.

3.5 Sensitivity analysis

Results from the sensitivity simulations that examined uncer-
tainties in select model inputs are shown in Fig. 5 where we
plot the 14-day-averaged model predictions from these sim-
ulations at the central Los Angeles site. We also plot model
predictions from the Base simulations as all the sensitivity
simulations have been performed using the Base simulation
as the reference (see Table 3 for details about the simula-
tions). Model predictions from the low- and high-NOx simu-
lations are shown separately. The No Aging simulations de-
creased the SOA mass concentrations by almost an order of
magnitude, demonstrating the importance of modeling multi-
generational aging in the SOM. The inclusion of oligomer-
ization reactions that may enhance the partitioning of semi-
volatile species may alter this finding. The No Aging sim-
ulations produced a very different precursor contribution to
total SOA compared to the Base simulations and the changes
in the precursor contribution were also different between the
low- and high-NOx simulations. For instance, the aV-SOA
contributions to total SOA increased from 39 % to 41 % for
the low-NOx simulations but decreased from 26 % to less
than 5 % in the high-NOx simulations. This implied that the
treatment of multigenerational aging in the SOM did not pro-
portionately enhance the SOA mass concentrations from the
different precursors but rather produced varying levels of
enhancement for the different precursors that were further

modified by the NOx levels. This finding is of note because
chemical transport models that have employed schemes such
as the volatility basis set (VBS) have typically assumed that
multigenerational aging has an approximately similar effect
on SOA mass concentrations from different precursors, re-
gardless of the NOx levels, and one which does not signifi-
cantly change the precursor contribution to SOA (Robinson
et al., 2007). With the VBS, one may observe some differ-
ences with multigenerational aging from the use of different
starting VBS distributions for SOA from different precursors.

The SVOCmax simulations that assumed all POA (ex-
cept marine POA) to be semi-volatile saw POA mass con-
centrations decrease by 36 % compared to the Base sim-
ulations and by 56 % compared to the Traditional simula-
tions (not shown here but inferred from results in Fig. 3).
The increase in SVOCs from the additional evaporation of
POA mass resulted in about a 3-fold increase in the aS-
SOA mass concentrations and a proportionate increase in
the SVOC contribution to total SOA. Similar to the find-
ings discussed in Sect. 3.3, only a fraction of the evaporated
POA mass lost was regained as aS-SOA mass concentrations.
For instance, when compared to the Traditional simulations,
of the 2.9/3.3 µg m−3 of POA mass lost 0.32/0.22 µg m−3

was regained as aS-SOA reflecting a chemical conversion
efficiency of 11 %/7 % for the low-/high-NOx simulations.
These simulations predicted the maximum decrease in POA
mass concentrations from treating all POA as semi-volatile
and reactive, but the results still found POA to be 40 % and
69 % of the total OA in the low- and high-NOx simulations
respectively. Direct emissions of POA were still a sizeable
fraction of the ambient OA and PM burden using the current
state-of-the-science treatment.

Estimating IVOCs to be 20 % of the NMOG emissions
for all combustion sources and modeling the SOA forma-
tion from IVOCs using a C15 linear alkane – as modeled
in the IVOCmax simulations – resulted in an approximately
4-fold increase in the aI-SOA mass concentrations over the
Base simulations. The increases were partly attributed to ad-
ditional IVOC emissions from sources other than mobile and
biomass burning (factor of 2.8 compared to IVOC emissions
from the Base simulations) and partly to using a larger alkane
(C15 linear alkane) with a higher SOA mass yield to model
SOA formation from IVOCs emitted by gasoline sources.
Simulating SOA formation from IVOCs using an aromatic
surrogate in the S-IVOCaromatic simulations had the same ef-
fect as the IVOCmax simulations and increased aI-SOA mass
concentrations by a factor of 2.6 and 6.3 for the low- and
high-NOx simulations respectively. The aI-SOA mass con-
centrations were higher because aromatics for the same car-
bon number have a higher SOA mass yield than alkanes. The
IVOCmax and S-IVOCaromatic simulations potentially present
an upper-bound contribution of IVOCs to SOA formation,
and in both these simulations they were ∼ 30 % of the to-
tal SOA and a factor of ∼ 1.5–2 larger than the aromatic
VOC contribution. While the IVOCmax and S-IVOCaromatic
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simulations dramatically increased the aI-SOA mass concen-
trations, these simulations only modestly increased the total
OA mass concentrations over the low- and high-NOx simu-
lations (average increase of 10 %). Over the urban area, the
OA mass concentrations in the IVOCmax and S-IVOCaromatic
simulations were on average 10 %–12 % higher compared to
the Base simulations (see Fig. S6). Updating the emissions
profiles based on the work of May et al. (2014) had a negli-
gible effect on the SOA mass concentrations and its precur-
sor contribution, implying that the emissions profiles from
more than a decade and a half ago may be sufficient to model
the modern mobile source fleet. Finally, a lower-volatility
(i.e., more realistic) POA in the SVOCcooking simulations, in-
formed by the measurements of Louvaris et al. (2017), re-
sulted in a 20 % increase in POA mass concentrations when
compared to both the low- and high-NOx Base simulations.
POA mass concentrations in these low- and high-NOx sim-
ulations accounted for approximately 55 % and 85 % of the
OA respectively. The SOA mass concentrations between the
SVOCcooking and Base simulations remained the same.

3.6 NOx-adjusted SOA formation

The SOM currently does not model the continuous evolu-
tion of SOA under varying NOx concentrations. One of the
challenges in modeling the NOx influence on SOA forma-
tion has been in quantifying the branching of the VOC oxi-
dation under low- and high-NOx conditions. Most commonly
used schemes in atmospheric models use the NO : HO2 ratio
to determine the initial branching of the precursor to form
SOA via the low- or the high-NOx pathway. However, this
scheme depends on an accurate prediction of NO and HO2.
To assess, at least qualitatively, the ability of the model to
capture NO and HO2 concentrations, we compare 14-day-
averaged diurnal profiles from this work to those measured
in Pasadena in 2010 during the CalNex campaign in Fig. S7.
We found that the model predictions were within a factor of
2 for NO concentrations but were about a factor of 10 lower
than the measured HO∗2 concentrations. We should note that
the HO∗2 measurements included HO2 and a fraction of RO2
radicals, where RO2 radicals contributed to ∼ 30 % of the
HO∗2 measurements (Griffith et al., 2016). The inclusion of
RO2 should not change the findings reported here. If the re-
sults from our modeling are representative of results from
other atmospheric models that use SAPRC or other gas-phase
chemical mechanisms, underestimating the HO2 concentra-
tions may lead NO : HO2-ratio-based schemes to overesti-
mate the SOA formed via the high-NOx pathway. Given this
limitation and the fact that the SOM does not model the con-
tinuous evolution of SOA under varying NOx concentrations,
we attempted to model the NOx-dependent SOA formation
using VOC : NOx ratios and NOx concentrations.

Four different methods – described in Eqs. (1) through (4)
– were used to adjust the SOA mass concentrations from
each individual precursor to account for the influence of

Figure 5. The 14-day-averaged model predictions of POA and SOA
mass concentrations and precursor contributions from the sensitiv-
ity simulations. Panel (a) shows absolute concentrations and panel
(b) shows precursor contributions. Model predictions from the low-
and high-NOx simulations are shown separately. Simulation legend:
Base – Base case; No Aging – only models first generation chem-
istry in the SOM; SVOCmax – all POA treated as semi-volatile;
IVOCmax – all combustion sources assumed to have 20 % IVOC
emissions and a C15 SOA yield; S-IVOCaromatic – SVOCs and
IVOCs modeled as high-yield aromatic compounds; VOCspec –
mobile source emissions profiles based on May et al. (2014);
SVOCcooking – POA volatility distribution for food cooking sources
based on the measurements of Louvaris et al. (2017). All simula-
tions besides SVOCcooking assumed food cooking POA to have the
same volatility as biomass burning POA. More details about these
simulation inputs can be found in Sect. 2.3.

NOx . To remind the reader, Eqs. (1) and (2) assume a lin-
ear and logarithmic dependence respectively between the
SOA mass concentration and the VOC : NOx ratio. Equa-
tions (3) and (4) assume a linear and logarithmic dependence
respectively between the SOA mass concentration and the
NOx concentration. The adjusted SOA mass concentrations,
referred to as SOAeff, were summed to calculate the total
SOA mass concentrations. Equation (2) produced the highest
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Figure 6. The 14-day-averaged ratio of the SOAeff mass concen-
tration to the SOA mass concentration from the (a) high-NOx and
(b) low-NOx Base simulations.

SOA mass concentrations while Eq. (3) produced the lowest
SOA mass concentrations amongst the four equations. Scat-
ter plots comparing the SOA mass concentrations calculated
using Eq. (2) to those calculated using other equations, in
Fig. S8, show that the SOA mass concentrations based on
Eq. (2) were, on average, a factor of 1.27, 3.19, and 1.92
higher than those with Eqs. (1), (3), and (4) respectively.
This meant that a calculation based on the VOC : NOx ra-
tio produced a stronger response of NOx on SOA mass con-
centrations than the NOx concentrations themselves. In the
subsequent sections, where we evaluate the model predic-
tions (Sect. 4) and predicted future changes in the OA burden
(Sect. 5), we used the SOAeff calculations based on Eq. (2)
since they represented an upper-bound estimate of the NOx
effect on SOA mass concentrations. The validity of Eq. (2)
needs to be examined in future work.

In Fig. 6, we plot the ratio of the total SOAeff mass con-
centrations based on Eq. (2) to the total SOA mass concentra-
tions from the (a) high-NOx and (b) low-NOx Base simula-
tions. The SOAeff mass concentrations were higher than the
SOA mass concentrations predicted using the high-NOx pa-
rameterizations, with an average factor of 2 increase in urban
areas and a maximum factor of 4 increase in non-urban areas.
This was because the model-predicted VOC : NOx ratios in
the urban areas were higher than the VOC : NOx ratios pro-
duced in the high-NOx chamber experiments, and based on
Eq. (2) the SOA mass concentrations were adjusted upwards
to include the SOA predicted using the low-NOx parame-
terizations. The adjustments increased the SOA mass con-
centrations because the SOA mass concentrations from each
precursor were universally higher with the use of the low-
NOx parameterizations compared to the high-NOx param-
eterizations. The SOAeff mass concentrations were 30 %–
40 % lower than the SOA mass concentrations predicted us-
ing the low-NOx parameterizations in urban areas, suggest-
ing that the SOAeff mass concentrations were approximately
midway between the SOA predictions using the high- and
low-NOx parameterizations. In contrast, the SOAeff mass
concentrations were only marginally lower (10 %–20 %) in
the non-urban areas, implying that the VOC : NOx ratios in
these regions were very similar to the VOC : NOx ratios pro-
duced in the low-NOx chamber experiments. In summary, a
modest fraction of the SOA mass may be formed through the

low-NOx pathway in high-NOx urban areas, which may re-
sult in substantial increases in the predicted SOA mass con-
centration when compared against predictions purely based
on the use of high-NOx parameterizations. This low-NOx
SOA will continue to increase in the future as NOx concen-
trations are reduced in urban areas through controls on mo-
bile sources. In contrast, only a small fraction of the SOA
mass may be formed through the high-NOx pathway in low-
NOx non-urban areas, and the use of a low-NOx parame-
terization in these regions will only marginally bias model
predictions of SOA mass concentrations.

4 Model evaluation

Model predictions from the Base simulation were evalu-
ated against gas-phase measurements of SOA precursors and
particle-phase measurements of OA mass concentrations and
composition. For the particle-phase measurements, we fo-
cused the model evaluation on predictions adjusted for the
NOx influence on SOA formation using Eq. (2) (logarithmic
dependence on VOC : NOx ratio).

4.1 SOA precursors

In Fig. 7a, we compare 14-day-averaged model predictions
of aromatic concentrations for our 2005 episode against
measured temporal trends in summer-averaged single-ring
aromatic concentrations at three different sites in south-
ern California (Los Angeles-North Main Street, Riverside-
Rubidoux, and Long Beach) (SCAQMD, 2017); model pre-
dictions of aromatic concentrations are a sum of the ben-
zene, ARO1, and ARO2 concentrations. On the same fig-
ure, we also plot model predictions of aromatic concen-
trations at Pasadena for our 2005 episode and measured
single-ring aromatic concentrations made at the Pasadena
ground site in 2010 as part of the CalNex campaign (Zhao
et al., 2014). The summertime single-ring aromatic concen-
trations in southern California have decreased by a factor
of 2 to 3 between 2000 and 2011 presumably from regu-
lations that have targeted emissions from mobile sources.
These reductions agreed well with reported temporal trends
in carbon monoxide, nitrogen oxides, and non-methane or-
ganic compounds for Los Angeles over the same time pe-
riod (Warneke et al., 2012; McDonald et al., 2013). Aromatic
measurements at Pasadena in 2010 compared well with the
2010 measurements made ∼ 12 km southwest of Pasadena
at the Los Angeles-North Main Street location, suggest-
ing that the summer/campaign-averaged aromatic concen-
trations were spatially homogeneous over urban Los An-
geles, and findings from the model–measurement compari-
son at a particular site could be generalized for the larger
modeled domain. The model–measurement comparison for
aromatics in 2005 was mixed. Concentrations were overpre-
dicted by a factor of ∼ 1.5 at the Los Angeles-North Main
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Figure 7. (a) Mass concentrations of single-ring aromatics in south-
ern California at different sites between 2000 and 2011. Measure-
ments show the temporal trend in the summertime mean (solid
line) and 10th–90th percentile (bands) at Los Angeles, Riverside,
and Long Beach from 2000 to 2011 (ARB, 2017) as well as the
campaign-averaged measurement from CalNex at the Pasadena
ground site in 2010 (Zhao et al., 2014). Model predictions show
the 14-day-averaged concentration simulated in this work at four
different sites (solid symbols) in 2005. (b) Mass concentrations of
single-ring aromatics and IVOCs compared between the model pre-
dictions from 2005 (this work) and measurements in 2010 (Zhao et
al., 2014).

Street and Long Beach sites but agreed well with measure-
ments at Riverside-Rubidoux. The predictions might have
been overestimated because we were using an older emis-
sions inventory developed for the year 2000 but adapted
for use for the year 2005 based on activity data (Hu et al.,
2015). Another possibility for the overprediction was that the
lumped model species ARO1 and ARO2 in SAPRC-11 also
included emissions from oxygenated aromatic (e.g., phenols)
and aromatic-like compounds (e.g., furans) while the mea-
surements were limited to a handful of single-ring reduced
aromatic compounds. Despite differences in the absolute
concentrations, the model seemed to capture the measured
spatial differences between the three sites; i.e. Los Angeles-
North Main Street > Riverside-Rubidoux > Long Beach.

In Fig. 7b, model predictions of aromatics and IVOCs in
Pasadena in 2005 are compared against measurements made
at the Pasadena ground site in 2010. The model predictions
in Pasadena were calculated by averaging predictions from
the grid cell that contained the Pasadena ground site and the
grid cell immediately to the south. This was done because
the ground site location was very close to the cell bound-
ary to the south and the grid cell containing the Pasadena
ground site included mountains to the north of Pasadena that
tended to dilute the concentrations in that grid cell. The mea-
surements in Fig. 7b included primary IVOCs but did not in-
clude the oxygenated IVOCs measured by Zhao et al. (2014)

since the primary IVOCs, according to the authors, relate
most closely to IVOC emissions from mobile sources. The
IVOCs included in this work were mostly (> 95 %) from
mobile sources (see Fig. 1) and hence the comparison with
primary IVOCs was appropriate. The model-predicted aro-
matic concentrations at Pasadena in 2005 were twice the
measured aromatic concentrations at Pasadena in 2010. This
2005 (modeled) to 2010 (measured) ratio was slightly higher
but still consistent with the measured 2005-to-2010 ratio
in aromatic concentrations at the Los Angeles-North Main
Street site (1.67). That the 2005 (modeled) to 2010 (mea-
sured) ratio for IVOCs in Pasadena was ∼ 1.0 is some ev-
idence that the model predictions of IVOCs might be un-
derpredicted in 2005, assuming that the ambient IVOC-to-
aromatic ratio did not change between 2005 and 2010. The
IVOCmax sensitivity simulation (the only sensitivity simula-
tion that modeled an increase in IVOC emissions) predicted a
2005 (modeled) to 2010 (measured) ratio of 3.15 for IVOCs
in Pasadena, which was closer to the measured aromatic con-
centrations ratios between 2005 and 2010 at the Los Angeles-
North Main Street site. This provides additional evidence for
higher IVOC emissions to be included in the model. While
this model–measurement comparison validates the aromatic
SOA precursors and to some extent the mobile source IVOC
SOA precursors, our model does not account for the oxy-
genated IVOCs that Zhao et al. (2014) measured and we rec-
ommend that future work investigate the sources, composi-
tion, and the SOA potential for these IVOCs.

4.2 OA mass concentrations

Scatter plots comparing model predictions of OA from the
Base simulations to (a) CSN and (b) IMPROVE measure-
ments in southern California are shown in Fig. 8a and b. Pre-
dictions from the low- and high-NOx simulations are pre-
sented in grey while predictions accounting for the influ-
ence of NOx are shown in color. The colors denote different
sites and the site locations are shown in Fig. 8c. The model–
measurement performance is also captured using statistical
metrics of fractional bias, fractional error, and the coefficient
of determination in Table 4. At all CSN sites, model predic-
tions of OA that included SOA mass concentrations adjusted
for the influence of NOx were in between those predicted be-
tween the low- and high-NOx simulations. As explained ear-
lier, this was because the VOC : NOx ratios at all these sites
(see Fig. S9a) were always higher than those in the high-NOx
chamber experiments (see Table 2), and hence the SOA mass
concentrations calculated using Eq. (2) were always higher
than those predicted in the high-NOx simulations. At all the
CSN sites, correcting for NOx improved model performance
compared to the high-NOx experiments but was still inferior
compared to the predictions from the low-NOx simulations
(see Table 4). The mean predicted OA mass concentration
across all the CSN sites was about 30 % lower than the mea-
surements (5.96 vs. 8.86 µg m−3). Model predictions of OA
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Figure 8. Model–measurement comparison for daily-averaged OA mass concentrations at (a) CSN and (b) IMPROVE sites in southern
California. Panel (c) shows the geographic locations where the comparisons were made.

were very similar to those predicted in the low-NOx simu-
lations at the IMPROVE sites where the VOC : NOx ratios
were higher (e.g., San Rafael, green square). But, similar to
the finding at the CSN sites, model predictions of OA were
in between the predictions between the low- and high-NOx
simulations at the IMPROVE sites where the VOC : NOx ra-
tios were lower as a result of their proximity to urban areas
(e.g., Agua Tibia, blue square; and Riverside, brown square).
Accounting for NOx seemed to improve the model perfor-
mance at the IMPROVE sites when compared to predictions
from the high-NOx simulations and they were slightly infe-
rior to those from the low-NOx simulations (see Table 4).
Of the 27 IMPROVE measurements available for compar-
ison, 22 or ∼ 80 % of the model predictions corrected for
NOx were within a factor of 2 of measurements with little
bias (fractional bias=−16.63 %). The model skill, captured
by the R2 values, for all model simulations at both the CSN
and IMPROVE sites was quite poor but still slightly better
than that found in earlier work for the southern California re-
gion with the CMAQ model (Baker et al., 2015). However,
the model skill was much worse than that reported in ear-
lier work with CMAQ (e.g., Murphy et al., 2017) and WRF-
Chem (e.g., Ahmadov et al., 2012) over regions other than
southern California, suggesting that there might be missing
emissions sources and/or chemical pathways or meteorolog-
ical considerations that contribute to the poor model skill in
southern California.

Given the differences in the model–measurement com-
parison between the CSN (or urban) and IMPROVE (ru-
ral/remote continental) sites, the underprediction at the CSN
sites might be indicative of a missing urban source or path-
way of OA formation. Recently, McDonald et al. (2018)
found that volatile chemical products such as pesticides,
coatings, cleaning agents, and personal care products may
contribute substantially to IVOC emissions and account for
more than half of the anthropogenic SOA formation in south-
ern California. Our underprediction at urban sites might be
evidence of missing SOA from volatile-chemical-product-
related IVOC emissions. However, it is also possible that
the urban versus rural/remote continental difference is an

artifact of how the SOM models the oxidation chemistry
and/or accounts for the influence of vapor wall losses. Within
the CSN and IMPROVE sites, we did not find the model–
measurement comparison to vary systematically by location.
The model–measurement comparison over all of Califor-
nia using the 24 km simulations produced a similar result
(Fig. S10).

Model predictions of the OA :1CO diurnal profile and
daytime OA versus CO (between 10:00 and 20:00 local time)
are compared against measurements made at the Riverside
site during the SOAR-1 campaign in Fig. 9a and b; SOA mass
concentrations have been adjusted for the influence of NOx
using Eq. (2). The1CO for the measurements was calculated
by assuming a background concentration of 105 ppbv (Hayes
et al., 2013) while the 1CO for the model predictions was
calculated by using the model-predicted background concen-
tration of CO over the ocean to the west of Los Angeles. This
model–measurement comparison was not completely coinci-
dent in time since the model results were between 20 July
and 2 August while the SOAR-1 campaign spanned from
15 July to 15 August. The measurements did not point to
any substantial differences in results between the coincident
and non-coincident time, and hence we did not anticipate any
issues in our comparisons here. The model predictions were
able to capture the general trends in the measured diurnal
profile in Fig. 9a with low ratios during the night, high ra-
tios attributed to photochemistry in the mid-afternoon, and
a peak between 13:00 and 14:00 (local time). However, the
modeled OA :1CO ratios at all times in the diurnal profile
in Fig. 9a and the slope of the OA : CO ratios in Fig. 9b were
approximately a factor of 2 to 3 lower than the measured ra-
tios, indicating a significant underprediction of urban SOA,
which was consistent with the much higher POA /SOA ra-
tios predicted by the model compared to the observations,
as discussed above. This underprediction cannot be blamed
on the model grid resolution since a ratio with CO should
to first order account for the influence of dilution in the grid
cell. Cappa et al. (2016) showed much better model perfor-
mance than this work when they assumed a non-volatile POA
and SOA formed under low-NOx conditions. In this work,
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Table 4. Statistical metrics of averages, fractional bias, fractional error, and R2 for the model–measurement comparison in southern Califor-
nia.

Simulation CSN IMPROVE

Measured Modeled Fractional Fractional R2 Measured Modeled Fractional Fractional R2

average average bias error average average bias error
(µg m−3) (µg m−3) (µg m−3) (µg m−3)

Base – low NOx 8.86 7.96 −31.5 % 46.0 % 0.16 3.72 4.87 −1.38 % 41.8 % 0.116
Base – effective 8.86 5.96 −53.4 % 49.2 % 0.13 3.72 4.02 −16.6 % 44.8 % 0.079
Base – high NOx 8.86 3.97 −83.1 % 83.1 % 0.013 3.72 2.00 −74.1 % 75.9 % 0.317

despite forming additional SOA from SVOCs and IVOCs,
the evaporation of the POA mass and an SOA estimate ad-
justed for NOx meant that the model performance was worse
in comparison to Cappa et al. (2016). The sensitivity sim-
ulations of IVOCmax and S-IVOCaromatic produced slightly
higher OA mass concentrations (∼ 10 %–15 %) compared to
the Base simulations but not dramatically different to influ-
ence the comparison in Fig. 9a and b. As mentioned earlier,
SOA formation from IVOC emissions from volatile chemical
products, or other future improvements in the SOM, has the
potential to reduce the model underprediction at Riverside
during the SOAR-1 campaign.

4.3 POA and SOA mass concentrations

The 14-day-averaged results predicted POA and SOA mass
concentrations of 3.4 and 2.2 µg m−3 and an approximate 60 :
40 POA–SOA split at Riverside. Docherty et al. (2011) esti-
mated average POA and SOA mass concentrations of 1.9 and
7.0 µg m−3 and a POA–SOA split of 20 : 80 at Riverside dur-
ing the SOAR-1 campaign. On an absolute basis, model pre-
dictions of POA mass concentrations were overpredicted by
∼ 80 %. A sensitivity simulation that turned sea spray emis-
sions off suggested that the 14-day-averaged marine POA
mass concentrations at Riverside were ∼ 0.8 µg m−3, which
are very likely to be overestimated (Hayes et al., 2013). If
the emissions of marine POA were updated to align bet-
ter with the observations and in the limiting case where the
marine POA mass concentrations at Riverside were negligi-
ble, model-predicted POA mass concentrations at Riverside
(3.4− 0.8= 2.6 µg m−3) would compare well with the mea-
sured values (1.9 µg m−3). As the POA mass concentrations
in the SVOCcooking simulations increased and the SOA mass
concentrations remained the same compared to the Base sim-
ulations, a low-volatility and more realistic treatment of the
POA from food cooking sources increased the discrepancy
in the modeled and measured POA :SOA ratio at Riverside.
It is also possible that the model might be overpredicting
POA because we only considered POA from certain sources
(gasoline and diesel use, woodsmoke, and food cooking) to
be semi-volatile.

Figure 1 shows that more than half of the partitioned
POA (that excludes marine POA) in southern California be-
longed to other sources (e.g., road and construction dust)
and this POA was treated as non-volatile in the Base sim-
ulations. Model predictions from the SVOCmax simulations
that treated all POA except marine POA as semi-volatile
predicted a 14-day-averaged POA mass concentration of
2.1 µg m−3, which was much closer to the measured value of
1.9 µg m−3. This suggests that all POA, regardless of source,
might be semi-volatile and could be modeled so in atmo-
spheric models. While these results are in better agreement
with measurements, PM2.5 from road and construction dust
sources is not created in a high-temperature process followed
by rapid cooling and so it is unknown whether the POA por-
tion in it would evaporate with atmospheric dilution. We also
compared the hydrocarbon-like OA estimate from the mea-
surements, which was more representative of POA from mo-
bile sources, against model predictions of POA from mobile
sources. We did not model POA from mobile sources sepa-
rately, but if we assumed that mobile sources only accounted
for about a quarter of the partitioned POA mass in southern
California (based on Fig. 1), our estimated Base model pre-
dictions of POA mass concentrations from mobile sources of
0.85 µg m−3 (= 3.4× 0.25) would compare reasonably with
the measured HOA mass concentrations of 1.20 µg m−3.

On an absolute basis, SOA mass concentrations were un-
derpredicted by a factor of 3 compared to measurements.
Based on the discussion in the previous paragraph, if we
added the non-mobile source POA to SOA, the net SOA
mass concentration (3.4×0.75+2.2= 4.75 µg m−3) was still
33 % lower than the measured value. The SOA mass con-
centrations in the IVOCmax simulations – sensitivity simula-
tions that modeled a fixed IVOC : NMOG ratio of 20 % for
all sources except biogenic sources, assumed IVOCs formed
SOA similar to a C15 linear alkane, and which produced the
maximum SOA mass concentrations amongst all the simu-
lations – were 33 % higher than those in the Base simula-
tion but still ∼ 60 % lower than the measured SOA mass
concentration of 7 µg m−3. A combination of the two, i.e.,
adding the non-mobile source POA to the SOA formation
in the IVOCmax simulations, resulted in a net SOA mass
concentration that was only 22 % lower than the measured
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Figure 9. (a) Diurnal profile of the modeled and measured OA /1CO ratios at Riverside, CA. The box plots capture the 10th, 25th, 50th,
75th, and 90th percentile in model predictions over the simulated episode, while the gray bands and solid orange line represent the 10th and
90th percentile and median of the measured data. (b) Modeled and measured OA mass concentrations plotted against CO concentrations
between 10:00 and 20:00 local time. The solid and dashed black lines represent lines fitted to the modeled and measured data by forcing
the x intercept to be the corresponding modeled and measured background CO concentration. Diurnal profiles of the modeled and measured
(c) H : C and (d) O : C ratios of the OA (corrected as per Canagaratna et al., 2015). The three different predictions show results from the Base
simulations for OA assuming no change, the POA O : C fixed to 0.078 based on the measurements of Docherty et al. (2011), and no POA.

SOA value. Since the IVOCmax simulations produced ambi-
ent IVOC concentrations that were more in line with the mea-
surement trends (see Sect. 4.1), it is likely that the IVOCmax
simulations were better in predicting IVOC concentrations
and their contribution to SOA. However, there are no bottom-
up (i.e., source) or top-down (i.e., atmospheric) data to di-
rectly constrain the emissions of and SOA formation from
IVOCs in the IVOCmax simulations, and hence this finding
provides motivation for more detailed studies of IVOCs in
the future.

4.4 OA elemental composition

The SOM tracks the carbon and oxygen numbers for the OA
species, and hence we were able to compare model predic-
tions of the diurnal profiles for the OA H : C and O : C ra-
tios to measurements made at the Riverside site during the
SOAR-1 campaign. The comparisons are shown in Fig. 9c
and d. For the Base simulations (shown as orange box plots),
model predictions of H : C were significantly overpredicted

and those for O : C were significantly underpredicted al-
though the predictions did capture dips in the H : C and the
peaks in the O : C ratios in the mid-afternoon, coincident
with peak photochemical activity. The model predictions did
not capture the slight increase in H : C and the decrease in
O : C in the early morning attributed to emissions from rush-
hour traffic. The high H : C and low O : C predictions were
a result of OA being dominated by POA (∼ 60 %), which in
this work was modeled as a hydrocarbon distribution that had
an H : C slightly larger than 2.0 and an O : C of 0. Docherty
et al. (2011) found that POA had a campaign-averaged H : C
of 1.92 and an O : C of 0.078. If the POA O : C ratios were
fixed to the values estimated by Docherty et al. (2011), model
predictions (shown as blue box plots) improved – as shown
in Fig. 9c and d – but still over- and underpredicted the H : C
and O : C, respectively; since SOM only tracks carbon and
oxygen numbers for an organic species and determines the
hydrogen number based on the remaining valence, specify-
ing the O : C dictates the H : C. To assess the ability of the
model to predict the elemental composition of SOA, we plot
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the diurnal profile of H : C and O : C of the SOA in Fig. 9c
and d. Model predictions of SOA H : C and O : C (shown as
green box plots) compared well with the measured range of
values but did not reproduce the diurnal changes. Docherty
et al. (2011) argued that the H : C and O : C of OA at River-
side was mostly controlled by the SOA composition, which
did not change dramatically during the day, and was mod-
ified by POA at certain times when POA emissions domi-
nated over SOA production (e.g., nights, rush-hour traffic).
This suggests that if absolute predictions of the SOA mass
concentrations and the POA–SOA splits were improved, our
model would be able to predict both the magnitude and di-
urnal changes in OA H : C and O : C ratios. We found that
the SOA H : C and O : C ratio predictions did not vary sig-
nificantly and produced similarly flat diurnal profiles across
a subset of sensitivity simulations performed (Fig. S11), sug-
gesting that the modeled elemental composition of SOA was
not very sensitive to the distribution of precursor contribu-
tions to SOA.

5 Summary and discussion

Organic aerosol (OA) is an important contributor to urban
fine particle pollution yet remains one of its most uncertain
components. In this work, we updated the organic aerosol
treatment in the UCD/CIT chemical transport model to in-
clude a semi-volatile and reactive treatment of POA, emis-
sions and SOA formation from IVOCs, the NOx influence
on SOA formation, and SOA parameterizations for SVOCs
and IVOCs that were corrected for vapor wall loss artifacts
during chamber experiments. All updates were implemented
in the statistical oxidation model (SOM), which simulates
the multigenerational aging and gas–particle partitioning of
organic aerosol and is embedded in the UCD/CIT model
(Cappa et al., 2016; Jathar et al., 2015, 2016). POA, SVOC,
and IVOC updates were based on an interpretation of a com-
prehensive set of source measurements. The influence of
NOx on SOA formation was estimated offline using meth-
ods based on the VOC : NOx ratios and NOx concentrations.

Despite treating the POA from gasoline, diesel, biomass
burning, and food cooking sources as semi-volatile, the up-
dated model only predicted a 30 %–50 % decrease in POA
mass concentrations in the urban airshed even when the
volatility data used to simulate POA projected a much larger
decrease (45 % to 80 %). The primary reason for the weaker
response was that a large fraction of the POA mass came
from sources other than those modeled as semi-volatile (e.g.,
road and construction dust, marine). When all POA, except
for marine POA, was modeled as semi-volatile, more than
60 % of the POA mass evaporated and the POA mass con-
centrations under this scenario compared well with measure-
ments made in Riverside, CA, as part of the SOAR-1 field
campaign. While this sensitivity analysis was informative, it
is unlikely that the POA from sources such as road and con-

struction dust is semi-volatile, and recent measurements sug-
gest that POA from food cooking sources has much lower
volatility than assumed in the Base simulations in this work.
These findings indicate that model predictions continue to
overestimate POA relative to measured concentrations. Sea
spray emissions accounted for a quarter of the POA mass
concentrations in the urban airshed, but more recent obser-
vations suggest that the sea spray emissions or the organic
fraction attributed to the sea spray emissions might be over-
estimated (Hayes et al., 2013). This needs to be examined
in future applications of the UCD/CIT model. Atmospheric
oxidation of the evaporated POA vapors or SVOCs did not
contribute significantly to the SOA burden (< 0.1 µg m−3),
even after accounting for the influence of vapor wall loss ar-
tifacts, since the timescales for SOA production appeared to
be longer than the timescales for transport out of the urban
airshed.

We found IVOCs to be more important than SVOCs but
less important than traditional VOCs such as single-ring aro-
matics and biogenics in forming SOA. IVOCs accounted
for less than 0.5 µg m−3 of SOA while single-ring aromatics
and biogenics each contributed to approximately 1 µg m−3 in
the Base simulations. The IVOC contribution to SOA was
smaller than that for aromatics partly because IVOC SOA
was relatively less sensitive to corrections of vapor wall
loss artifacts in chamber experiments. Another reason for
the small IVOC contribution to SOA was that we only con-
sidered IVOC emissions from gasoline, diesel, and biomass
burning. On analyzing trends in SOA precursor concentra-
tions in southern California, the modeled IVOC concentra-
tions in this scenario appeared to be underpredicted by a
factor of ∼ 2. Allowing all sources that emit non-methane
organic gases (NMOG) to emit IVOCs (using an IVOC :
NMOG ratio of 0.2) and form SOA similar to a C15 linear
alkane seemed to increase the IVOC contribution to SOA
(1/3 of total SOA) and produced better comparisons against
ambient measurements of IVOC concentrations, OA compo-
sition, and SOA mass concentrations. This might be indica-
tive of missing IVOC emissions in the model. These missing
emissions might be from volatile chemical products such as
pesticides, coatings, cleaning agents, and personal care prod-
ucts, which have been found to contribute substantially to
urban SOA burdens (McDonald et al., 2018). It is also likely
that the missing IVOC emissions are from sources consid-
ered in this work (i.e., gasoline, diesel, and biomass burning
sources) but were not accounted for in the emissions inven-
tories because they have been shown to be very easily lost
to sampling tubes (Pagonis et al., 2017). The IVOCs in this
work were modeled using a linear alkane surrogate despite
recent evidence that IVOCs in combustion emissions are a
mixture of branched and cyclic alkanes, aromatics, and oxy-
genated compounds with very few linear alkanes (Koss et
al., 2018; Zhao et al., 2016, 2017). A more chemically ap-
propriate representation of the IVOCs would not have sub-
stantially changed the findings in this work since the linear
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alkane surrogates were chosen to reproduce the SOA forma-
tion in chamber experiments performed on combustion emis-
sions. However, future work should incorporate the more de-
tailed speciation available to model the emissions and SOA
formation from IVOCs.

Loss of vapors to the Teflon walls has been shown to sig-
nificantly bias SOA formation in environmental chamber ex-
periments (Krechmer et al., 2016; Zhao et al., 2014). Cappa
et al. (2016) studied the influence of vapor wall loss artifacts
on ambient SOA mass concentrations from VOC precursors.
In this work, we extended the work of Cappa et al. (2016)
by considering additional precursors of SOA, i.e., S/IVOCs.
Correcting for vapor wall loss artifacts seemed to increase
SOA mass concentrations for all precursors but the enhance-
ment varied by precursor. With a few exceptions, the SOA
enhancements correlated with carbon number where larger
carbon number precursors had lower enhancements and vice
versa. The reason for this inverse relationship was that larger
precursors and their oxidation products have shorter chemi-
cal lifetimes and undergo fewer chemical reactions to form
SOA, which made them less susceptible to being lost to the
chamber walls. Recent work suggests that the vapor wall loss
rates to the Teflon wall might be 2 or more times larger than
the rates used in this work to develop the SOM parameters
(Huang et al., 2018; Krechmer et al., 2016). The use of these
faster rates will tend to increase the model-predicted SOA
mass concentrations and help explain the underpredictions
with ambient measurements.

The emissions inputs and chemical treatment for OA was
varied substantially in the sensitivity simulations performed
in this work. Yet, the simulations seemed to change the
OA by less than a factor of 2, suggesting that the model
framework, except for the treatment of NOx , was gener-
ally reasonable in constraining the total OA mass concen-
trations in southern California. The total SOA enhancement
was modified by the NOx level where low-NOx regions
might see higher enhancements compared to high-NOx re-
gions. In southern California where urban SOA mass concen-
trations might be higher than rural/remote continental SOA
mass concentrations, the NOx-mediated enhancement will
tend to reduce the spatial gradients in SOA mass concentra-
tions and make SOA a regional pollutant like O3. Accounting
for the influence of NOx seemed to improve OA model per-
formance against routine measurements in rural/remote en-
vironments (i.e., Interagency Monitoring of Protected Visual
Environments network) where OA model predictions were
within a factor of 2 with very little bias (e.g., fractional bias
of −16.6 %). However, model predictions of OA at routine
monitoring sites in urban environments (i.e., Chemical Spe-
ciation Network) and at the Riverside site during the SOAR-1
field campaign were still underpredicted by at least a factor
of 2 (e.g., fractional bias of−49.2 %). This suggested a miss-
ing emissions or chemical source of OA in urban areas.

The future OA burden in southern California will depend
not only on reductions in POA and SOA precursor emissions

Figure 10. Ratios of 14-day-averaged model predictions of (a) OA,
(b) POA, (c) SOA, and (d) OH from 2035 to those from 2005. The
2035 simulations were performed with 2005 meteorological inputs
but scaling the anthropogenic emissions for CO, NOx , VOC, PM2.5,
SO2, and NH3 based on changes projected by the California Emis-
sion Projections and Analysis Model (CARB, 2018).

but also on changes in oxidant concentrations and VOC :
NOx ratios. We used the Base model to simulate the same
time period, 20 July to 2 August, for the year 2035 to deter-
mine how emissions reductions and atmospheric conditions
may change in a future year to influence ambient OA–POA–
SOA mass concentrations. The same meteorology and en-
vironmental conditions were assumed, with the understand-
ing that climatological changes in the future may alter the
findings presented here. Emissions reductions in CO, NOx ,
VOC, PM2.5, SO2, and NH3 were informed by net reduc-
tions in statewide emissions between 2005 and 2035 as pro-
jected by the California Emission Projections and Analysis
Model (CARB, 2018). The 2005 inventory was scaled based
on these emissions reductions for anthropogenic sources but
the biogenic emissions and VOC emissions profiles were
kept the same. We did not resolve the emissions reductions
in these pollutants by source or by region since the goal was
to examine the general trend in the OA–POA–SOA system
and not to predict future air quality; heterogeneity in the re-
duction in pollutant emissions by source and geography may
alter the results. Statewide emissions reductions in CO, NOx ,
and VOC of 78 %, 83 %, and 33 % resulted in approximately
50 %, 75 %, 75 %, and 30 % reductions in ambient concen-
trations of CO, NO, NO2, and VOC in the urban airshed
(Fig. S12 plots the ratio of CO, NO, NO2, and VOC con-
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centrations in 2035 to those in 2005). Here, VOC is the sum
of all organic species tracked in the SAPRC-11 gas-phase
chemical mechanism (excludes methane). Since the NOx re-
duction was much more dramatic than that for VOCs, the
VOC : NOx ratio in the urban airshed increased from ∼ 1 to
∼ 5 between 2005 and 2035, which was in line with recent
modeled estimates by Fujita et al. (2016).

We plot the ratio of the mass concentrations for OA, POA,
and SOA in 2035 to those in 2005 in Fig. 10a, b, and c respec-
tively. SOA mass concentrations have been adjusted for the
influence of NOx using Eq. (2). POA mass concentrations
in the urban airshed in 2035 were slightly higher (∼ 5 %)
than those in 2005 primarily because PM2.5 emissions were
higher in 2035 compared to 2005; according to CEPAM
(California Emission Projections and Analysis Model), in-
creases in PM2.5 emissions were mostly from increases in
area source emissions and not mobile source emissions. Sur-
prisingly, SOA mass concentrations in the urban airshed were
30 %–40 % higher in 2035 compared to 2005 despite a 30 %
reduction in VOC emissions and concentrations. Some of the
increase in the SOA mass concentrations was from a shifting
VOC : NOx ratio that produced more SOA via the low-NOx
pathway. However, the primary reason for the SOA increase
was that OH concentrations in the urban area had increased
by a factor of 2 to 4 (see Fig. 10d) and had reacted more
of the SOA precursors. The OH concentrations were pre-
sumably higher in 2035 because lower NOx emissions re-
sulted in a higher OH lifetime since the NO2+OH reaction
is the primary sink for OH in polluted environments (Jacob,
1999), including the Los Angeles area (Griffith et al., 2016).
These findings suggest that the SOA and OA mass concen-
trations may not necessarily respond linearly to reductions
in VOC and NOx emissions in the future but rather will
be strongly influenced by the changes in chemical regime.
Similarly, Praske et al. (2018) argue that dramatic reduc-
tions in NOx emissions and concentrations in urban environ-
ments may increasingly lead to SOA formation through au-
tooxidation pathways and alter the rate and quantity of SOA
formed. Hence, attention needs to be paid to appropriately
simulate the chemical regime (e.g., oxidant concentrations,
VOC : NOx ratios, autooxidation reactions) if we are to ac-
curately simulate the SOA burden in urban environments in
the future.

Data availability. All measurements and select model predictions
in this work are archived at https://doi.org/10.25675/10217/194377
(Akherati et al., 2019).
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Appendix A: Nomenclature

OA Organic aerosol
POA Primary organic aerosol or direct emissions of organic aerosol
SOA Secondary organic aerosol or organic aerosol formed in the atmosphere
VOC Volatile organic compound
NMOG Non-methane organic gas
SVOC Semi-volatile organic compound
IVOC Intermediate-volatility organic compound
HOA Hydrocarbon-like organic aerosol measured by the aerosol mass spectrometer
OOA Oxygenated organic aerosol measured by the aerosol mass spectrometer
aV-SOA Anthropogenic SOA formed from VOC oxidation
bV-SOA Biogenic SOA formed from VOC oxidation
aS-SOA Anthropogenic SOA formed from SVOC oxidation
aI-SOA Anthropogenic SOA formed from IVOC oxidation
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