
Supplement of Atmos. Chem. Phys., 19, 3645–3672, 2019
https://doi.org/10.5194/acp-19-3645-2019-supplement
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Supplement of

Constructing a data-driven receptor model for organic and
inorganic aerosol – a synthesis analysis of eight mass
spectrometric data sets from a boreal forest site

Mikko Äijälä et al.

Correspondence to: Mikael Ehn (mikael.ehn@helsinki.fi)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.



2 
 

S.1 Chemical Mass Balance model 

Chemical mass balance (CMB) models are typically used as receptor models for cases where source profiles are known, and 

only the mass loading information needs resolving (Friedlander, 1973; Gordon, 1988; Hopke, 1991a; Miller et al., 1972). In 

receptor modelling based on mass conservation, the observed loading x of variable v at sampling time t can be modelled as a 

sum of contributions from all sources s = 1…p (e.g. Hopke, 1991b): 5 

 

𝑥𝑣,𝑡 =  ∑ 𝑓𝑣,𝑠𝑚𝑠,𝑡
𝑝
𝑠=1 + 𝜀𝑣,𝑡.         (S.1) 

 

The contribution from a single source (𝑓𝑣,𝑠𝑚𝑠,𝑡) is the total mass, ms,t, emitted from that source multiplied by the fraction of 

variable v in the emission profile of said source, fv,s. The residual  εv,t encompasses the difference between observation and the 10 

model.   

S.2 Mass scaling optimisation 

Beside the selected solutions described in Sections 3.1.1 to 3.1.3, there are other solutions of mathematically (near) equal 

quality available, resulting in slightly different classifications. When deciding on clustering solutions, we also explored the 

highest, alternative local maxima. While a comprehensive description of the clustering solution space is out of the scope of 15 

what we can present here, we note the main differences between the solutions relate to outlier groups and how they can be 

combined or separated from the main classes. In phase I, the other viable solution would have been the maxima at k = 14 (sm 

= 1.88 gives approximately the same classification as the selected solution at k = 17 (sm = 2.12). We selected the latter solution 

since it yields a higher silhouette a) overall (0.5645 vs 0.5628) and b) for the AN cluster specifically (0.48 vs 0.35). 

For both P-I and P-II, there exist a number of unstable (in relation to minor sm change), high k solutions. However, upon 20 

inspection, their high silhouettes (compared to lower k solutions) seem to result from division of outlier clusters (n = 2…3, 

with low within-cluster silhouettes), into singleton (n = 1) clusters. We find that including solutions with such further divisions 

does not incorporate new information, but rather smears the picture when aiming to interpret the outlier clusters (Section 3.4). 
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Figure S.1. Clustering silhouette scans for phases I (upper left), II (upper right) and III (lower left) panels. x-axis comprises cluster 

number (k) and y-axis the mass scaling factor sm (Equation 4). Brighter colour (higher silhouette) indicates better solution quality. 

Note the different colour scales in panels.  Stable silhouette maxima (i.e. not sensitive to minor, 0.01 changes in sm) solutions were 

preferred. The solutions we selected were for P-I: k=17, sm=2.12, for P-II: k=15, sm=2.41 and for P-III: k=7, sm=1.81). In lower right 5 
panel: object specific silhouettes (si) by cluster for the selected P-I solution. 

S.3 Ion pairing scheme 

In the pairing schemes of Gysel et al. (2007) and Hong et al. (2017), nitrate, sulphate or ammonium are not allowed to exist 

separately from inorganic salts (e.g. organonitrate, organic sulphate or organic acid salt with ammonium). Since there is 

evidence of especially organonitrates representing a considerable fraction of total particulate nitrate (e.g. Kiendler‐Scharr et 10 

al., 2016), we modify the Hong et al. scheme to allow organic nitrate and “excess” ammonium (i.e. NH4 existing with other 

species, such as organics). Organic sulphate was not included since it is not possible to differentiate between the two possible 

forms of “excess sulphur” (from the perspective of inorganic salt balance): sulphuric acid and organosulphate. To maintain 

compatibility with previous schemes, a sulphuric acid class was included. Any potential organosulphates would also fall into 

the sulphuric acid class.  15 
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Our ion balance scheme, modified from Hong et al., (2017), is divided into three cases: 

 

Case 1: Aerosol is acidic, not enough [NH4
+] to convert all sulphate to NH4HSO4. Sulphate exists as sulphuric acid and ammonium 

bisulphate. All nitrate is organic, as sulphate formation is assumed preferential. All [NH4
+] goes to ammonium bisulphate. 

 5 

   
[𝑁𝐻4

+]

[𝑆𝑂4
2−]

< 1      

sulphuric acid:  [H2SO4] = [𝑆𝑂4
2−] − [𝑁𝐻4

+]        (S.2)  

ammonium bisulphate:  [NH4𝐻SO4] = [𝑁𝐻4
+]    

ammonium sulphate: [(NH2)SO4] =  0 

ammonium nitrate: [NH4NO3] =  0 10 

organonitrate:  [𝑜𝑟𝑔 NO3] =  [𝑁𝑂3
−] 

excess ammonium: [excess NH4] =  0    

 

Case 2: Aerosol is partly neutralised, sulphate exists as ammonium bisulphate and ammonium sulphate. Any nitrate is organic. All of [NH4
+] 

associates with sulphate. 15 

 

   1 ≤
[𝑁𝐻4

+]

[𝑆𝑂4
2−]

< 2 

sulphuric acid:  [H2SO4] = 0          (S.3) 

ammonium bisulphate:  [NH4𝐻SO4] = (2 − 
[𝑁𝐻4

+]

[𝑆𝑂4
2−]

) ∗ [𝑆𝑂4
2−] 

ammonium sulphate: [(NH4)SO4] = (
[𝑁𝐻4

+]

[𝑆𝑂4
2−]

− 1) ∗ [𝑆𝑂4
2−]  20 

ammonium nitrate: [NH4NO3] =  0 

organonitrate:  [𝑜𝑟𝑔 NO3] =  [𝑁𝑂3
−] 

excess ammonium: [excess NH4] =  0    

 

Case 3: Aerosol is fully neutralised, sulphate exists as ammonium sulphate. Leftover [NH4
+] from sulphate neutralisation goes with [NO3

-]. 25 

In case all of [NO3
-] can be neutralised by [NH4

+], leftover [NH4
+] is labelled “excess NH4

+”, and assumed to bind with other species (e.g. 

organic acids). 

   2 <
[𝑁𝐻4

+]

[𝑆𝑂4
2−]

 

sulphuric acid:  [H2SO4] = 0          (S.4) 

ammonium bisulphate:  [NH4𝐻SO4] = 0 30 

ammonium sulphate: [(NH2)SO4] = [𝑆𝑂4
2−]  

ammonium nitrate: [NH4NO3] = max([𝑁𝑂3
−] , [𝑁𝐻4

+] − 2 ∗ [𝑆𝑂4
2−])   

organonitrate:  [𝑜𝑟𝑔 NO3] =  [𝑁𝑂3
−] − [NH4NO3] 

excess ammonium: [excess NH4] =  min (0, [𝑁𝐻4
+] − 2 ∗ [𝑆𝑂4

2−] − [𝑁𝑂3
−])    
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We echo Hong et al. (2017) in emphasising that this approximation is only a first estimate of the dynamics of inorganic salt 

formation; the assumption of perfect internal mixing is likely unrealistic for atmospheric aerosol particles, due to the nature of 

atmospheric processing often affecting the particle outer surface, resulting in layered structures (e.g. Buajarern et al., 2007). 5 

The model also does not adequately describe the thermodynamic equilibriums of salt formation or model the competition 

between [SO4
2-] and [NO3

-] for [NH4
+] realistically. 

S.4 Relative ionisation efficiencies (RIEs) and ion pairing scheme sensitivity to RIENH4 changes  

To convert from nitrate equivalent mass units (used in factorisation steps until P-III), the factorisation output data needs to be 

corrected for species-specific Relative Ionisation Efficiency (RIE; Allan et al., 2003; Jimenez et al., 2003). We thus summed 10 

the signals from individual ion species, and corrected them for RIE. Due to high uncertainties (standard deviation 51% of mean 

RIE) and for some data sets unavailability of relative ionisation efficiency calibrations for NH4, we generally did not apply 

RIE correction for data sets individually, but instead used the default value of RIENH4 of 4.0 for AMS instruments. Ammonium 

sulphate calibrations were not routinely performed, so RIESO4 data was not available – we thus used the default RIESO4 of 1.2. 

For September 2008 (data set II) we had IE and RIENH4 data available, but it similarly showed a very high variability between 15 

subsequent estimates for RIE. For the 12  brute-force-single-particle (BFSP; Drewnick et al., 2015) type of calibration results 

available, the average ± standard deviation of RIE observed was 3.39 ± 1.20 (± 35 %; min 1.03, max 5.83). Especially for 

BFSP-type NH4NO3 calibration, uncertainty and/or bias for RIENH4 is high, due to low ions-per-particle (IPP) rate for NH4 

fragment ions, and sensitivity to threshold set for the detector (AMS best practices, Jayne, 2018).  

To evaluate results for our inorganic r-CMB components, we calculated ion balance ratios for AN and AS, and compared them 20 

with theoretical values derived from compound molecular weights. The theoretical mass ratio of NH4 to NO3 for NH4NO3 is 

0.29. With default RIENH4 of 4.0 the r-CMB AN factor yields a ratio of 0.46, and with RIENH4 from calibrations (3.39 ± 1.20), 

an average ratio of 0.54 (min 0.40, max 0.84). Results by Sun et al. (2012) produce a value of 0.36, so overall there remains 

discrepancy between the theoretical and observed ratios. The reason for it remains unclear, although one should note that the 

uncertainties involved in such estimates are generally very large if RIE uncertainty is high. The respective theoretical mass 25 

ratio for ammonium sulphate, NH4 : SO4, is between 0.18 (NH4HSO4) and 0.36 ((NH4)2SO4). Our AS r-CMB component 

features a ratio of 0.20 for RIENH4 = 4.0, and 0.24 for RIENH4 = 3.39. The min/max estimates due to uncertainty of RIENH4 (± 

1.20) are (0.17…0.39). The ratio reported by Sun et al (2012) is 0.34. 

As RIE is not incorporated in the factorisation phase, uncertainty in RIE does not play a role in PMF/ME-2 outcome. We did 

briefly test the sensitivity of the inorganic apportionment scheme to changes in RIE of NH4 ion species, by running the model 30 

with RIENH4 ± 33% for the September 2008 data set (data set III; also presented in Section 3.2.2). The resulting model output 

changes are shown below, in Figure S.2 and Table S.1. 
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Table S.1. RIENH4 sensitivity test results for the inorganic apportionment scheme. ± estimate is given as ((max-min) / 2) / default 

result.   

RIENH4 

 

AS 

(μg/m3) 

AN 

(μg/m3) 

orgNO3 

(μg/m3) 

excess_NH4 

(μg/m3) 

4.00 (default) 1.562 0.139 0.105 0.032 

2.68 (- 33 %) 1.473 0.031 0.202 0.003 

5.32 (+ 33 %) 1.620 0.186 0.063 0.108 

+/- 4.7 % 55.8 % 66.2 % 164.1 % 

 

It thus seems the inorganic model AS component is rather insensitive to 33 % change in RIENH4. However, the nitrate 

components are much more sensitive (AN ± 56 % and orgNO3 ± 66 %), and the sensitivity of “excess_NH4” class to a 33 % 5 

change in RIENH4 is extremely high (± 164 % in mass concentrations). The changes, however, seem connected mostly to 

differences in scaling rather than different temporal variability, so the RIENH4  sensitivity does not seem to explain the difference 

between the inorganic ion balance scheme and the r-CMB model result. While the relative uncertainty becomes large for AN, 

orgNO3 and excess_NH4, we note this may be partly due to the generally low nitrate concentrations at SMEAR II, and the 

overall large uncertainty (arising from other error sources, e.g. fragmentation table calculations) in measuring low 10 

concentrations of NH4 typical of the site. 

 

Figure S.2. RIENH4 sensitivity test results for the inorganic apportionment model (Sect 2.4.1), tested for data set III. Black line 

indicates the result with default RIENH4 of 4.0. Coloured areas corresponds to the min/max results for when RIENH4 was changed by 

±  33 %. Components are colour-coded similar to main text Figure 10. (red: AS, blue: AN, green: orgNO3, yellow: excess NH4).  15 
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S.5 Approximation for error propagation for signal ratios 

Propagation of uncertainty can be approximated by the variance formula (Ku, 1966), which yields for a ratio of two signals (s1 

and s2) and their uncertainties (σ1 and σ2) an uncertainty 

𝜎(𝑠1: 𝑠2) =  √
1

𝑠2
2 ∗  𝜎1

2 +
𝑠1

2

𝑠2
4 ∗  𝜎2

2 .     (S.5) 

In this work the above is applied in estimating the uncertainties of various signal ratios, such as σ (NO2
+:NO+). 5 

S.6 Ammonium nitrate and ammonium sulphate calibrations and the CO2
+ artefact 

 

 

Figure S.3. AS (upper panels) and AN (lower panels) calibrations in ‘MS’ mode. Left: mass spectra, right: time series of a calibration. 

The data is not quality assured and was not used for (R)IE analysis. 10 
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Pieber et al (2016) discuss the CO2
+ artefact induced by thermal decomposition of inorganic salts. They find a m/z 44 Th 

artefact with a magnitude of 3.4 % of total nitrate signal. For the phase III solution we obtain a corresponding value (for signal 

ratio of m/z 44 Th to NO3) of 2.9 %, suggesting most of the m/z 44 Th signal may indeed be explained by this artefact. When 

accounting for fragmentation-table-calculated m/z 44 Th derivatives, the same applies most of total organic signal for AN. For 

AS (P-III), we observe a similar ratio (m/z 44 Thto SO4) of 2.8 %, when Pieber (2016) estimate a contribution between 0.1 to 5 

0.3 % for AS. Similar m/z 44 Th artefact is also seen for the AN calibration data (Figure S.3) above. For ON, the observed 

signal ratio of m/z 44 Th to NO3 (P-III) is 22 %. Notably, the ON solution for P-I differs from the P-III solution here, with a 

ratio of 8.8 %. For KNO3 Pieber et al (2016) report a ratio of 4.5 %. This also gives rise to the speculation discussed in Section 

3.2.2, that the ON factor might arise from thermal decomposition of KNO3. Furthermore, Pieber et al (2016) importantly note 

that thermal decomposition of KNO3 is temperature dependent, so vaporiser temperatures above 600 degrees Celsius would 10 

increase the observed ratio. While the standard operating temperature of the vaporiser (as per instrument readout) was used by 

default, oven temperature calibrations were not performed. Thus we do not have vaporiser power data available for the various 

campaigns to further examine the possibility of a bias in oven temperature readout, and if such a bias could connect to our 

observations of ON.  

  15 
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S.7 Phase II clustering solution 

Phase II solution was obtained for k = 15, sm = 2.41 (silh 0.6557), and is presented below. 

 

Figure S.4 (upper panel). P-II cluster centroids and variabilities are silhouette-weighted averages and standard deviations for the 

clusters 1 through 8. The main SOA types were identified as cluster #1 (‘low-volatile oxidised organic aerosol’, LV-OOA) clusters 5 
#3 (‘semi-volatile oxidised organic aerosol’, SV-OOA) and cluster #7 (‘organic nitrogen’, ON). 
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Figure S.4. (lower panel) P-II cluster centroids and variabilities are silhouette-weighted averages and standard deviations for the 

clusters 9 through 15.  

S.8 CMB component inter-correlations 5 

We calculated the mass-scaled r-CMB component profile inter-correlations to evaluate r-CMB component similarities. The 

result is shown in Tables S.2 (full spectrum) and S.3 (organics only). Since the scaled correlation similarity (rs
2) also 

corresponds to the quantity that the clustering algorithm aims to minimise, high values for rs are not to be expected of a robust 

(hard) classification solution. From the resulting similarities, it seems the distinction between AN and ON seems to be the 

hardest for the algorithm (with the selected metric). Also, SV-OOA shares many similar features with the LV-OOA, BBOA 10 

and HOA. 
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Table S.2. Squared correlation coefficients (rs
2; sm = 1.81) for CMB component spectra inter-correlations, with both organics and 

inorganics included. Only correlations with p-values  < 0.05 are shown. 

 

A
S 

LV
-O

O
A

 

SV
-O

O
A

 

B
B

O
A

 

O
N

 

H
O

A
 

A
N

 

AS - - 0.01 - 0.07 - - 

LV-OOA - - 0.43 0.07 0.23 0.07 0.01 

SV-OOA 0.01 0.43 - 0.41 0.16 0.38 0.03 

BBOA - 0.07 0.41 - 0.02 0.27 - 

ON 0.07 0.23 0.16 0.02 - 0.02 0.52 

HOA - 0.07 0.38 0.27 0.02 - - 

AN - 0.01 0.03 - 0.52 - - 
 

Table S.3. Squared correlation coefficients (rs
2; sm = 1.81) for CMB component spectra inter-correlations, for organics only. Only 

correlations with p-values  < 0.05 are shown. 5 

 

A
S 

LV
-O

O
A

 

SV
-O

O
A

 

B
B

O
A

 

O
N

 

H
O

A
 

A
N

 

AS - 0.57 0.69 0.17 0.61 0.22 0.62 

LV-OOA 0.57 - 0.39 - 0.90 0.04 0.30 

SV-OOA 0.69 0.39  0.34 0.51 0.31 0.77 

BBOA 0.17 - 0.34 - 0.09 0.18 0.26 

ON 0.61 0.90 0.51 0.09  0.09 0.43 

HOA 0.22 0.04 0.31 0.18 0.09 - 0.29 

AN 0.62 0.30 0.77 0.26 0.43 0.29 - 
 

Table S.3. Pearson correlation coefficients for CMB component time series inter-correlations. Only correlations with p-values  < 

0.05 are shown. 

 
A

S 

LV
-O

O
A

 

SV
-O

O
A

 

B
B

O
A

 

O
N

 

A
N

 

H
O

A
 

AS - 0.21 0.00 0.25 0.21 0.16 0.07 

LV-OOA 0.21 - 0.24 0.02 0.09 0.10 0.22 

SV-OOA 0.00 0.24 - 0.00 0.00 0.01 0.11 

BBOA 0.25 0.02 0.00 - 0.48 0.25 0.09 

ON 0.21 0.09 0.00 0.48 - 0.28 0.10 

AN 0.16 0.10 0.01 0.25 0.28 - 0.08 

HOA 0.07 0.22 0.11 0.09 0.10 0.08 - 
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S.9 Mass attribution by campaign 

 

 

Figure S.5. Mass fractions (upper panel) and absolute mass concentrations (lower panel) of r-CMB component by data set. Data set 

VIII (Winter 2010) results are less reliable due to pronounced surface ionisation effects. 5 
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As discussed in 3.2.1, we consider results for data set VIII less reliable due to effects very likely stemming from pronounced 

surface ionisation processes. The high uncertainty is also reflected in phase I (PMF) high object function values (Q/Qexpected; 

see Paatero et al., 2014). The (P-I) Q/Qexp diagnostic value, optimally approaching unity, was 15.29 for data set VIII, while for 

the other 7 data sets the mean ± standard deviation of Q/Qexp was 1.32 ± 0.53, indicating the PMF model performance was 

good for data sets I to VII, but poor for set VIII. While a high object function value alone does not disqualify a result, it does 5 

indicate the uncertainties in data were likely underestimated (e.g. Norris et al., 2008), and the model does not capture the 

uncertainty-weighted data variation properly, even with 10 unconstrained factors. 

S.10 Cluster projections for Phase I (unconstrained PMF) result 

  

Figure S.6. (left panel) P-I solution - cluster projections onto a f55/f57 (Mohr et al., 2012), O:C (estimated, Aiken et al., 2008) plane. 10 
Circles correspond to the members of the cluster and the cross markers to cluster centroids. Marker size indicates organic mass 

fraction in spectra. Axes are truncated. (right panel) P-I solution, projected onto f44, f43 plane (i.e. the ‘Sally’s triangle’ plot; Ng et 

al, 2010). Circles correspond to objects in cluster and the cross markers to cluster centroids. Marker size indicates organic mass 

fraction in spectra. Dotted line marks the area where most laboratory data for organic aerosol falls (Ng et al., 2010).  
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S.11 Potassium signal and surface ionisation effects    

 

Figure S.7. X-axis: measured signal at m/z 39 Th (mainly K-39). Y-axis:  measured signal at m/z 41 Th. Data is for Winter 2010 

campaign (data set VIII), and contains the highest K-39 signals observed. Although corrected for in fragmentation table, the K-41 

isotope correction does not fully negate the effect of potassium signal on m/z 41, which may partly explain the high m/z 41 Th signal 5 
observed affecting e.g. the BBOA component in data set VIII. 

 

Figure S.8. On left axis: orgNO3 mass estimate from the Kiendler-Scharr parameterisation (Eq. 7) in turquoise. On the right axis: 

total Potassium signal in black. Although the similar temporal behaviour is at least to some extent explained by total aerosol loading, 

it does raise the question if surface ionisation effects could contribute to the ON component, e.g. in form of KNO3 signal. 10 
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S.12 WD and mass spectral analysis for Rb-containing outlier factor  

 

Figure S.9. Time series (left; P-I) and mass spectrum (right, P-I)) of a Rb-containing factor from data set VI. 

 

 5 

Figure S.10. Left: wind rose for the Rb containing factor from data set VI (P-I) average signal for the Rb-containg factor for wind 

sectors. Right: map showing the locations for SMEAR II and the Juupajoki district heating plant, co-located with a sawmill. 

 

Figure S.11. Mass calibrated raw mass spectral signal for a plume event in Aug 14th 2010 (data set VII). While the mass resolution 

of the instrument (~500 m/dm) is not enough for proper high-resolution analysis, we can confirm existence of ions with clearly 10 
negative mass defect at m/z 85 and 87 Th. The highest m/z bins (tags in figure) agree with exact masses for 85Rb+ (84.912 a.m.u.) and 
87Rb+ (86.909 a.m.u.) ions. 
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S.13 Diurnal cycles of r-CMB components 

Daily cycles of r-CMB components are presented in Figure S.12. Due to aerosol generally being transported over long distances 

to the site, clear source-related peaks of e.g. rush hours for HOA are not resolved. Besides temporal behaviour of source 

emissions, the observed daily cycles can be connected to aerosol temperature response or boundary layer dynamics. 

 5 

 

Figure S.12. Average loading of r-CMB model components by hour of day, over all of the data sets. Since the data spans all seasons, 

and the length of day varies considerably, the variability of average loading is generally high.  
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S.14. Estimated variability for the final r–CMB components 

 

Figure S.13. Variability estimate as a function of m/z ratio for the final r-CMB model components. Mean (x) and standard deviation 

(error bar) of the variability-to-signal ratio, calculated over all the 7 P-III clusters.  

  5 



18 
 

References 

Jayne J.: AMS best practices, AMS user’s meeting presentation, 2018. Available online at http://cires1.colorado.edu/jimenez-
group/UsrMtgs/UsersMtg19/Jayne_CalibrationOverview.pdf, viewed 19.Sep.2018. 
Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., 
Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. 5 
S., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC ratios of primary, secondary,  and 
ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ Sci Technol, 42, 4478-4485, 2008. 
Allan, J. D., Jimenez, J. L., Williams, P. I., Alfarra, M. R., Bower, K. N., Jayne, J. T., Coe, H., and Worsnop, D. R.: Quantitative sampling 
using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis, Journal of Geophysical Research: 
Atmospheres (1984–2012), 108, 2003. 10 
Buajarern, J., Mitchem, L., and Reid, J. P.: Characterizing the formation of organic layers on the surface of inorganic/aqueous aerosols by 
Raman spectroscopy, The Journal of Physical Chemistry A, 111, 11852-11859, 2007. 
Drewnick, F., Diesch, J.-M., Faber, P., and Borrmann, S.: Aerosol mass spectrometry: particle–vaporizer interactions and their 
consequences for the measurements, Atmospheric Measurement Techniques, 8, 3811-3830, 2015. 

Friedlander, S. K.: Chemical element balances and identification of air pollution sources, Environmental Science & Technology, 7, 235-15 
240, 1973. 
Gordon, G. E.: Receptor models, Environmental Science & Technology, 22, 1132-1142, 1988. 
Gysel, M., Crosier, J., Topping, D., Whitehead, J., Bower, K., Cubison, M., Williams, P., Flynn, M., McFiggans, G., and Coe, H.: Closure 
study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmospheric Chemistry and Physics, 
7, 6131-6144, 2007. 20 
Hong, J., Äijälä, M., Häme, S. A., Hao, L., Duplissy, J., Heikkinen, L. M., Nie, W., Mikkilä, J., Kulmala, M., and Prisle, N. L.: Estimates 
of the organic aerosol volatility in a boreal forest using two independent methods, Atmospheric Chemistry and Physics, 17, 4387-4399, 

2017. 
Hopke, P. K.: Receptor modeling for air quality management, Elsevier, 1991a. 
Hopke, P. K.: An introduction to receptor modeling, Chemometrics and Intelligent Laboratory Systems, 10, 21-43, 1991b. 25 
Jimenez, J. L., Jayne, J. T., Shi, Q., Kolb, C. E., Worsnop, D. R., Yourshaw, I., Seinfeld, J. H., Flagan, R. C., Zhang, X. F., Smith, K. A., 
Morris, J. W., and Davidovits, P.: Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer, Journal of Geophysical 
Research-Atmospheres, 108, Artn 8425 

10.1029/2001jd001213, 2003. 
Kiendler‐Scharr, A., Mensah, A. A., Friese, E., Topping, D., Nemitz, E., Prevot, A., Äijälä, M., Allan, J., Canonaco, F., and Canagaratna, 30 
M.: Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol, Geophysical Research Letters, 43, 7735-
7744, 2016. 
Ku, H. H.: Notes on the use of propagation of error formulas, Journal of Research of the National Bureau of Standards, 70, 1966. 
Miller, M., Friedlander, S., and Hidy, G.: A chemical element balance for the Pasadena aerosol, in: Aerosols and atmospheric chemistry, 
Elsevier, 301-312, 1972. 35 
Mohr, C., DeCarlo, P. F., Heringa, M. F., Chirico, R., Slowik, J. G., Richter, R., Reche, C., Alastuey, A., Querol, X., Seco, R., Penuelas, 

J., Jimenez, J. L., Crippa, M., Zimmermann, R., Baltensperger, U., and Prevot, A. S. H.: Identification and quantification of organic 
aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data, Atmospheric Chemistry and Physics, 12, 1649-
1665, 10.5194/acp-12-1649-2012, 2012. 
Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H., Docherty, K. S., Chhabra, P. S.,  Bahreini, R., 40 
Murphy, S. M., Seinfeld, J. H., Hildebrandt, L., Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prevot, A. S. H., Dinar, E., Rudich, Y., and 
Worsnop, D. R.: Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry, Atmospheric 
Chemistry and Physics, 10, 4625-4641, 10.5194/acp-10-4625-2010, 2010. 
Norris, G., Vedantham, R., Wade, K., Brown, S., Prouty, J., and Foley, C.: EPA positive matrix factorization (PMF) 3.0 fundamentals & 

user guide, Prepared for the US Environmental Protection Agency, Washington, DC, by the National Exposure Research Laboratory, 45 
Research Triangle Park, 2008. 
Paatero, P., Eberly, S., Brown, S. G., and Norris, G. A.: Methods for estimating uncertainty in factor analytic solutions, Atmospheric 
Measurement Techniques, 7, 781-797, 10.5194/amt-7-781-2014, 2014. 
Pieber, S. M., El Haddad, I., Slowik, J. G., Canagaratna, M. R., Jayne, J. T., Platt, S. M., Bozzetti, C., Daellenbach, K. R., Fröhlich, R., 
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