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Abstract. Refractory black carbon (BC) is a product of in-
complete combustion of fossil fuel, biomass and biofuel, etc.
By mixing with other species, BC can play significant roles
in climate change, visibility impairment and human health.
Such BC-containing particles in densely populated megac-
ities like Beijing may have specific sources and properties
that are important to haze formation and air quality. In this
work, we exclusively characterized the BC-containing par-
ticles in urban Beijing by using a laser-only Aerodyne soot
particle aerosol mass spectrometer (SP-AMS), as part of the
Atmospheric Pollution & Human Health (APHH) 2016 win-
ter campaign. The average mass ratio of coating to BC core
(Rgc) was found to be ~ 5.0. Positive matrix factorization
shows the presence of significant primary fossil fuel and
biomass-burning organics (64 % of total organics). Yet sec-
ondary species, including sulfate, nitrate and oxygenated or-
ganic aerosol (OA) species, could have significant impacts on
the properties of BC-containing particles, especially for ones
with larger BC core sizes and thicker coatings. Analyses of
sources and diurnal cycles of organic coating reveal signif-
icant afternoon photochemical production of secondary OA
(SOA), as well as nighttime aqueous production of a por-
tion of highly oxygenated OA. Besides SOA, photochemi-

cal production of nitrate, not sulfate, appeared to be impor-
tant. Further investigations on BC-containing particles dur-
ing different periods show that, on average, more polluted pe-
riods would have more contributions from secondary species
and more thickly coated BC tended to associate with more
secondary species, indicating the important role of chemi-
cal aging to the pollution of BC-containing particles in ur-
ban Beijing during wintertime. However, for individual pol-
lution events, primary species (fossil fuel, coal and biomass-
burning emissions) could also play a dominant role, as re-
vealed by the compositions of BC-containing particles in two
polluted episodes during the sampling period.

1 Introduction

Black carbon (BC) is generated from incomplete combustion
of carbon-based fuels (Ramanathan and Carmichael, 2008)
and can exert significant impacts on global and regional cli-
mate, planetary boundary layer height (PBLH), air quality
and human health, etc. (Lee et al., 2017; Bond et al., 2013;
Ding et al., 2016). BC can strongly absorb solar radiation
and warm up the atmosphere directly. By internally or ex-
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ternally mixing with non-BC materials (coatings, including
co-emitted primary organic/inorganic and secondary materi-
als that associate with BC) (C. Chen et al., 2016; Lee et al.,
2017; J. Wang et al., 2017), the properties and morpholo-
gies of BC might be altered greatly (Liu et al., 2013, 2015,
2017; Cappa et al., 2012; Peng et al., 2016; Y. Wang et al.,
2017b; Li et al., 2016). Thick coating can increase the mass
absorption cross section of BC, thus enhance the light ab-
sorption of BC core via “lensing effect” (Jacobson, 2001;
Liu et al., 2015; Pokhrel et al., 2017). However, coating
thickness of BC-containing particles significantly depends
on sources/chemical compositions and aging processes; thus
there are great uncertainties in light absorption enhancement
(Eaps) of BC as well as its global radiative forcing (Cappa
et al., 2012; Liu et al., 2015, 2017; Cui et al., 2016). For in-
stance, the mass ratio of coatings to BC core (Rpc, an analog
of coating thickness) from biomass burning is usually greater
than 3 (Liu et al., 2017) and can be larger than 10 in remote
sites (J. Wang et al., 2017). Normally, when Rpc is less than
1.5, it is probably from traffic sources, whereas secondary
organic aerosol (SOA) dominant BC-containing particles is
usually with a Rpc greater than 4 (Lee et al., 2017). More-
over, the coating species can modify the hygroscopicity of
BC-containing particles (Liu et al., 2013) when associated
with hydrophilic materials, and some of them can be acti-
vated as cloud condensation nuclei (CCN), therefore altering
the albedo and precipitation of clouds indirectly (Dusek et
al., 2010, 2006).

In the past decades, a number of field studies on BC have
been conducted in the winter of Beijing and have mainly
focused on BC mass loadings, mixing states, optical prop-
erties, human health impacts and sources (coal combustion,
biomass burning and vehicles, etc.) (Wu et al., 2017, 2016;
Cheng et al., 2017; Ji et al., 2017; Y. Wang et al., 2017a;
Q. Wang et al., 2016; Y. Chen et al., 2016; Meng et al.,
2016; Liu et al., 2016; Yang et al., 2014; Schleicher et al.,
2013a, b; Song et al., 2013; Zhang et al., 2017). There
were real-time studies on BC and on the chemical charac-
teristics of total fine particles (including particles with and
without BC) in Beijing. However, to the best of our knowl-
edge, no study was conducted in real time to characterize the
chemical compositions exclusively of BC-containing parti-
cles in Beijing despite the aforementioned important effects
of coating materials on BC properties. Currently, a few stud-
ies have explored BC-containing particles in other locations,
e.g., Toronto (Willis et al., 2016; Lee et al., 2015), California
(Lee et al., 2017; Massoli et al., 2015; Cappa et al., 2012),
London (Liu et al., 2015) and Tibet (J. Wang et al., 2017) by
using the Aerodyne soot-particle aerosol mass spectrometer
(SP-AMS) (Onasch et al., 2012; Lee et al., 2015; J. Wang
et al., 2016; Ge et al., 2017b). The SP-AMS physically com-
bines the 1064 nm laser vaporizer of single-particle soot pho-
tometer (SP2) into a high-resolution aerosol mass spectrome-
ter (HR-AMS). After removal of the AMS tungsten vaporizer
and by operating the instrument with laser vaporizer only,
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refractory BC as well as its associated coating can be evap-
orated, since the 1064 nm laser can selectively heat the BC
(Massoli et al., 2015). In other words, laser-only SP-AMS
can exclusively measure BC cores and the species coated on
BC cores. This unique technique allows us to explore the
characteristics of BC-coating species in detail with no per-
turbations from other co-existing non-BC containing parti-
cles in ambient air.

Beijing, as the most reprehensive megacity with a large
population in developing countries, the BC-containing par-
ticles may have specific source profiles and physiochemical
properties; therefore elucidation of its characteristics is im-
portant to understand the haze formation and improve air
quality in such regions. In this work, as part of the UK—China
Atmospheric Pollution & Human Health (APHH) study (Shi
et al., 2018), we report for the first time the real-time mea-
surement results on the chemical composition, mass loading,
size distribution and sources/processes of BC-containing par-
ticles during the wintertime of 2016 in urban Beijing. Results
regarding physical properties and optical properties are pre-
sented in Liu et al. (2018) and Xie et al. (2019) of this special
issue, respectively.

2 Experiments
2.1 Sampling site and instrumentation

As part of the APHH winter campaign, we conducted mea-
surements at the Tower Division of Institute of Atmospheric
Physics (IAP), Chinese Academy of Science (39°58'N,
116°22'E) in Beijing (Fig. S1 in the Supplement), from
15 November to 13 December of 2016. The site was sur-
rounded by residential infrastructures and a freeway in the
east (360 m).

The SP-AMS was deployed on the rooftop of the Herong
building (~ 8 m above the ground), with a PMj; 5 cyclone
(model URG-2000-30EN) and a diffusion dryer in front of
the inlet. The single-particle soot photometer (SP2, Droplet
Measurement Technology, Inc., Boulder, CO, USA) was op-
erated simultaneously inside another container nearby (~
20m away) on the ground. The SP2 incandescence signal
was calibrated for BC mass by using Aquadag® black carbon
standard (Aqueous Deflocculated Acheson Graphite, Ache-
son Inc., USA) (Laborde et al., 2012). For the SP-AMS,
since the filament that ejects electrons can still heat the tung-
sten vaporizer up to ~ 200 °C (Willis et al., 2014) even if it
is turned off, the tungsten vaporizer was thus physically re-
moved to make sure only BC and its associates were vapor-
ized by the laser and to eliminate the influence of uncoated
species on BC cores.

The tuning and calibration procedures of SP-AMS fol-
lowed the procedures described previously (Lee et al., 2015;
Willis et al., 2016; Massoli et al., 2015; J. Wang et al., 2017).
During the campaign, the SP-AMS was run with a 10 min cy-
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cle: one W mode with high chemical resolution (2.5 min) and
two mass sensitive V modes, including one with particle time
of flight (PToF) mode (2.5 min) and another one (5 min) with
a large mass-to-charge (m/z) range (up to 2000) (J. Wang et
al., 2016). The filtered air measurement was performed for a
day to determine the detection limits (DLs) of various aerosol
species and to adjust the fragmentation table. The ioniza-
tion efficiency (IE) and relative ionization efficiency (RIE)
of sulfate and nitrate were calibrated by using pure ammo-
nium nitrate and ammonium sulfate according to Jayne et
al. (2000), respectively. RIE of BC was calibrated by using
REGAL black particles (RB, REGAL 400R pigment black,
Cabot Corp.) (Onasch et al., 2012), and the average ratio of
Cfr to C3+ was determined to be 0.53 to minimize the influ-
ence of CT from non-refractory organics. However, it should
be aware that the laser-only SP-AMS cannot vaporize am-
monium nitrate or sulfate if they do not coat BC; thus the IE
and RIE calibrations were done before removal of the tung-
sten vaporizer and the values were assumed to be unchanged
after the tungsten heater’s removal (Willis et al., 2016). Note
that the RIE of BC was calibrated before the campaign and
was repeated in the middle and end of the campaign. RIEs
of nitrate, ammonium, sulfate and BC were determined to
be 1.1, 3.82, 0.82 and 0.17, respectively. The default value
of 1.4 was used as the RIE of organics (Canagaratna et al.,
2007). Polystyrene latex (PSL) spheres (100-700 nm) (Duke
Scientific Corp., Palo Alto, CA) were used to calibrate the
size before the campaign (Canagaratna et al., 2007) .

2.2 Data analysis

Standard AMS data analysis software (Squirrel and Pika)
based on Igor Pro 6.37 (Wavemetrixs, Lake Oswego, OR,
USA) were used to obtain the concentrations, mass spectra
and size distributions of BC and its coating species. All data
were calculated based on high-resolution fitting results. Due
to different vaporization schemes between the SP-AMS and
HR-AMS, the mass spectra from these two instruments even
for the same population of particles are not entirely the same.
Laser-only SP-AMS can result in less fragmentation overall;
therefore the mass profile may contain more large m/z frag-
ments and less small m /z fragments compared with that from
HR-AMS (Massoli et al., 2015). Therefore, here the elemen-
tal ratios of organics, i.e., oxygen-to-carbon, hydrogen-to-
carbon and nitrogen-to-carbon ratios (O/C, H/C and N/C)
were determined by the Aiken approach first (Aiken et al.,
2008), and then O/C and H/C were corrected by using fac-
tors of 0.83 and 1.16, respectively (Canagaratna et al., 2015).

Source apportionment for organics coated on BC was con-
ducted by using positive matrix factorization (PMF) (Paatero
and Tapper, 1994) evaluation tool written in Igor (Ulbrich et
al., 2009). In this study, high-resolution mass spectra (HR-
MS) of organic (including BC) and inorganic species were
combined together to perform the PMF analyses (Sun et
al., 2012; J. Wang et al., 2017, 2018). It should be no-
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Figure 1. Temporal variation in (a) relative humidity (RH) and tem-
perature (T, °C), (b) wind speed (WS, m s_l) and wind direction
(WD) and (¢, d) mass loadings of CO, SO, NOy and Os.

ticed that only fragment ions from polycyclic aromatic hy-
drocarbons (PAHs) were included for m/z range of ~ 150
to ~ 250 in the PMF analysis because of the limited mass
resolution of SP-AMS. All PMF solutions were evaluated
following the standard instruction (Zhang et al., 2011). Fi-
nally, four types of organic aerosol (OA) associated with BC
were determined eventually, including a fossil fuel combus-
tion OA (FFOA), a biomass-burning OA (BBOA) and two
oxygenated OA (OOA1 and OOA?2) (a diagnostic plot was
provided in Fig. S2).

Supporting data such as meteorological parameters includ-
ing relative humidity (RH), wind speed (WS), wind direc-
tion (WD) and temperature (7), as well as concentrations
of gaseous species such as Oz, SOz, NO, NO2, NO,, NO,,
NO;, and CO were measured in parallel. All data here are
reported in local time (Beijing Time, UTC+-8).

3 Results and discussion
3.1 Overview of BC-containing aerosol characteristics

Figures 1 and 2 show the temporal variations in meteorologic
parameters, mass loadings of gaseous pollutants (CO, NO,,
SO; and O3), BC and its associated coating components (sul-
fate, nitrate, ammonium, chloride, total OA and four PMF-
resolved OA factors). The campaign-averaged composition
of BC-containing particles and mass contributions of the four
OA factors to total OA were also displayed in Fig. 2. Overall,
wind directions and speeds had close associations with over-
all mass loadings of BC-containing particles. The polluted
periods (characterized by concentrations of BC-containing
particles above 10 ugm™3) were accompanied by relatively
low wind speeds (<4ms~!) and in a relatively large part
from southern air masses, since Beijing is at the foot of
the mountains, which facilitates the accumulation of pol-
lutants from the southern North China Plain (NCP). The
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Figure 2. (a) Temporal variations in mass loadings of inorganic
coating components (sulfate, nitrate, ammonium and chloride) and
BC cores, and (b) temporal variations in mass loadings of organic
coating (Org) and PMF-separated OA factors (inset pie charts show
the average composition of total BC-containing particles and organ-
ics, respectively).

clean periods (characterized by the concentrations of BC-
containing particles below 10 ugm™3) were mainly under the
control of northwesterly strong winds (>4 ms~!) (Fig. S3).
During the campaign, the mass loadings of BC cores and
BC-containing particles ranged from 0.11 to 26.54 ugm™3
and 0.71 to 174.40 ugm—3, with averages of 4.9 pygm~3 and
29.4ugm™3, respectively. We also compared BC concen-
trations determined by the SP-AMS with those from SP2,
and they correlated quite well with each other (2 of 0.93;
Fig. S4), indicating that the quantification of BC by the SP-
AMS is reliable.

The coating species occupied on average about 83.4 %
of the mass of BC-containing particles, indicating that BC
was generally thickly coated throughout the whole cam-
paign, with an average mass ratio of coatings to BC (Rpc)
of ~5.0. Organic aerosol (OA) was the most abundant
coating component, taking up 59.4% of the total mass,
followed by nitrate (8.8 %), sulfate (6.5%), ammonium
(4.7 %) and chloride (4.0 %). OA correlated quite well with
BC (r? of 0.97), suggesting that many OA species were
co-emitted and mixed with BC, and indeed, primary OA
(POA =FFOA + BBOA) was found to dominate the OA
mass (66.3 % =43.9 % + 22.4 %). Chloride (C1™) had a great
correlation with BC (% of 0.94), suggesting it was mainly
associated with primary emissions, for example, gasoline,
diesel and coal combustion during wintertime in urban Bei-
jing. Sulfate and nitrate are typically secondarily formed;
therefore their correlations with BC were relatively weak (12
of 0.64 for SOE‘_ vs. BC and 0.60 for NO3 vs. BC). Their
properties are discussed in detail in the following sections.
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3.2 Chemically resolved size distributions of
BC-containing particles

Figure 3a shows the campaign-averaged mass-based size dis-
tributions of major BC-coating species, including organics
(BC-org), sulfate (BC-sulfate), nitrate (BC-nitrate), chloride
(BC-Chl) and BC core itself. It should be noticed that the
size distribution of BC was scaled from that of m/z 24 (C;L),
as other major carbon cluster ions might be significantly af-
fected by other ions; for example, CT atm/z 12 can be influ-
enced by fragments from non-BC organics, CgL atm/z 36 by
HCIT, CJ atm/z 48 by SO and CY atm/z 60 by C,H407,
etc. Similarly, the size distribution of BC-Chl was scaled
from CI* signal at m/z 35. As shown in Fig. 3a, on average,
size distributions of BC-sulfate, BC-nitrate and BC-org dis-
played similar patterns with a major peak at ~ 550 nm (vac-
uum aerodynamic diameter, Dy, ), suggesting that they were
relatively well mixed internally. However, the BC presented
a remarkably different pattern with a much broader distribu-
tion and smaller peak sizes than its coating species, and in
particular, relatively small particles tended to have thin coat-
ings.

Figure 3b—f further present image plots of size distribu-
tions of the major aerosol components as a function of Rpc
(a surrogate of coating thickness). In contrast to the average
data shown in Fig. 3a, the coating species can be roughly
classified into two modes separated by Rpc of ~4.5. Most
sulfate and nitrate concentrated at Rgc>4.5 (Fig. 3b and c):
sulfate peaked in a narrow Rpc range of 5.5-6.5, while sig-
nificant nitrate mass could distribute across a wider Rpc
range (even to Rgc of ~ 8.0). Only organics and chloride
had a significant portion of mass distributed on relatively
thinly coated BC-containing particles at Rpc<4.5 (Fig. 3e
and f). Specifically, they both showed a submode locating
in the regime with Rgc of ~3.5-4.5 and D, of ~ 200-
700 nm. These submodes suggest that organics or chloride
are partially from primary sources as freshly emitted BC are
more likely thinly coated. This is consistent with organics
including species from fossil fuel and biomass-burning com-
bustion, revealed by the PMF analysis. Similarly, coal burn-
ing might contribute to chloride during wintertime in Beijing
(Sun et al., 2016). As for sulfate and nitrate, since they are
predominantly secondary species, they would coat BC cores
due to chemical aging and are therefore mostly distributed at
higher Rpc.

3.3 Sources of organic-coating species

The high-resolution mass spectra of different factors of the
organic coating, resolved from PMF analyses, their relative
contributions and diurnal cycles of temporal variations rel-
ative to BC, are shown in Fig. 4. Figure 4a illustrates the
mass profile of the fossil fuel combustion OA with BC car-
bon clusters (FFOA + BC). This factor had alow O/C ratio of
0.16. In this work, this factor might include emissions from

www.atmos-chem-phys.net/19/447/2019/
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Figure 3. Mass-based campaign-averaged size distributions: (a) major coating components and BC cores, and (b—f) image plots of size
distributions of sulfate, nitrate, BC, organics and chloride as a function of Rgc (mass ratio of coating to BC). (Note that size distributions of
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Figure 4. High-resolution mass spectra of (a) fossil fuel combustion OA (FFOA + BC), (b) biomass-burning OA (BBOA + BC),
(c) OOA1 +BC, (d) OOA2 + BC, (e) mass fractions of the BC fragments apportioned in different OA factors, and (f) diurnal cycles of

the four OA factors relative to BC.

both traffic and coal combustion, as it contained a series of
significant PAH ion fragments in the mass spectrum (PAH
fragments are negligible in other factors), indicative of coal
burning (Sun et al., 2014, 2016), and presented a good corre-
lation with C4H;r (r2 of 0.72) — an AMS tracer ion of vehicle
emissions (Zhang et al., 2005). Temporal variations in FFOA
also correlated well with CgH}|r (m/z 115, r? of 0.92) and
CI1~ (2 of 0.60), which have been proposed as possible coal
combustion tracer species (Yan et al., 2018; Sun et al., 2014).
The FFOA / BC (Fig. 4f) appeared to be higher at nighttime
than during the daytime. Note that the diurnal pattern of BC

www.atmos-chem-phys.net/19/447/2019/

itself (Fig. 5¢) was similar to that of FFOA /BC. The diur-
nal variations in BC might be influenced by both fossil fuel
combustion activities and relatively low PBLH at nighttime.
The fossil fuel combustion included coal burning and vehicle
emissions (gasoline cars and the heavy-duty diesel vehicles
that are only allowed to enter the city late at night). The mass
ratios of different factors to BC have a smaller influence from
PBLH; therefore high levels of FFOA / BC strongly indicate
that co-emitted organic species with BC from fossil fuel com-
bustion were enhanced at nighttime.

Atmos. Chem. Phys., 19, 447-458, 2019
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Figure 5. Diurnal cycles of (a) 7 and RH, (b) wind direction
and wind speed, (c¢) mass ratio of coatings to BC (Rpc) and BC,
(d) org / BC, SOi_/BC, NO; /BC and C17 /BC, (e) mass loadings
of gaseous species (CO, SO,, NOy) and (f) O/C and oxidation state
(0S; =2 x O/C—H/C).

Figure 4b shows the mass spectrum of BBOA and related
BC clusters. One feature of this factor is that it had rela-
tively high fractional contributions of C2H4O; (1.47 % of
total) and C3H5O§' (0.95 %), which are often regarded as
AMS marker ions from levoglucosan emitted from biomass-
burning (Cubison et al., 2011; Mohr et al., 2009). Note that
the FFOA also contained appreciable C2H402+ and C3H50§r
signals, partially because coal burning (such as lignite) can
emit some levoglucosan as well (Yan et al., 2018). Nev-
ertheless, the mass fractions of C2H4O§r and C3H503’ in
FFOA were smaller than those in BBOA, and they corre-
lated much better with BBOA than those with FFOA (for
example, r? of 0.90 for BBOA vs. C,H403, and 0.72 for
FFOA vs. C2H4O;'). The BBOA correlated very well with
another biomass-burning tracer — K (r2 0f 0.90). In addition,
BBOA had negligible PAH ion fragments, while the FFOA
contained remarkably high PAH signals. Such characteristics
are generally in agreement with previous AMS findings at the
same location during wintertime in Beijing (Sun et al., 2016).
For these reasons, the second factor was identified as BBOA.
The diurnal pattern of BBOA /BC reached minimum dur-
ing afternoon and was high overall at nighttime, similarly
to FFOA / BC, indicating the nighttime enhancement of BB-
related organics emissions in wintertime Beijing.

Besides the two POA factors, we also identified two sec-
ondary OA factors (OOA1 and OOA?2), the O/C ratios of
which were 0.45 and 0.28. OOA1 was the most oxidized
OA factor that had a higher CO;r /CoH30™ ratio than that
of OOA2. The correlation between OOAT1 and sulfate was
better than with nitrate (2 of 0.99 vs. 0.86). As a compari-
son, the less oxygenated OOA2 correlated better with nitrate
than with sulfate (2 of 0.59 vs. 0.34). These characteristics
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are consistent with previous AMS—PMF results (Zhang et al.,
2011). In contrast to the diurnal cycles of FFOA /BC and
BBOA /BC, the OOA2 /BC ratio rose significantly from
early morning and peaked in the afternoon (~ 15:00). The
diurnal pattern of OOA1 / BC presented a similar peak at ~
15:00. This result demonstrates clear evidence of the impor-
tant role of afternoon photochemical reactions to the forma-
tion of secondary organic species. However, the precursors
leading to the formations of OOA1 and OOA2 remain to be
elucidated. Interestingly, for OOA1 / BC, in addition to the
peak during the afternoon, it increased during early evening
and remained at high levels until early morning. This result
indicates that nighttime aqueous-phase processing (high lev-
els of RH at nighttime shown in Fig. 5a) can also contribute
to OOA1 production. As such behavior was not observed
for OOA2 / BC, it agrees with previous field and laboratory
findings that aqueous-phase reactions tend to produce more
highly oxygenated species (Ervens et al., 2011; Ge et al.,
2012; Herrmann et al., 2015; Xu et al., 2017).

Overall, the mass fractions of BC cores that were associ-
ated with fossil fuel combustion, biomass burning, less and
more oxygenated secondary processes were 32.7 %, 31.8 %,
18.7 % and 16.9 % (Fig. 4e). The organic coating of BC was
predominantly primary species.

3.4 Diurnal patterns of BC and coating species

Figure 5 presents the diurnal cycles of meteorological pa-
rameters (7, RH, WS and WD), BC concentrations and
Rpc, mass ratios of major species to BC, gaseous species
(CO, SO; and NO,), O/C and OS. (oxidation state, defined
as 2 x O/C—H/C) (Kroll et al., 2011). Note that BC did
not present a peak at 08:00, yet Rpc, org/BC, SOZ‘/BC,
NO5 /BC and CI™ /BC were all low at ~08:00. This was
likely attributed to an increase in the mass fractions of fresh
and barely coated BC-containing particles (rather than the in-
crease in absolute concentrations of fresh BC-containing par-
ticles) emitted during morning rush hours from traffic emis-
sions, etc. This was consistent with the decreases in O/C and
OS. and increases in CO and NO» at 08:00 on the day. On the
contrary, the Rpc drop at ~16:00 was unlikely due to the in-
fluence of the afternoon rush hour, as there were no increases
in CO, NO», and both O/C and OS. were at high levels. In
fact, the 16:00 Rpc drop was mainly caused by the large de-
crease in org / BC (as SO?[/BC, NO; /BCand CI” /BC did
not decrease at 16:00, Fig. 5d), which were mainly the por-
tions of fossil fuel and biomass-burning OA (Fig. 4f).

The diurnal variation in NO; /BC peaked at ~ 15:00-
16:00, consistent with the variation in 7 and similar to
those in the previous reports during wintertime in Beijing
(Ge et al.,, 2017a; Sun et al., 2016), reflecting the dom-
inant contribution of photochemical formation of nitrate.
SOﬁ_/BC showed a relatively small afternoon increase,
indicating partial sulfate was produced from photochemi-
cal activities; it also presented a nighttime enhancement,
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Figure 6. (a, b) Average compositions of BC-containing particles during clean and polluted periods, (¢, d) mass fractions of the non-BC
coating components (left y axis) and OS¢ (right y axis) during clean and polluted periods as a function of Rgc, box plots of BC mass
loadings (e) and Rpc (f) during clean and polluted periods (colors of the components are consistent with those in Fig. 2).

similar to OOA1 /BC, suggesting the sulfate formation in
aqueous-phase, consistent with the nighttime increase in RH
and decrease in temperature (Fig. 5a). Due to increases in
FFOA /BC, BBOA / BC and OOA1 / BC (the portion likely
from aqueous-phase production), org / BC remained at high
levels at nighttime. All these increases were added together,
leading to high Rpc at nighttime. In addition, C1~ /BC varied
generally similar to those of FFOA /BC and BBOA /BC,
again indicating its strong association with primary emis-
sions.

3.5 Characteristics of coating species during different
periods

3.5.1 Coating compositions during clean and polluted
periods

Figure 6 shows the variation in BC-coating composition as a
function of Rpc during clean periods (CPs) and polluted pe-
riods (PPs) (divided by the concentration of 10 ug m~3). Con-
trasting differences in the coating composition during these
two cases was observed: primary OA (especially FFOA)
appeared to be the most abundant component during CPs,
while mass contributions of secondary organic and inorganic
species were remarkably high during PPs (Fig. 6a and b), and
the average Rpc during PPs (~ 5.1) was also higher than that
during CPs (~ 4.5) (Fig. 6f). These results again reinforce
the importance of secondarily formed species to the heavy
haze pollution in urban Beijing (Huang et al., 2014). Fur-
thermore, the BC-coating composition and OS. were both
relatively stable compared to Rgc during CPs (Fig. 6¢). On
the contrary, during PPs, with the increase in Rpc, the mass
fractions of secondary species (OOALl, nitrate and sulfate)
clearly increased, especially at Rgc>3; consistently, OS. of
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organic coating increased from ~ —0.85 to > —0.70. Such
behavior again highlights the contribution of the chemical
aging process to the heavy haze pollution.

Relative to other observations (J. Wang et al., 2017; Mas-
soli et al., 2015; Cappa et al., 2012), the levels of Rpc dur-
ing both CPs and PPs are much smaller than those for highly
aged BC, which might have Rgc>10. As BC-containing par-
ticles in urban Beijing were influenced by multiple local and
regional primary sources, the relative amount of secondarily
formed coating species would be less than those of highly
aged BC; therefore this lower Rpc is expected. On the other
hand, the Rpc levels are generally higher than those found
for the BC-containing particles in Los Angeles where the av-
erage Rpc was typically smaller than 4 due to the direct and
prominent influence of vehicle emissions (Lee et al., 2017).
Regarding the variations in coating composition in relation
to Rpc, the behavior during PPs is in fact consistent with a
few previous field measurement results in American and Eu-
ropean urban locations (Massoli et al., 2015; Liu et al., 2017;
Lee etal., 2017; Cappa et al., 2012; Collier et al., 2018), indi-
cating a general trend for more aged BC-containing particles
in urban areas to have a thicker coating. Yet this property can
be altered if significant POA emissions exist, such as in the
case during CPs in this work, and a case with heavy BBOA
influences observed in the Tibeten Plateau (J. Wang et al.,
2017).

3.5.2 Coating compositions during two polluted
episodes

Although we demonstrated in Sect. 3.5.1 that the heavy pol-
Iution of BC-containing particles was on average associated
with more secondary species, the underlying governing fac-
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tors of individual pollution events might vary. Here we in-
vestigated the characteristics of BC-containing particles in
two most polluted episodes occurring during the campaign.
The first episode (FE) was accompanied with relatively high
RH (from 18:00 of 3 December to 08:00 of 4 December
2016), while the second episode (SE) was dominated by pri-
mary emissions (from 00:00 to 06:00 of 11 December 2016).
The average mass loadings of BC cores and BC-containing
particles were 18.1 and 123.1 ugm~> during FE and 14.4
and 80.0 ugm~3 during SE, respectively — both were much
higher than the campaign-averaged BC of 4.9 ugm™= and
BC-containing particles of 29.4ugm™>. Back trajectories,
wind rose plots and distributions of the wind speeds and
directions of these two episodes were provided in Fig. S5,
showing that these two episodes had remarkably different air
mass origins and sources.

For FE, the average T and RH were ~ 4.2°C and ~ 78 %.
The average T was close to the campaign-averaged value
of 4.8°C, but the air was more humid than the campaign-
averaged RH of ~ 50 %. Correspondingly, we observed re-
markable elevations of the mass contributions of sulfate from
6.5% to 10.3 %, nitrate from 8.8 % to 10.2 % and OOA1
from 7.5 % to 11.5% (Fig. 7a and c¢). Such enhancements
were very likely linked with aqueous-phase processing as
this episode occurred at nighttime and was characterized
with high RH conditions. During FE, nitrate and sulfate
also correlated very well (r2 of 0.94; Fig. S6); therefore
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the formation of nitrate would also be related to aqueous-
phase processing in this episode. Consistently, nitrate and
sulfate formations driven by high RH in the North China
Plain have been proven previously (Kuang et al., 2016; Sun
et al., 2018; Wu et al., 2018). As a comparison, the mass
fraction of photochemical-relevant OOA?2 decreased signif-
icantly from campaign-averaged 13.3 % to 9.8 %. In addi-
tion, the mass fraction of C1™ also increased from campaign-
averaged 4.0 % to 5.3 %; meanwhile, we found that relative
to the campaign-averaged values, the KCIT/BC ratio de-
creased 14 %, the K3 SOI /BC ratio increased 28 %, possibly
indicating that the heterogeneous replacement reactions of
coal-burning-related C1~ by SO?[ during FE (Fig. S6). Over-
all, mainly due to the aqueous-phase production of secondary
coating components, compared to campaign-averaged val-
ues, the average Rpc became larger during FE (5.5 vs. 5.0),
OA became more oxygenated (O/C of 0.18 vs. 0.15), and
size distributions of OA, sulfate and nitrate all shifted to
larger peak sizes (Fig. S7a).

On the other hand, for SE, even though it also occurred at
nighttime, the average RH was significantly low (~ 47 %),
and it was overwhelmingly dominated by primary species
(50.6 % of FFOA, 15.2 % of BBOA and 18 % of BC). Sec-
ondary sulfate and nitrate only took up 2.5 % and 2.2 % of the
total mass of BC-containing particles. Nighttime aqueous-
phase-related OOA1 contribution was nearly negligible (only
0.8 %), which, in another way, manifests that at nighttime
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OOAL1 production was strongly associated with high RH
conditions. Due to the contribution of fresh primary emis-
sions, the coating of OA was less oxygenated than that of
campaign-averaged OA (O/C of 0.12 vs. 0.15), and the av-
erage Rpc during SE was consistently smaller (4.5 vs. 5.0).
Mass spectrum of BC-org (Fig. 7b) also contained signifi-
cant PAH fragments, in line with the large contribution from
FFOA (mainly coal combustion). The average size distribu-
tion of OA during SE was broader and peaked in a smaller
diameter (<500 nm Dy,) (Fig. S7b) in response to the domi-
nance of POA. Occurrence of the highly polluted SE demon-
strates that, even though the pollution of BC-containing par-
ticles in urban Beijing during winter are on average governed
by secondary species, local primary emissions can some-
times lead to serious and short-term pollution events as well.

4 Conclusions

As part of the UK—China 2016 APHH winter campaign,
for the first time, an Aerodyne SP-AMS was introduced
to exclusively determine the chemical compositions of BC-
containing particles in urban Beijing. We found the aver-
age concentrations of BC and its coating species were 4.9
and 24.5ugm™3; therefore the Rpc (mass ratio of coating
to BC) was ~ 5.0. The coating was dominated by organics
(59.4 % of total mass of BC-containing particles), followed
by nitrate and sulfate (15.3 % in total). Size distribution data
demonstrate that larger BC-containing particles tend to have
a thicker coating, more secondary species and more inter-
nally mixed coating components. PMF analyses of organic
coating further identified two POA factors relevant to fos-
sil fuel and biomass burning, which dominated the total OA
mass. Two SOA factors were also separated, and both of
them were found to be mainly contributed to by photochem-
ical activities; besides a fraction of the highly oxidized OA
factor could be produced by nighttime aqueous-phase reac-
tions. In addition, significant photochemical formation of ni-
trate rather than sulfate was observed in the afternoon.

Comparisons of the coating compositions between clean
and polluted periods shows the critically important role of
chemical aging for the pollution of BC-containing particles
in urban Beijing. We also found that, in one case, aqueous-
phase production might lead to serious pollution under high
RH conditions, while in another case, fossil fuel combustion
could cause extreme and short-term heavy pollution. Com-
parisons between the BC-containing particles and the total
submicron aerosol particles during this campaign will be pre-
sented in detail in the near future.

Data availability. The data in this study are available from the au-
thors upon request (caxinra@ 163.com).
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