

Supplement of

Quantification and evaluation of atmospheric pollutant emissions from open biomass burning with multiple methods: a case study for the Yangtze River Delta region, China

Yang Yang and Yu Zhao

Correspondence to: Yu Zhao (yuzhao@nju.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

- 1 Number of tables: 17 Number of figures: 12
- 2 **Table list**
- 3 Table S1. Emission factors for OBB used in traditional bottom-up method.
- 4 Table S2. The ratios of straw to grain and combustion efficiencies by crop type.
- 5 Table S3. The percentages of CRBF of Shanghai, Jiangsu, Zhejiang and Anhui from
- 6 2005 to 2012 used in traditional bottom-up method.
- 7 Table S4. Emission factors used in FRP-based method (g/Kg dry crop residue).
- 8 Table S5. Inter-annual Terra/Aqua (T/A) FRP ratios, estimated per-pixel FRE and
- 9 total crop burnt from 2005 to 2015 in YRD.
- 10 Table S6. Model performance statistics for meteorological parameters in D2 at 9km
- 11 horizontal resolution for June of 2010, 2012 and 2014.
- 12 Table S7. Model performance statistics for PM_{10} concentrations from observation and
- 13 CMAQ simulation during non-OBB event in June 2010 and 2012.
- Table S8. Model performance statistics for $PM_{2.5}$ and PM_{10} concentrations from observation and CMAQ simulation during non-OBB event in June 2014.
- Table S9. Model performance statistics for CO concentrations from observation andCMAQ simulation during non-OBB event in June 2014.
- Table S10. Annual OBB emissions in YRD based on traditional bottom-up methodfrom 2005 to 2012 (Unit: Gg).
- Table S11. Annual OBB emissions in YRD based on FRP-based method from 2005 to
 2015 (Unit: Gg).
- Table S12. OBB emissions with traditional bottom-up method by city in YRD 2012(Unit: Gg).
- Table S13. OBB emissions with FRP-based method by city in YRD 2012 (Unit: Gg).
- Table S14. Constrained OBB emissions by city in YRD 2012 (Unit: Gg).
- Table S15. Model performance statistics for CO concentrations from observation and
- 27 CMAQ simulation without OBB emissions (No_OBB) and with OBB emissions
- based on FRP-based (FRP_OBB) and constraining methods (Constrained_OBB) for
 the OBB events of June 2014.
- Table S16. Uncertainties of emission factors and percentages of CRBF, expressed as the probability distribution functions (PDF).
- Table S17. The relationship between the API score and PM_{10} concentration in different rank.
- 34
- 35

36 **Figure list**

- Figure S1. Comparison of original (green lines) and modified (red lines) FRP diurnal
- curves for 2005-2015. Blue scatters represent the observed mean FRP values at eachoverpass time.
- Figure S2. Observed $PM_{2.5}$ and PM_{10} concentrations at Caochangmen Station in Nanjing in June 2012.
- 42 Figure S3. Monthly variations of fire occurrences from 2005-2015.
- Figure S4. The hourly PM_{10} or $PM_{2.5}$ ground concentrations from observation and CMAQ simulation using emission inventories without OBB at the four air quality monitoring sites in YRD for June 2012.
- Figure S5. The inter-annual trends for original FRE, modified FRE, improved FRE
- and constrained mass of CRBF from 2005 to 2012. All the data are normalized to2010 level.
- Figure S6. FRP diurnal curves based on curve fitting for 2005-2015. Blue scattersrepresent the observed total FRP values at each overpass time.
- Figure S7. The mass of CRBF estimated in bottom-up method for 2005-2012, and thatderived from FRP-based and constraining methods for 2005-2015.
- Figure S8. The constrained percentages of CRBF for different regions in YRD from2005 to 2012.
- Figure S9. The spatial distribution of straw yield (a) and constrained percentage ofCRBF (b) for YRD in 2012.
- Figure S10. Observed and simulated hourly PM_{2.5} concentrations without OBB
 emissions (No_OBB) during June 2014 and with OBB emissions with FRP-based
 (FRP_OBB) and constraining (Constrained_OBB) methods in Xuzhou, Lianyungang,
- 60 Huaian, Suqian, Yancheng, Nanjing, Hefei and Maanshan during June 7-13, 2014.
- Figure S11. Observed and simulated hourly PM₁₀ concentrations without OBB
 emissions (No_OBB) during June 2014 and with OBB emissions with FRP-based
 (FRP_OBB) and constraining (Constrained_OBB) methods in Xuzhou, Lianyungang,
 Huaian, Suqian, Yancheng, Nanjing, Hefei and Maanshan during June 7-13, 2014.
- Figure S12. Observed and simulated hourly CO concentrations without OBB
 emissions (No_OBB) during June 2014 and with OBB emissions based on FRP-based
 (FRP_OBB) and constraining (Constrained_OBB) methods in Xuzhou, Lianyungang,
 Huaian, Suqian, Yancheng, Nanjing, Hefei and Maanshan during June 7-13, 2014.
- 69

70 1. Observation of PM_{10} concentrations

The PM₁₀ mass concentrations were obtained with Air Pollution Index (API) from China National Environmental Monitoring Center (http://www.cnemc.cn/). The API of PM₁₀, SO₂ and NO₂ of a city were calculated in every day of 2010 and 2012, and the highest of the three values were published. The API for PM₁₀ was usually highest during the OBB event, so the PM₁₀ concentrations were calculated from API were reasonable in this study. If API scores were between I_i and I_{i+1} , the PM₁₀ concentration was calculated with the following equation:

78
$$C = \frac{(I - I_i) \times (C_{i+1} - C_i)}{(I_{i+1} - I_i)} + C_i$$
(1)

where *I* is API score; *C* is the concentration of PM_{10} , and *i* represents the rank. The relationship between the API score and PM_{10} concentration in different rank was shown in Table S15.

82 Tables

				-				••			
				Em	ission fa	actor (g/kg c	lry crop re	sidue)			
PM_{10} $PM_{2.5}$ EC OC CH_4 $NMVOC_8$ CO CO_2 NO_X SC										SO_2	NH ₃
Rice straw	15.7 ^a	13.77 ^{b,c}	0.499 ^{d,b}	6.16 ^{d,b}	3.89 ^e	8.94 ^e	65.2 ^{d,f,b}	1215.3 ^{d,f,b}	2.67 ^{d,f}	0.147 ^d	0.525 ^e
Wheat straw	25.4 ^a	22.25 ^{g,c}	$0.505^{d,g}$	3.26 ^{d,g}	3.36 ^g	7.48 ^g	88.8 ^{d,g,f}	1502.5 ^{d,g,f}	$2.34^{d,g,f}$	0.449 ^{d,g}	0.37 ^g
Maize straw	19.7 ^a	17.24 ^{g,c}	0.565 ^{d,g}	3.08 ^{d,g}	4.41 ^g	10.4 ^g	79.3 ^{d,g,f}	$1605.2^{d,g,f}$	$2.98^{d,g,f}$	0.233 ^{d,g}	0.68 ^g
Other	18.0 ^e	15.78 ^e	0.519 ^e	5.38 ^e	3.89 ^e	8.94 ^e	75.5 ^e	1358.6 ^e	2.75 ^e	0.351 ^e	0.525 ^e

Table S1. Emission factors for OBB used in traditional bottom-up method.

84 a Ratio of PM_{10} to $PM_{2.5}$ is from Akagi et al. (2011).

b Zhang et al., 2013.

86 c Zhu et al., 2005.

d Cao et al., 2008.

88 e Values are the average of the known straw species.

89 f Zhang et al., 2008.

90 g Li et al., 2007.

	Ratio of straw to grain ^a	Combustion efficiency ^b
Rice	0.95	92.5%
Wheat	1.3	91.7%
Maize	1.1	91.7%
Other corn	1.1	92.0%
Potato	0.526°	92.0%
Peanut	1.5	92.0%
Rapeseed	1.97	92.0%
Cotton	5	92.0%
Bean	1.6	92.0%

Table S2. The ratios of straw to grain and combustion efficiencies by crop type.

a Bi, 2010. b Zhang et al., 2008. c Wang et al., 2013.

	Shanghai ^{a, b}	Jiangsu ^{a, c, d}	Zhejiang ^{a, e}	Anhui ^{a, f}
2005	12.50%	20.5%	15%	23.50%
2006	12.50%	20.5%	15%	23.50%
2007	12.50%	20.5%	15%	23.50%
2008	12.50%	20.5%	15%	23.50%
2009	10.40%	17.4%	15%	23.50%
2010	8.60%	14.7%	15%	23.50%
2011	7.20%	12.5%	15%	23.50%
2012	6.00%	9.5%	11%	21.30%

Table S3. The percentages of CRBF of Shanghai, Jiangsu, Zhejiang and Anhui from
2005 to 2012 used in traditional bottom-up method.

97 a NDRC, 2014.

b SMDRC and SMAC, 2009.

c JPDRC and SMAC, 2009.

100 d APDRC, 2012.

101 e Qian, 2012.

102 f Xu and Wu, 2012.

103 Table S4. Emission factors used in FRP-based method (g/Kg dry crop residue).

		PM_{10}^{a}	$PM_{2.5}^{\ a}$	EC ^a	OC ^a	${CH_4}^a$	NMVOC _S ^a	CO ^a	$\rm CO_2^{\ a}$	$NO_X^{\ a}$	SO ₂ ^b	$\mathrm{NH_3}^{\mathrm{a}}$
	EF	7.2	6.3	0.8	2.3	5.8	51.4	102.2	1584.9	3.1	0.4	2.2
104	a Ak	agi et al.,	2011.									

b Andreae and Merlet, 2001.

	T/A FRP ratio	FRE ($\times 10^6$ MJ)	Total crop burnt (Tg)
2005	0.94	1.95	5.74
2006	0.88	1.78	5.55
2007	0.94	1.70	6.95
2008	1.02	1.64	5.36
2009	1.02	1.49	5.70
2010	0.97	1.59	8.02
2011	0.96	1.53	6.33
2012	0.92	1.80	12.60
2013	0.94	1.61	8.51
2014	1.04	2.49	10.66
2015	0.72	1.52	4.23

Table S5. Inter-annual Terra/Aqua (T/A) FRP ratios, estimated per-pixel FRE and
total crop burnt from 2005 to 2015 in YRD.

Variables	Parameter	June 2010	June 2012	June 2014	Benchmark
	Mean OBS(m/s)	2.29	2.39	2.55	
	Mean SIM(m/s)	2.28	2.45	3.22	
Wind speed	Bias(m/s)	-0.01	0.06	0.67	
-	RMSE(m/s)	0.39	0.38	0.90	$\leqslant 2.0^{a}$
	IOA	0.91	0.89	0.72	$\geq 0.6^{a}$
Wind direction	Mean OBS(%	155.32	138.79	152.69	
	Mean SIM()	145.48	132.00	134.47	
	Bias()	-9.84	-7.00	-18.22	
	RMSE()	26.76	21.02	39.58	\leqslant 44.7 ^b
	IOA	0.93	0.89	0.75	
	Mean OBS (°C)	24.08	25.45	24.23	
	Mean SIM (℃)	23.11	24.81	23.80	
Temperature	Bias (°C)	-0.97	-0.64	-0.43	$\leqslant 0.5^{\mathrm{a}}$
	RMSE (℃)	1.46	1.76	1.35	
	IOA (%)	0.96	0.91	0.94	$\geqslant 0.8^{\mathrm{a}}$
	Mean OBS (%)	75.16	69.62	77.53	
Relative Humidity	Mean SIM (%)	78.15	72.69	77.60	
	Bias (%)	2.99	3.08	0.07	
	RMSE (%)	4.79	7.02	4.59	
	IOA (%)	0.96	0.89	0.97	$\geq 0.6^{a}$

Table S6. Model performance statistics for meteorological parameters in D2 at 9kmhorizontal resolution for June of 2010, 2012 and 2014.

Note: ^a from Emery et al. (2001); ^b from Jim énez et al. (2006). OBS and SIM indicate the results from observation and simulation, respectively. The Bias, IOA and RMSE were calculated using following equations (P and O indicates the results from modeling prediction and observation, respectively):

116
$$Bias = \frac{1}{n} \sum_{i=1}^{n} (P_i - O_i); IOA = 1 - \frac{\sum_{i=1}^{n} (P_i - O_i)^2}{\sum_{i=1}^{n} (|P_i - O_i| + |O_i - O_i|)^2}; RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)^2}.$$

Drovince	City	June	2010	June	2012
FIOVINCE	City	NMB	NME	NMB	NME
	Fuyang	-17.9%	42.7%	-7.5%	24.6%
	Bozhou	-43.9%	44.2%	-6.7%	24.4%
Anhui	Bengbu	-21.8%	27.5%	-20.4%	25.2%
Allilui	Huainan	-30.1%	41.5%	-18.0%	20.2%
	Hefei	2.2%	41.9%	-22.6%	23.0%
	Chuzhou	-31.5%	38.2%	-1.9%	42.6%
	Xuzhou			-50.8%	50.8%
	Lianyungang	-42.2%	40.6%	-52.2%	52.2%
	Nanjing	-34.6%	57.8%	-20.3%	20.3%
	Yangzhou	-26.4%	37.4%	-28.8%	32.3%
Lionacu	Zhenjiang	-7.4%	36.3%	1.3%	26.9%
Jiangsu	Taizhou	-	-	-31.6%	32.9%
	Nantong	-43.2%	53.2%	-35.8%	35.8%
	Changzhou	-	-	-15.9%	21.9%
	Wuxi	-	-	4.9%	26.2%
	Suzhou	14.0%	36.9%	21.8%	32.4%
	Huzhou	-27.0%	32.3%	-52.2%	52.6%
	Jiaxing	-	-	-27.2%	42.0%
Zhejiang	Hangzhou	-13.1%	18.7%	-27.2%	38.5%
	Shaoxing	-24.6%	31.4%	-49.6%	49.6%
	Ningbo	-38.1%	28.5%	-27.5%	27.3%
Shanghai	Shanghai	43.4%	52.8%	8.1%	44.3%
Average		-19.2%	38.9%	-20.9%	33.9%

118 Table S7. Model performance statistics for PM_{10} concentrations from observation and 119 CMAQ simulation during non-OBB event in June 2010 and 2012.

120

Note: NMB and NME are calculated using following equations (P and O indicate the results from modeling prediction and observation, respectively):

123
$$NMB = \frac{\sum_{i=1}^{n} (P_i - O_i)}{\sum_{i=1}^{n} O_i} \times 100\%; \quad NME = \frac{\sum_{i=1}^{n} |P_i - O_i|}{\sum_{i=1}^{n} O_i} \times 100\%.$$

			PN	A _{2.5}			PN	A_{10}	
Province	City	Hou	urly	Da	ily	Ho	urly	Da	ily
		NMB	NME	NMB	NME	NMB	NME	NMB	NME
	Hefei	7.7%	34.9%	7.5%	22.0%	-3.2%	31.9%	-3.2%	15.9%
Anhui	Maanshan	-10.1%	45.0%	-10.1%	36.6%	-19.7%	46.3%	-19.6%	37.0%
	Wuhu	-6.5%	53.9%	-6.5%	42.1%	-26.6%	48.4%	-26.8%	40.9%
	Xuzhou	-25.9%	46.6%	-25.3%	32.3%	-43.3%	58.0%	-42.9%	44.8%
	Liangyungang	-43.7%	43.3%	-42.8%	42.8%	-65.3%	68.3%	-65.0%	65.0%
	Huaian	-50.2%	57.9%	-50.1%	53.1%	-51.9%	60.8%	-51.9%	51.9%
	Suqian	-53.2%	53.5%	-53.1%	53.1%	-60.6%	60.9%	-60.8%	60.8%
	Yancheng	-54.4%	58.6%	-53.9%	53.9%	-61.1%	64.3%	-60.5%	60.5%
	Nanjing	-29.5%	42.4%	-29.6%	32.5%	-37.9%	47.8%	-37.8%	40.0%
Jiangsu	Yangzhou	-34.8%	44.3%	-34.6%	37.2%	-50.6%	56.1%	-50.4%	50.4%
	Taizhou	-44.0%	47.2%	-43.3%	43.3%	-51.8%	56.5%	-51.0%	51.0%
	Nantong	-55.7%	56.0%	-54.8%	54.8%	-58.8%	60.4%	-58.2%	58.2%
	Suzhou	-31.6%	45.2%	-31.8%	35.0%	-40.2%	50.1%	-40.3%	41.9%
	Wuxi	-4.5%	56.7%	-2.7%	42.4%	-19.0%	61.7%	-17.5%	47.6%
	Zhenjiang	-29.1%	37.2%	-29.4%	32.1%	-41.2%	51.0%	-41.1%	41.6%
	Changzhou	-17.1%	37.9%	-17.2%	25.8%	-28.7%	45.5%	-28.6%	31.7%
	Hangzhou	-15.5%	44.8%	-16.0%	34.6%	-30.9%	47.8%	-31.0%	40.9%
	Huzhou	-20.2%	49.2%	-19.3%	41.1%	-28.6%	51.1%	-29.4%	46.6%
Zhejiang	Jiaxing	-31.5%	52.6%	-31.0%	39.1%	-38.3%	56.1%	-38.0%	40.3%
	Ningbo	-41.5%	59.9%	-41.7%	44.1%	-50.4%	58.5%	-50.4%	50.4%
	Shaoxing	-46.3%	61.1%	-45.5%	48.4%	-40.3%	54.1%	-41.0%	52.3%
	Shanghai	-20.6%	69.2%	-19.7%	56.2%	-27.0%	69.1%	-30.1%	58.7%
Average		-29.9%	49.8%	-29.6%	41.0%	-39.8%	54.7%	-39.8%	46.7%
Benchmark ^a		-33.0%	43.0%		_	-45.0%	49.0%		

Table S8. Model performance statistics for $PM_{2.5}$ and PM_{10} concentrations from observation and CMAQ simulation during non-OBB event in June 2014.

127

Note: ^a from Zhang et al. (2006). NMB and NME are calculated using following equations (P and O indicate the results from modeling prediction and observation, respectively):

130
$$NMB = \frac{\sum_{i=1}^{n} (P_i - O_i)}{\sum_{i=1}^{n} O_i} \times 100\%; \quad NME = \frac{\sum_{i=1}^{n} |P_i - O_i|}{\sum_{i=1}^{n} O_i} \times 100\%.$$

131

р '		Hou	ırly	Dai	ily
Province	City	NMB	NME	NMB	NME
	Hefei	-31.3%	32.5%	-31.2%	33.9%
Anhui	Maanshan	-62.6%	62.6%	-62.6%	62.0%
	Wuhu	-37.3%	41.6%	-35.8%	44.2%
	Xuzhou	-61.1%	61.3%	-61.0%	61.0%
	Liangyungang	-71.3%	71.3%	-71.0%	71.0%
	Huaian	-63.1%	63.3%	-63.1%	63.1%
	Suqian	-60.2%	57.7%	-60.1%	60.1%
	Yancheng	-61.2%	60.1%	-61.5%	61.5%
	Nanjing	-23.2%	36.5%	-23.5%	26.5%
Province Anhui Jiangsu Zhejiang Average	Yangzhou	-27.2%	36.7%	-27.7%	32.6%
	Taizhou	-58.2%	58.7%	-58.1%	58.1%
	Nantong	-40.1%	43.9%	-40.8%	40.8%
	Suzhou	-21.8%	35.4%	-21.7%	25.7%
	Wuxi	-21.6%	44.2%	-20.3%	33.5%
	Zhengjiang	-52.9%	52.6%	-53.0%	53.0%
	Changzhou	-38.3%	44.4%	-38.2%	38.2%
	Hangzhou	-12.3%	27.1%	-12.6%	14.8%
	Huzhou	-44.8%	46.7%	-44.9%	44.9%
Zhejiang	Jiaxing	-42.8%	46.0%	-43.0%	43.0%
	Ningbo	-64.7%	64.2%	-64.8%	64.8%
Jiangsu Zhejiang Average	Shaoxing	-10.3%	36.2%	-10.2%	23.1%
	Shanghai	-24.3%	38.7%	-24.1%	25.8%
Average		-42.3%	48.3%	-42.2%	44.6%

Table S9. Model performance statistics for CO concentrations from observation andCMAQ simulation during non-OBB event in June 2014.

Note: NMB and NME are calculated using following equations (P and O indicate the results from modeling prediction and observation, respectively):

138
$$NMB = \frac{\sum_{i=1}^{n} (P_i - O_i)}{\sum_{i=1}^{n} O_i} \times 100\%; \quad NME = \frac{\sum_{i=1}^{n} |P_i - O_i|}{\sum_{i=1}^{n} O_i} \times 100\%.$$

				0,							
	PM_{10}	PM _{2.5}	EC	OC	CH_4	NMVOCs	CO	CO_2	NO_X	SO_2	NH ₃
2005	327.4	286.5	8.6	84.2	64.0	146.2	1276.9	23000	44.4	4.9	8.3
2006	362.9	317.6	9.5	91.4	70.2	160.4	1409.7	25377	48.7	5.4	9.1
2007	352.9	308.8	9.1	86.4	67.0	152.8	1360.9	24426	46.4	5.2	8.6
2008	392.3	343.2	10.1	94.5	73.9	168.4	1509.2	27061	51.2	5.9	9.5
2009	380.4	332.9	9.8	91.1	71.7	163.5	1464.1	26283	49.6	5.7	9.2
2010	362.4	317.1	9.3	85.7	67.9	154.9	1391.8	24978	47.0	5.4	8.7
2011	348.0	304.5	8.9	82.1	65.3	148.9	1336.2	24000	45.2	5.2	8.4
2012	290.3	254.0	7.4	68.0	54.2	123.5	1113.3	19973	37.5	4.3	7.0

Table S10. Annual OBB emissions in YRD based on traditional bottom-up methodfrom 2005 to 2012 (Unit: Gg).

	PM_{10}	PM _{2.5}	EC	OC	CH_4	NMVOCs	CO	CO_2	NO_X	SO_2	NH ₃
2005	41.3	36.1	4.6	13.2	33.3	294.9	586.4	9093.3	17.8	2.3	12.6
2006	40.0	35.0	4.4	12.8	32.2	285.3	567.3	8797.2	17.2	2.2	12.2
2007	50.0	43.8	5.6	16.0	40.3	357.0	709.8	11007.9	21.5	2.8	15.3
2008	38.6	33.8	4.3	12.3	31.1	275.7	548.1	8500.1	16.6	2.1	11.8
2009	41.1	35.9	4.6	13.1	33.1	293.2	583.0	9040.5	17.7	2.3	12.5
2010	57.8	50.6	6.4	18.5	46.5	412.5	820.1	12718.0	24.9	3.2	17.7
2011	45.6	39.9	5.1	14.6	36.7	325.5	647.1	10035.2	19.6	2.5	13.9
2012	90.8	79.4	10.1	29.0	73.1	647.9	1288.2	19977.3	39.1	5.0	27.7
2013	61.3	53.6	6.8	19.6	49.4	437.5	869.8	13489.4	26.4	3.4	18.7
2014	76.8	67.2	8.5	24.5	61.9	548.2	1089.9	16902.2	33.1	4.3	23.5
2015	30.5	26.7	3.4	9.7	24.5	217.5	432.4	6706.0	13.1	1.7	9.3

Table S11. Annual OBB emissions in YRD based on FRP-method from 2005 to 2015(Unit: Gg).

	PM_{10}	PM _{2.5}	EC	OC	CH_4	NMVOC _S	СО	CO_2	NO_X	SO_2	NH ₃
Anqing	11.2	9.8	0.3	3.8	2.6	5.9	46	845	1.8	0.1	0.3
Bengbu	15.3	13.4	0.4	3.1	2.6	6	58	1021	1.8	0.2	0.3
Bozhou	26.1	22.9	0.6	3.9	4	9.1	95	1674	2.8	0.4	0.5
Chaohu	10.2	9	0.3	3.2	2.2	5.1	41	752	1.5	0.1	0.3
Chizhou	3.1	2.7	0.1	1.1	0.7	1.6	13	235	0.5	0	0.1
Chuzhou	19.2	16.8	0.5	4.7	3.6	8.2	74	1313	2.5	0.3	0.5
Fuyang	29.5	25.8	0.7	4.7	4.7	10.8	108	1923	3.3	0.5	0.6
Hefei	8.9	7.8	0.3	2.7	1.9	4.4	36	649	1.3	0.1	0.3
Huaibei	7.1	6.2	0.2	1.1	1.1	2.4	26	453	0.8	0.1	0.1
Huainan	6.2	5.4	0.1	1.4	1.1	2.4	23	407	0.7	0.1	0.1
Huangshan	1.5	1.3	0	0.5	0.3	0.8	6	112	0.2	0	0
Luan	19.1	16.7	0.5	5.2	3.8	8.7	74	1338	2.6	0.3	0.5
Maanshan	2.1	1.8	0.1	0.6	0.4	1	8	150	0.3	0	0.1
Suzhou	22.4	19.6	0.5	3.6	3.7	8.4	83	1484	2.5	0.4	0.5
Tongling	0.7	0.7	0	0.2	0.2	0.4	3	55	0.1	0	0
Wuhu	3.1	2.7	0.1	1	0.7	1.6	13	234	0.5	0	0.1
Xuancheng	5.8	5	0.2	1.7	1.2	2.8	23	418	0.8	0.1	0.2
Changzhou	2.1	1.9	0.1	0.6	0.4	0.9	8	148	0.3	0	0.1
Huaian	8.9	7.8	0.2	2.1	1.7	3.8	34	607	1.1	0.1	0.2
Lianyungang	7.3	6.4	0.2	1.7	1.3	3.1	28	495	0.9	0.1	0.2
Nanjing	2.3	2	0.1	0.7	0.5	1.1	9	164	0.3	0	0.1
Nantong	7.7	6.7	0.2	1.9	1.5	3.4	30	541	1	0.1	0.2
Suqian	8	7	0.2	1.7	1.4	3.2	30	533	1	0.1	0.2
Suzhou	2.2	1.9	0.1	0.6	0.4	1	9	151	0.3	0	0.1
Taizhou	6.5	5.7	0.2	1.6	1.2	2.8	25	442	0.8	0.1	0.2
Wuxi	1.5	1.4	0	0.4	0.3	0.7	6	105	0.2	0	0
Xuzhou	10.4	9.1	0.3	2	1.8	4.2	39	702	1.3	0.2	0.2
Yancheng	13.7	12	0.4	3.4	2.7	6.1	53	962	1.8	0.2	0.3
Yangzhou	6	5.3	0.2	1.5	1.1	2.6	23	409	0.8	0.1	0.1
Zhenjiang	2.5	2.2	0.1	0.7	0.5	1.1	10	172	0.3	0	0.1
Hangzhou	2.2	1.9	0.1	0.7	0.5	1.1	9	165	0.3	0	0.1
Huzhou	1.9	1.6	0.1	0.6	0.4	0.9	8	137	0.3	0	0.1
Jiaxing	2.8	2.5	0.1	0.9	0.6	1.4	11	207	0.4	0	0.1
Jinhua	1.8	1.5	0.1	0.6	0.4	0.9	7	135	0.3	0	0.1
Lishui	1	0.8	0	0.3	0.2	0.5	4	73	0.2	0	0
Ningbo	1.7	1.5	0.1	0.6	0.4	0.9	7	128	0.3	0	0.1
Quzhou	1.6	1.4	0	0.6	0.4	0.9	7	123	0.3	0	0.1
Shaoxing	2.3	2	0.1	0.8	0.5	1.2	9	170	0.4	0	0.1
Taizhou	1.6	1.4	0	0.5	0.4	0.8	7	121	0.3	0	0
Wenzhou	1.5	1.3	0	0.5	0.4	0.8	6	116	0.2	0	0
Zhoushan	0.1	0.1	0	0	0	0.1	1	9	0	0	0
Shanghai	1.3	1.1	0	0.4	0.3	0.6	5	93	0.2	0	0
Total	290.3	254	7.4	68	54.2	123.5	1113	19973	37.5	4.3	7

Table S12. OBB emissions with traditional bottom-up method by city in YRD 2012(Unit: Gg).

	PM_{10}	PM _{2.5}	EC	OC	CH ₄	NMVOCs	CO	CO_2	NO _X	SO_2	NH ₃
Anqing	0.7	0.6	0.1	0.2	0.6	5.2	10	160	0.3	0	0.2
Bengbu	4	3.5	0.4	1.3	3.2	28.7	57	885	1.7	0.2	1.2
Bozhou	7.8	6.8	0.9	2.5	6.3	55.9	111	1723	3.4	0.4	2.4
Chaohu	0.7	0.6	0.1	0.2	0.5	4.7	9	144	0.3	0	0.2
Chizhou	0.5	0.4	0.1	0.2	0.4	3.6	7	111	0.2	0	0.2
Chuzhou	2.8	2.4	0.3	0.9	2.2	19.9	40	613	1.2	0.2	0.8
Fuyang	6.5	5.7	0.7	2.1	5.3	46.6	93	1436	2.8	0.4	2
Hefei	1.2	1.1	0.1	0.4	1	8.9	18	275	0.5	0.1	0.4
Huaibei	5.2	4.6	0.6	1.7	4.2	37.2	74	1147	2.2	0.3	1.6
Huainan	0.7	0.6	0.1	0.2	0.6	4.9	10	151	0.3	0	0.2
Huangshan	0.4	0.3	0	0.1	0.3	2.7	5	84	0.2	0	0.1
Luan	1.6	1.4	0.2	0.5	1.3	11.7	23	361	0.7	0.1	0.5
Maanshan	0.5	0.4	0.1	0.2	0.4	3.6	7	110	0.2	0	0.2
Suzhou	16.5	14.4	1.8	5.3	13.3	117.6	234	3627	7.1	0.9	5
Tongling	0.2	0.2	0	0.1	0.1	1.3	3	40	0.1	0	0.1
Wuhu	0.9	0.8	0.1	0.3	0.7	6.6	13	204	0.4	0.1	0.3
Xuancheng	1.1	1	0.1	0.4	0.9	8	16	248	0.5	0.1	0.3
Changzhou	0.9	0.8	0.1	0.3	0.8	6.7	13	206	0.4	0.1	0.3
Huaian	2.5	2.2	0.3	0.8	2	18.1	36	560	1.1	0.1	0.8
Lianyungang	2.9	2.5	0.3	0.9	2.3	20.8	41	640	1.3	0.2	0.9
Nanjing	1.1	1	0.1	0.4	0.9	7.9	16	243	0.5	0.1	0.3
Nantong	0.4	0.4	0	0.1	0.4	3.1	6	97	0.2	0	0.1
Suqian	4.6	4	0.5	1.5	3.7	32.8	65	1011	2	0.3	1.4
Suzhou	1.4	1.2	0.2	0.4	1.1	10	20	310	0.6	0.1	0.4
Taizhou	1.1	0.9	0.1	0.3	0.9	7.6	15	236	0.5	0.1	0.3
Wuxi	1.2	1	0.1	0.4	1	8.5	17	261	0.5	0.1	0.4
Xuzhou	7.2	6.3	0.8	2.3	5.8	51.5	102	1589	3.1	0.4	2.2
Yancheng	2.2	1.9	0.2	0.7	1.8	15.9	32	489	1	0.1	0.7
Yangzhou	1.4	1.3	0.2	0.5	1.2	10.3	21	318	0.6	0.1	0.4
Zhenjiang	0.4	0.3	0	0.1	0.3	2.5	5	77	0.2	0	0.1
Hangzhou	1.8	1.5	0.2	0.6	1.4	12.5	25	386	0.8	0.1	0.5
Huzhou	1.1	1	0.1	0.4	0.9	8.1	16	250	0.5	0.1	0.3
Jiaxing	1.1	1	0.1	0.4	0.9	8	16	245	0.5	0.1	0.3
Jinhua	1	0.9	0.1	0.3	0.8	6.9	14	214	0.4	0.1	0.3
Lishui	0.6	0.5	0.1	0.2	0.5	4.1	8	125	0.2	0	0.2
Ningbo	1.6	1.4	0.2	0.5	1.3	11.5	23	356	0.7	0.1	0.5
Quzhou	0.9	0.8	0.1	0.3	0.7	6.3	13	195	0.4	0	0.3
Shaoxing	1	0.8	0.1	0.3	0.8	6.8	14	209	0.4	0.1	0.3
Taizhou	0.7	0.6	0.1	0.2	0.5	4.7	9	146	0.3	0	0.2
Wenzhou	0.7	0.6	0.1	0.2	0.5	4.8	10	147	0.3	0	0.2
Zhoushan	0.1	0.1	0	0	0.1	0.5	1	14	0	0	0
Shanghai	1.5	1.3	0.2	0.5	1.2	10.9	22	336	0.7	0.1	0.5
Total	90.8	79.4	10.1	29	73.1	648	1288	19977	39.1	5	27.7

Table S13. OBB emissions with FRP-based method by city in YRD 2012 (Unit: Gg).

	PM ₁₀	PM _{2.5}	EC	OC	CH ₄	NMVOC _S	СО	CO_2	NO _X	SO_2	NH ₃
Anqing	2.2	1.9	0.1	0.7	0.5	6.3	9	166	0.3	0	0.1
Bengbu	16.4	14.4	0.4	3.2	2.8	36.8	61	1090	2	0.2	0.3
Bozhou	37.9	33.2	0.9	5.7	5.8	75.9	138	2433	4.1	0.6	0.7
Chaohu	7	6.2	0.2	2.2	1.5	20.1	28	513	1	0.1	0.2
Chizhou	10.4	9.2	0.3	3.6	2.4	31.6	43	790	1.7	0.2	0.3
Chuzhou	11.1	9.7	0.3	2.8	2	27.0	43	758	1.4	0.2	0.2
Fuyang	31.5	27.6	0.7	5.1	5	66.1	116	2061	3.5	0.6	0.7
Hefei	4.2	3.6	0.1	1.3	0.9	12.1	17	300	0.6	0.1	0.1
Huaibei	26.2	23	0.6	3.9	3.9	51.7	95	1666	2.8	0.5	0.5
Huainan	2.8	2.4	0.1	0.6	0.5	6.3	10	182	0.3	0.1	0.1
Huangshan	1.2	1	0	0.4	0.3	3.4	5	95	0.2	0	0
Luan	6.4	5.6	0.2	1.7	1.3	16.7	25	450	0.9	0.1	0.2
Maanshan	1.7	1.5	0.1	0.6	0.4	5.2	7	126	0.2	0	0.1
Suzhou	75.6	66.1	1.8	12.1	12.4	162.1	280	5007	8.6	1.3	1.6
Tongling	0.6	0.5	0	0.2	0.2	1.7	2	39	0.1	0	0
Wuhu	2.6	2.3	0.1	0.9	0.6	7.5	11	197	0.4	0	0.1
Xuancheng	3.9	3.4	0.1	1.2	0.9	10.9	16	284	0.6	0.1	0.1
Changzhou	3.6	3.2	0.1	0.9	0.7	9.2	14	245	0.5	0.1	0.1
Huaian	10.8	9.5	0.2	2.6	2	26.4	41	735	1.3	0.2	0.2
Lianyungang	11.5	10.1	0.3	2.7	2.1	27.6	44	790	1.5	0.2	0.2
Nanjing	3.8	3.3	0.1	1.1	0.8	10.3	15	276	0.6	0.1	0.1
Nantong	1.5	1.3	0.1	0.4	0.3	4.0	6	111	0.2	0	0
Suqian	15.8	13.8	0.4	3.5	2.8	36.8	59	1058	2	0.2	0.4
Suzhou	5.1	4.4	0.2	1.3	0.9	12.6	20	348	0.6	0.1	0.2
Taizhou	4.1	3.6	0.1	1	0.8	9.8	16	276	0.6	0.1	0.1
Wuxi	4.5	3.9	0.1	1.1	0.9	10.9	17	308	0.6	0.1	0.1
Xuzhou	31.3	27.4	0.8	6.2	5.5	71.9	117	2109	3.8	0.5	0.7
Yancheng	8.5	7.4	0.2	2.1	1.7	21.8	33	600	1.2	0.2	0.2
Yangzhou	5.8	5.1	0.2	1.4	1.1	13.8	22	395	0.7	0.1	0.2
Zhenjiang	1.3	1.2	0	0.4	0.2	3.4	6	95	0.2	0	0
Hangzhou	6.1	5.4	0.2	1.9	1.3	17.8	25	458	1	0.1	0.2
Huzhou	3.9	3.4	0.1	1.3	0.9	11.5	16	284	0.6	0.1	0.1
Jiaxing	3.6	3.2	0.1	1.1	0.8	9.8	14	261	0.6	0.1	0.1
Jinhua	3.1	2.8	0.1	1	0.7	9.8	13	245	0.5	0.1	0.1
Lishui	1.9	1.7	0.1	0.6	0.5	5.7	8	142	0.3	0	0.1
Ningbo	4.7	4.1	0.2	1.6	1.1	13.8	20	355	0.7	0.1	0.2
Quzhou	2.7	2.4	0.1	0.9	0.6	8.6	11	205	0.5	0	0.1
Shaoxing	2.7	2.4	0.1	0.9	0.6	8.6	11	205	0.5	0	0.1
Taizhou	2.2	2	0.1	0.7	0.5	6.9	10	166	0.3	0	0.1
Wenzhou	3.1	2.7	0.1	1	0.7	9.8	13	237	0.5	0	0.1
Zhoushan	0.2	0.2	0	0.1	0.1	0.6	1	16	0	0	0
Shanghai	5.2	4.6	0.2	1.6	1.1	14.9	22	395	0.8	0.1	0.2
Total	389.0	340.4	9.6	83.6	70.2	919.4	1479	26474	48.6	6.0	9.0

Table S14. Constrained OBB emissions by city in YRD 2012 (Unit: Gg).

Table S15. Model performance statistics for CO concentrations from observation and
CMAQ simulation without OBB emissions (No_OBB) and with OBB emissions
based on FRP-based (FRP_OBB) and constraining methods (Constrained_OBB) for
the OBB events of June 2014.

		No_C	OBB	FRP_	OBB	Constrained_OBB		
		NMB	NME	NMB	NME	NMB	NME	
-	Hourly	-59.2%	59.9%	-46.7%	50.3%	-44.6%	49.7%	
_	Daily	-59.5%	59.5%	-47.0%	47.0%	-44.9%	45.0%	

Parameters		Distribution	Key characteristics for distribution function			
T utumeters		Distribution	P10 ^a	P90 ^a	P50 ^a	
Emission fa	ctors g/kg					
	Rice straw	Uniform	14.7	16.7	15.7	
PM	Wheat straw	Uniform	7.8	38.3	23.0	
1 14110	Maize straw	Uniform	13.5	24.5	19.0	
	Other	Uniform	12.8	26.7	19.8	
	Rice straw	Uniform	12.9	14.6	13.8	
DM	Wheat straw	Uniform	6.7	33.6	20.1	
P 1 V 1 _{2.5}	Maize straw	Uniform	11.9	21.6	16.8	
	Other	Uniform	11.1 23.4 17.4 0.5 0.5 0.5 0.4 0.6 0.5 0.3 0.7 0.5 0.4 0.6 0.5 0.4 0.6 0.5 2.8 9.5 6.1 1.9 3.6 2.8 2.4 3.8 3.1 3.2 9.6 6.5 3.5 4.3 3.9 2.3 4.4 3.4 3.2 5.7 4.4 3.5 4.3 3.9 7.8 10.1 8.9 5.1 9.9 7.5 4.2 17.3 10.5			
	Rice straw	Uniform	0.5	0.5	0.5	
	Wheat straw	Uniform	0.4	0.6	0.5	
EC	Maize straw	Uniform	0.3	0.7	0.5	
	Other	Uniform	0.4	Ley characteristics for distributionP10 aP90 a14.716.77.838.313.524.512.826.712.914.66.733.611.921.611.123.40.50.50.40.60.30.70.40.62.89.51.93.62.43.83.29.63.54.32.34.43.25.73.54.37.810.15.19.94.217.37.810.160.370.967.6132.855.5108.163.7102.1885.41659.91433.81544.11356.72109.21156.91662.92.03.31.54.71.85.61.63.60.10.60.10.40.10.60.21.40.40.7	0.5	
	Rice straw	Uniform	Key characteris P10 a14.77.813.512.812.96.711.911.10.50.40.30.42.81.92.43.23.52.33.23.57.85.14.27.860.367.655.563.7885.41433.81356.71156.92.01.51.81.60.10.10.10.10.10.20.20.4	9.5	6.1	
	Wheat straw	Uniform	1.9	3.6	2.8	
OC	Maize straw	Uniform	2.4	3.8	3.1	
	Other	Uniform	3.2	9.6	6.5	
	Rice straw	Uniform	3.5	4.3	3.9	
	Wheat straw	Normal	2.3	4.4	3.4	
CH_4	Maize straw	Normal	3.2	5.7	4.4	
	Other	Uniform	3.5	4.3	3.9	
	Rice straw	Uniform	7.8	10.1	8.9	
	Wheat straw	Normal	5.1	9.9	7.5	
NMVOCs	Maize straw	Normal	4.2	17.3	10.5	
	Other	Uniform	7.8	10.1	8.9	
	Rice straw	Uniform	60.3	70.9	65.6	
G 0	Wheat straw	Uniform	67.6	132.8	100.1	
CO	Maize straw	Uniform	55.5	108.1	82.0	
	Other	Uniform	63.7	102.1	82.7	
	Rice straw	Uniform	885.4	1659.9	1267.2	
00	Wheat straw	Uniform	1433.8	1544.1	1488.9	
CO_2	Maize straw	Uniform	1356.7	2109.2	1727.4	
	Other	Uniform	1156.9	1662.9	1409.4	
	Rice straw	Uniform	2.0	3.3	2.7	
NO	Wheat straw	Uniform	1.5	4.7	3.1	
NOX	Maize straw	Uniform	1.8	5.6	3.7	
	Other	Uniform	1.6	3.6	2.6	
	Rice straw	Normal	0.1	0.6	0.3	
50	Wheat straw	Uniform	0.1	0.8	0.5	
50_2	Maize straw	Uniform	0.1	0.4	0.2	
	Other	Uniform	0.1	0.6	0.4	
	Rice straw	Uniform	0.4	0.7	0.5	
NIL.	Wheat straw	Normal	0.2	0.6	0.4	
11113	Maize straw	Normal	0.2	1.4	0.8	
	Other	Uniform	0.4	0.7	0.5	

Table S16. Uncertainties of emission factors and percentages of CRBF, expressed asthe probability distribution functions (PDF).

		Key characteristics for distribution functions				
Parameters	Distribution	$P10^{a}$	P90 ^a	P50 ^a		
Percentages of CRBF						
Anhui	Normal	12.3%	30.4%	21.3%		
Jiangsu	Normal	5.4%	13.6%	9.5%		
Zhejiang	Normal	6.5%	15.6%	11.0%		
Jiangsu	Normal	5.4%	13.6%	9.5%		

^a P10 values mean that there is a probability of 10% that the actual result would be equal to or below the P10 values; P50 mean that there is a probability of 50% that the actual result would be equal to or below the P50 values; and P90 mean that there is a probability of 90% that the actual result would be equal to or below the P90 values.

169 Table S17. The relationship between the API score and PM_{10} concentration in 170 different rank.

Rank	1	2	3	4	5	6
API	50	100	200	300	400	500
$PM_{10} (\mu g/m^3)$	50	150	350	420	500	600

173 Figures

174 Figure S1. Comparison of original (green lines) and modified (red lines) FRP diurnal

175 curves for 2005-2015. Blue scatters represent the observed mean FRP values at each176 overpass time.

Figure S2. Observed PM_{2.5} and PM₁₀ concentrations at Caochangmen Station in
Nanjing in June 2012.

182 Figure S3. Monthly variations of fire occurrences from 2005-2015.

Figure S4. The hourly PM_{10} or $PM_{2.5}$ ground concentrations from observation and CMAQ simulation using emission inventories without OBB at the four air quality monitoring sites in YRD for June 2012.

192 Note: The hourly PM_{10} concentrations of Nanjing, Changzhou and Taizhou were obtained from 193 Jiangsu province environmental monitoring center (<u>http://www.jsem.net.cn/</u>); the hourly $PM_{2.5}$ 194 concentrations of Shanghai were obtained from U.S. Embassy & Consulates in China 195 (https://china.usembassy-china.org.cn/embassy-consulates/shanghai/air-quality-monitor-stateair).

197 Figure S5. The inter-annual trends for original FRE, modified FRE, improved FRE

and constrained mass of CRBF from 2005 to 2012. All the data are normalized to

199 2010 level.

Figure S6. FRP diurnal curves based on curve fitting for 2005-2015. Blue scatters represent the observed total FRP values at each overpass time.

0 2 4 6 8

10 12 14 16 18 20 22 24

Figure S7. The mass of CRBF estimated in bottom-up method for 2005-2012, and that derived from FRP-based and constraining methods for 2005-2015.

- Figure S8. The constrained percentages of CRBF for different regions in YRD from
- 211 2005 to 2012.

Figure S9. The spatial distribution of straw yield (a) and constrained percentage of

Figure S10. Observed and simulated hourly PM_{2.5} concentrations without OBB emissions (No_OBB) during June 2014 and with OBB emissions with FRP-based (FRP_OBB) and constraining (Constrained_OBB) methods in Xuzhou, Lianyungang, Huaian, Suqian, Yancheng, Nanjing, Hefei and Maanshan during June 7-13, 2014.

Figure S11. Observed and simulated hourly PM₁₀ concentrations without OBB emissions (No_OBB) during June 2014 and with OBB emissions with FRP-based (FRP_OBB) and constraining (Constrained_OBB) methods in Xuzhou, Lianyungang, Huaian, Suqian, Yancheng, Nanjing, Hefei and Maanshan during June 7-13, 2014.

Figure S12. Observed and simulated hourly CO concentrations without OBB
emissions (No_OBB) during June 2014 and with OBB emissions based on FRP-based
(FRP_OBB) and constraining (Constrained_OBB) methods in Xuzhou, Lianyungang,
Huaian, Suqian, Yancheng, Nanjing, Hefei and Maanshan during June 7-13, 2014.

246 **References**

Anhui Provincial Development and Reform Commission (APDRC): Puissant
propulsion of comprehensive utilization for crop straw in Jiangsu, Hefei, China, 2012
(in Chinese).

250 Akagi, S., Yokelson, R.J., Wiedinmyer, C., Alvarado, M., Reid, J., Karl, T., Crounse, J., and Wennberg, P.: Emission factors for open and domestic biomass burning for use 251 atmospheric models, Atmos. Chem. Phys., 11. 4039-4072. doi: 252 in 10.5194/acp-11-4039-2011, 2011. 253

- Andreae, M.O., and Merlet, P.: Emission of trace gases and aerosols from bio mass burning, Glob. Biogeochem. Cy., 15, 955-966, <u>doi: 10.1029/2000gb001382</u>, 2001.
- Bi, Y. Y.: Study on straw resources evaluation and utilization, Chinese Academy
 Agriculture Sciences, Beijing, China, 2010 (in Chinese).
- Cao, G. L., Zhang, X. Y., Wang, Y. Q., and Zheng, F. C.: Estimation of emissions from
 field burning of crop straw in China, Chinese Science Bulletin, 53, 784-790, 2008.
- Emery, C., Tai, E., and Yarwood, G.: Enhanced meteorological modeling and
 performance evaluation for two Texas episodes, Report to the Texas Natural
 Resources Conservation Commission, prepared by ENVIRON, International Corp,
 Novato, CA, 2001.
- Jiangsu Provincial Development and Reform Commission (JPDRC), and Jiangsu
 Provincial Agricultural Commission (JPAC): Comprehensive utilization planning of
 crop straw in Jiangsu, Nanjing, China, 2009 (in Chinese).
- Jim énez, P., Jorba, O., Parra R. and Baldasano J. M.: Evaluation of
 MM5-EMICAT2000-CMAQ performance and sensitivity in complex terrain:
 High-resolution application to the northeastern Iberian Peninsula, Atmos. Environ., 40,
 5056-5072, doi:10.1016/j.atmosenv.2005.12.060, 2006.
- Li, X. H., Wang, S. X., Duan, L., Hao, J. M., LiC., Chen, Y. S., and Yang, L.:
 Particulate and trace gas emissions from open burning of wheat straw and corn stover
 in China, Environ. Sci.& Technol., 41, 6052-6058, doi: 10.1021/es0705137, 2007.
- National Development and Reform Commission Office (NDRC), and National
 Environmental Protection Department (NEPD): Comprehensive utilization and
 burning of crop straw in China, Beijing, China, 2014 (in Chinese).
- Qian, S. Q.: Research on the characteristics of crop straw and counter measures in
 Zhejiang province, Zhejiang A&F University, Linan, 2013 (in Chinese).
- Shanghai Municipal Development and Reform Commission (SMDRC), and Shanghai
 Municipal Agricultural Commission (SMAC): Comprehensive utilization planning of
 crop straw in Shanghai (2010-2015), Shanghai, China, 2009 (in Chinese).
- Su, J. F., Zhu B., Kang, H. Q., Wang, H. N., and Wang T. J.: Applications of pollutants
 released form crop residues at open burning in Yangtze River Delta, Environmental
 Science, 5, 1418-1424, 2012 (in Chinese).
- Wang, Y. C., Chen, F., Zhu, W., and Zen, Y. W.: Estimation and regional distribution
 of straw resources in Jiangsu province, Jiangsu Agricultural Sciences, 41: 305-310
 2013 (in Chinese).
- 289 Xu, X. J., and Wu, W. G.: Crop straw resources and their utilization in Anhui province,

- Journal of Agricultural Science and Technology, 11: 39-43, 2009 (in Chinese).
- Zhang, Y. S., Shao M., LinY., Luan S. J., Mao N., Chen W. T., and Wang M.: Emission
 inventory of carbonaceous pollutants from biomass burning in the Pearl River Delta
 Region, China, Atmos. Environ., 76, 189-199, 2013.
- Zhang, H. F., Ye, X. G., Cheng, T. T., Chen, J. M., Yang, X., Wang, L., and Zhang, R.
 Y.: A laboratory study of agricultural crop residue combustion in China: Emission factors and emission inventory, Atmos. Environ., 42, 8432-8441, 2008.
- Zhang, H. F., Ye, X. G., Cheng, T. T., Chen, J. M., Yang, X., Wang, L., and Zhang, R.
 Y.: A laboratory study of agricultural crop residue combustion in China: Emission factors and emission inventory, Atmos. Environ., 42, 8432-8441, 2008.
- Zhang, Y., Liu, P., Pun, B., and Seigneur, C.: A comprehensive performance
 evaluation of MM5-CMAQ for the Summer 1999 Southern Oxidants Study
 episode-Part I: Evaluation protocols, databases, and meteorological predictions,
 Atmos. Environ., 40, 4825–4838, 2006.
- Zhu, B., Zhu, X. L., Zhang, Y. X., Zeng, L. M., and Zhang, Y. H.: Emission factor of
- PM_{2.5} from crop straw burning, Research of Environmental Sciences, 18, 29-33, 2005
- 306 (in Chinese).