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Abstract. Atmospheric inverse modelling has become an in-
creasingly useful tool for evaluating emissions of greenhouse
gases including methane, nitrous oxide, and synthetic gases
such as hydrofluorocarbons (HFCs). Atmospheric inversions
for emissions of CO2 from fossil fuel combustion (ffCO2)
are currently being developed. The aim of this paper is to in-
vestigate potential errors and uncertainties related to the spa-
tial and temporal prior representation of emissions and mod-
elled atmospheric transport for the inversion of ffCO2 emis-
sions in the US state of California. We perform simulation
experiments based on a network of ground-based observa-
tions of CO2 concentration and radiocarbon in CO2 (a tracer
of ffCO2), combining prior (bottom-up) emission models and
transport models currently used in many atmospheric stud-
ies. The potential effect of errors in the spatial and tempo-
ral distribution of prior emission estimates is investigated in
experiments by using perturbed versions of the emission es-
timates used to create the pseudo-data. The potential effect
of transport error was investigated by using three different
atmospheric transport models for the prior and pseudo-data
simulations. We find that the magnitude of biases in poste-
rior total state emissions arising from errors in the spatial
and temporal distribution in prior emissions in these experi-
ments are 1 %–15 % of posterior total state emissions and are
generally smaller than the 2σ uncertainty in posterior emis-
sions. Transport error in these experiments introduces biases

of−10 % to+6 % into posterior total state emissions. Our re-
sults indicate that uncertainties in posterior total state ffCO2
estimates arising from the choice of prior emissions or at-
mospheric transport model are on the order of 15 % or less
for the ground-based network in California we consider. We
highlight the need for temporal variations to be included in
prior emissions and for continuing efforts to evaluate and im-
prove the representation of atmospheric transport for regional
ffCO2 inversions.

1 Introduction

The US state of California currently emits roughly 100 Tg C
of fossil fuel CO2 (ffCO2) each year (CARB, 2018), or ap-
proximately 1 % of global emissions (Boden et al., 2017).
The passing of California’s “Global Warming Solutions
Act” (AB-32) in 2006 requires that overall greenhouse gas
emissions in California be reduced to their 1990 levels
by 2020 (a 15 % reduction compared to business-as-usual
emissions), with further reductions of 40 % below 1990 lev-
els planned for 2030 and 80 % below 1990 levels by 2050.
The California Air Resources Board (CARB) is responsi-
ble for developing and maintaining a “bottom-up” inventory
of greenhouse gas emissions to verify these reduction tar-
gets. However, previous studies have shown that such inven-
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tories may have errors or incomplete knowledge of sources
(e.g. Marland et al., 1999; Andres et al., 2012). Uncertain-
ties in inventories of annual ffCO2 emissions from most de-
veloped countries (i.e. UNFCCC Annex I and Annex II)
have been estimated to be between 5 %–10 % (Andres et al.,
2012), and uncertainties can become much larger at subna-
tional levels (Hogue et al., 2016). In a recent study Fischer et
al. (2017) found that discrepancies between bottom-up grid-
ded inventories of ffCO2 emissions were 11 % of California’s
total state emissions.

Previous research has shown that inferring ffCO2 emis-
sions from atmospheric measurements, including measure-
ments of ffCO2 tracers, could provide independent emis-
sion estimates on urban to continental scales (e.g. Basu et
al., 2016; Lauvaux et al., 2016; Fischer et al., 2017; Graven
et al., 2018). Such estimates are derived from observations
through the use of an atmospheric chemical transport model
and a suitable inverse method in a process often referred to
as “inverse modelling” or an “inversion”. Distinguishing en-
hancements of CO2 due to anthropogenic or biogenic sources
can be done using measurements of radiocarbon in CO2
(114CO2), since CO2 emitted from fossil fuel combustion
is devoid of 14CO2 due to radioactive decay (Levin et al.,
2003).

Recent studies with both real atmospheric measurements
of 114CO2 and with observing system simulation experi-
ments (OSSEs) at a network of sites have shown that atmo-
spheric114CO2 can be used to estimate monthly mean Cali-
fornian ffCO2 emissions with posterior uncertainties of 5 %–
8 %, levels that are useful for the evaluation of bottom-up
ffCO2 emission estimates. Furthermore, Graven et al. (2018)
found that their posterior emission estimates were not signif-
icantly different from the California Air Resources Board’s
reported ffCO2 emissions, providing tentative validation of
California’s reported ffCO2 emissions in 2014 and 2015. In
another study using aircraft-based 114CO2 measurements,
Turnbull et al. (2011) found that ffCO2 emissions from
Sacramento County in February 2009 had a mean difference
of −17 %, ranging from −43 % to +133 % with the Vulcan
emission estimate (Gurney et al., 2009).

Although atmospheric inversions may provide a method
for estimating emissions that is useful for evaluating emis-
sion reduction policies, such as AB-32, systematic errors can
arise from the atmospheric transport and prior emission mod-
els (e.g. Nassar et al., 2014; Liu et al., 2014; Hungershoe-
fer et al., 2010; Chevallier et al., 2009, Gerbig et al., 2003).
Comparisons of CO2 simulated by different transport mod-
els have been conducted globally (e.g. Gurney et al., 2003;
Peylin et al., 2013) and on the European continental scale
(Peylin et al., 2011). The latter found that transport model
error resulted in differences in modelled ffCO2 concentra-
tions that were 2–3 times larger than using the same transport
model but different prior emissions, depending on the loca-
tion and time of year. However, comparisons of ffCO2 sim-

ulated by different high-resolution models (25 km or less) at
regional scales are still lacking.

The objective of this paper is to examine the sensitivity
of a regional inversion for Californian ffCO2 emissions to
errors in the prior emission estimate and transport model.
We build on previous work by Fischer et al. (2017) that de-
veloped an observation system simulation experiment to es-
timate the uncertainties in both California statewide ffCO2
emissions and biospheric fluxes that might be obtained us-
ing an atmospheric inversion. Their inversion was driven by
a combination of in situ tower measurements; satellite col-
umn measurements from NASA’s Orbiting Carbon Observa-
tory (OCO-2); prior flux estimates; a regional atmospheric
transport modelling system; and estimated uncertainties in
prior CO2 flux models, ffCO2 measurements using radio-
carbon, OCO-2 measurements, and atmospheric transport. In
contrast to Fischer et al. (2017) we focus only on ffCO2 emis-
sions and use a network of flask samples without incorporat-
ing satellite measurements.

Our approach is to use simulation experiments to quantify
representation and transport error using the inversion set-up
and the observation network from Graven et al. (2018) as a
test case. Specifically we test whether the inversion can es-
timate the “true” emissions that were used to produce the
pseudo-data within the uncertainties when the prior emission
estimate includes spatial and temporal representation errors
within the scope of current emission estimates (Vulcan v2.2
and EDGAR v4.2 FT2010). We further test whether the in-
version can estimate true emissions within the uncertainties
when the transport model used for the prior simulation is dif-
ferent from the transport model used to produce the pseudo-
data, emulating transport error.

2 Data and methods

The analysis approach applies a Bayesian inversion devel-
oped from previous work that combines atmospheric obser-
vations, atmospheric transport modelling, prior flux mod-
els, and an uncertainty specification (Jeong et al., 2013; Fis-
cher et al., 2017). Here, the inversion scale’s prior emis-
sion estimates for 15 regions (Fig. 1a, Table 1) termed
“air basins”, classified by the California Air Resources
Board for air-quality control (https://www.arb.ca.gov/desig/
adm/basincnty.htm, last access: 1 March 2019).

2.1 Observation network

As a test case for exploring uncertainties in ffCO2 inver-
sions, we use the observation network of nine tower sites
in California that was used to collect flask samples for
measurements of CO2 and radiocarbon in CO2 in 2014
and 2015 and simulate the same campaign periods (Fig. 1a;
Graven et al., 2018). Three month-long campaigns were con-
ducted: 1–29 May 2014, 15 October–14 November 2014,
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Table 1. The 15 air basins of California with respective emissions as estimated by Vulcan and EDGAR models. Also shown are the SD prior
uncertainty estimate (Fischer et al., 2017) and difference in magnitude between Vulcan and EDGAR for each air basin. Air basin numbers
correspond to those marked in Fig. 1.

Air Name Code Vulcan EDGAR SD Vulcan–
basin (Tg C yr−1) (Tg C yr−1) prior EDGAR

uncertainty (Tg C yr−1)
1σ

(%)

1 North Coast 1.NC 1.0 1.6 59 −0.6
2 Northeast Plateau 2.NP 0.4 1.3 96 −1.0
3 Sacramento Valley 3.SV 6.8 7.4 8 −0.7
4 Mountain counties 4.MC 2.2 2.0 51 0.1
5 Lake County 5.LC 0.1 0.2 65 −0.2
6 Lake Tahoe 6.LT 0.1 0.1 42 0
7 Great Basin valleys 7.GBV 0.2 0.6 100 −0.4
8 San Joaquin Valley 8.SJV 8.6 20.2 35 −11.6
9 North Central Coast 9.NCC 6.0 2.2 71 3.8
10 Mojave Desert 10.MD 6.1 4.3 17 1.8
11 South Central Coast 11.SCC 4.4 3.4 21 1.0
12 Salton Sea 12.SS 1.4 1.7 55 −0.3
13 San Francisco Bay 13.SFB 16.4 17.5 22 −1.2
14 South Coast 14.SC 26.9 35.5 12 −8.6
15 San Diego 15.SD 6.6 6.5 10 0.1

Total California 89.6 104.7 8 −17.8

Figure 1. (a) The location of the nine tower sites in the observation network (marked with black circles): Trinidad Head (THD), Sutter
Buttes (STB), Walnut Grove (WGC), Sutro Tower (STR), Sandia – Livermore (LVR), Victorville (VTR), San Bernardino (SBC), Cal-
tech (CIT), and Scripps Institute of Oceanography (SIO). The 15 air basins are marked with black lines, with region 16 representing emis-
sions from outside California within the model domain. Underlaid is a map of annual mean ffCO2 emissions from the Vulcan v2.2 emission
map within the United States and EDGAR v4.2 (FT2010) for emission from outside the US. (b) Vulcan diurnal emissions normalized to
campaign-averaged emissions for the three campaigns; (c) scaled EDGAR emissions subtracted from Vulcan emissions map, where EDGAR
has been scaled to have the same air basin total emissions. The inset shows an enlarged view of southwestern California. (d) Average monthly
emissions normalized to Vulcan annual emissions. Shown in both (b) and (d) are EDGAR annual invariant emissions (grey).
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and 26 January–15 February 2015, with flasks sampled ap-
proximately every 2–3 days at 22:30 GMT (14:30 LST – lo-
cal standard time). We replicate the sample availability in
Graven et al. (2018), including the reduction in observation
sites used in January–February 2015. The time of observa-
tion chosen as the planetary boundary layer is usually deepest
in the afternoon so that errors in the modelled boundary layer
concentration are considered smaller (Jeong et al., 2013), and
afternoon concentrations are more representative of large re-
gions.

The observed ffCO2 concentration at a given site can be
calculated by (Levin et al., 2003; Turnbull et al., 2009)

ffCO2 = Cobs

(
1bg−1obs

1bg−1ff

)
+β, (1)

where Cobs is the total observed CO2 concentration at a given
site. 1 refers to 114C, the ratio of 14C /C reported in part
per thousand deviation from a standard ratio, including cor-
rections for mass-dependent isotopic fractionation and sam-
ple age (Stuiver and Polach, 1977). 1bg, 1obs, and 1ff are
the 114CO2 of background, observed, and fossil fuel CO2,
respectively, where 1ff is −1000 ‰, since ffCO2 is devoid
of 14CO2. The term β is a correction for the effect of other
influences on 114CO2, principally heterotrophic respiration
(Turnbull et al., 2009). In the experiments we present here,
we do not explicitly calculate 114CO2 or the other terms
in Eq. (1), rather we simulate ffCO2 and specify its un-
certainty to be the same as the uncertainty in radiocarbon-
based estimates of ffCO2. Following Fischer et al. (2017),
total observational uncertainty for ffCO2 was assumed to be
1.5 ppm (1σ ), encapsulating measurement uncertainty, back-
ground uncertainty, and uncertainty in β. This is consistent
with Graven et al. (2018), who estimated total uncertainty in
ffCO2 for individual samples of 1.0 to 1.9 ppm.

2.2 Prior emission estimates and prior uncertainty

The two prior emission estimates used here are gridded prod-
ucts produced by EDGAR (version FT2010; EDGAR, 2011)
for the year 2008 and Vulcan (version 2.2) for 2002 (Gur-
ney et al., 2009). EDGAR is produced at an annual resolu-
tion, whilst Vulcan has an hourly resolution. The two models
use different emission data and different methods to spatially
allocate emissions with annually averaged statewide emis-
sions differing by 17.8 Tg C (∼ 19 % of mean emissions) and
up to 11.6 Tg C for individual air basins in California (Ta-
ble 1). Although our campaigns took place in 2014–2015, we
use emission estimates from Vulcan for the year 2002 and
EDGAR for 2008, as emission estimates are not available
from Vulcan and EDGAR for 2014–2015. The difference in
total state emissions between 2002, 2008, and 2014–2015
is 3–6 Tg C (CARB, 2018), much less than the EDGAR–
Vulcan difference of 17.8 Tg C.

We estimate prior uncertainty in the same way as in
Fischer et al. (2017), using a comparison of four grid-

ded emission estimates in California (Vulcan version 2.2,
EDGAR FT2010, ODIAC version 2013, and FFDAS ver-
sion 2) as well as a comparison across an ensemble of
emission estimates for one model (FFDAS version 2; Asefi-
Najafabady et al., 2014). Prior uncertainty is specified for the
whole air basin. The relative 1σ standard deviation across the
four inventories is between 8 % and 100 % for individual air
basins (Table 1), and this is what we use to specify the 1σ
uncertainty in the prior emissions from each air basin. This
estimate of prior uncertainty is referred to as “SD prior un-
certainty”. We also conduct tests with an alternative prior un-
certainty of 70 % for each air basin (referred to as “70 % prior
uncertainty”). This was done to test the sensitivity of our re-
sults to the choice of prior uncertainty. Emissions occurring
outside California were assumed to have an uncertainty of
100 % for both cases.

2.3 Atmospheric transport models

We simulate ffCO2 using three different atmospheric trans-
port models outlined in Table 2. These models are commonly
used in regional atmospheric transport modelling and green-
house gas inversion studies but to date have not been com-
pared in California. Two of the transport models use differ-
ent versions and parameterizations of the Weather Research
and Forecast (WRF) model combined with the stochastic
time-inverted Lagrangian transport (STILT) model. The third
transport model uses meteorology from the UK Met Of-
fice’s Unified Model (UM) combined with the Numerical
Atmospheric-dispersion Modelling Environment (NAME).

The first WRF-STILT model is run at Lawrence Berkeley
National Laboratory (WS-LBL; Fischer et al., 2017; Jeong
et al., 2016; Bagley et al., 2017) and uses WRF version 3.5.1
(Lin et al., 2003; Nehrkorn et al., 2010). Estimates for the
planetary boundary layer height (PBLH) are based on the
Mellor–Yamada–Nakanishi–Niino version 2 (MYNN2) pa-
rameterization (Nakanishi and Niino, 2004, 2006). As in
Jeong et al. (2016), Fischer et al. (2017) and Bagley et
al. (2017), two land surface models (LSMs) are used depend-
ing on the location of the observation site. A five-layer ther-
mal diffusion land surface model is used in the Central Valley
for the May campaign, whilst the Noah LSM (Chen and Dud-
hia, 2001) is used in the remaining campaigns and regions of
California. We implement multiple nested domains, with the
outermost domain spanning 16–59◦ N and 154–137◦W with
a 36 km resolution, a second domain of 12 km resolution over
western North America, and a third domain of 4 km resolu-
tion over California. Two urban domains of 1.3 km resolution
are used in the San Francisco Bay area and the metropolitan
area of Los Angeles. Footprints describing the sensitivity of
an observation to surface emissions are calculated by simu-
lating 500 model particles and tracking them backward for
7 days. The footprint of a given site and observation time is
produced hourly for particles below 0.5 times the PBLH.
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Table 2. Comparison of the three atmospheric transport models used in this study.

Transport Meteorology Domain Model resolution References

model Horizontal Vertical Temporal
(n levels,

max height)

WS-LBL WRF (v3.5.1) North America 1, 4, 12, 36 km 50, 16 km 1 h Lin et al. (2003), Nehrkorn et al. (2010)
WS-CTL WRF (v2.1.2) North America 0.1, 1◦ 29, 25 km 1 h https://www.esrl.noaa.gov/gmd...

(last access: 1 March 2019)
UM-NAME Unified model Global 17, 25 km 59, 29 km 3 h Jones et al. (2007)

The second WRF-STILT model is from the
CarbonTracker-Lagrange (WS-CTL), an effort led by
the NOAA to produce standard footprints for green-
house gas observation sites in North America (https:
//www.esrl.noaa.gov/gmd/ccgg/carbontracker-lagrange, last
access: 1 March 2019). WS-CTL uses WRF version 2.1.2
and the Yonsei University (YSU; Hong et al., 2006) PBLH
scheme coupled with the Noah land surface model and
the MM5 (fifth-generation Pennsylvania State University
National Center for Atmospheric Research mesoscale
model; Grell et al., 1994) similarity theory-based surface
layer scheme. As with WS-LBL, simulations are run for
7 days, and particles below 0.5 times the PBLH are used
in the calculation of the footprint. Footprints have a spatial
resolution of 0.1◦ for the first 24 h and 1◦ for the remaining
6 days. Footprints are disaggregated hourly for the first
24 h and then aggregated for the remaining 6 days. This
approach captures the influence of temporally varying
emissions that can be significant in the first 24 h but we
assume to be negligible for the period longer than 24 h back
in time. The 0.1◦ spatial resolution domain is 31◦ longitude
by 21◦ latitude, with the domain centred on the release
location. The 1◦ resolution has a domain of 170 to 50◦ E
longitude and 10 to 80◦ N latitude. The WRF domain covers
most of continental North America (Fig. 1 in Nehrkorn et
al., 2010) with 30 km resolution and has a finer nest with
10 km spatial resolution over the continental US. WS-CTL
simulates footprints for 500 particles released over a 2 h
period between 21:00 and 23:00 GMT (Greenwich Mean
Time; 13:00 and 15:00 PST – Pacific Standard Time). An
exception is at Sutro Tower (STR), where footprints are only
available for an instantaneous release of 500 particles at
22:10 GMT. Walnut Grove (WGC) footprints are available
only for a release height of 30 m a.g.l., which is lower than
the sampling height of 91 m a.g.l. used in the observation
campaign (Graven et al., 2018) and used in the other two
transport models. Footprints were available for 2014 but not
for 2015, so the WS-CTL model is used for simulations of
the May and October–November 2014 campaigns but not
for the January–February 2015 campaign.

The third model, UM-NAME, is the UK Met Office’s
NAME model, version 3.6.5 (Jones et al., 2007), driven by

meteorology from the Met Office’s global numerical weather
prediction model, the UM (Cullen, 1993). The UM has a hor-
izontal resolution of ∼ 25 km up to July 2014, covering the
period of the May 2014 campaign. The horizontal resolution
was then increased to ∼ 17 km covering both the October–
November 2014 and January–February 2015 campaigns. The
temporal resolution of the UM meteorology is every 3 h for
all campaigns. Following a similar approach to the WRF-
STILT models, 500 particles were released instantaneously
at 22:30 GMT and were simulated for hourly disaggregated
footprints for the first 24 h and aggregated for the remaining
6 days. The footprints are calculated for the same horizontal
resolution as the UM meteorology (25 or 17 km), where the
particles present in the layer between 0 and 100 m a.g.l. are
used to calculate the footprint. The computational domain
covers 175.0 to 75◦W longitude and 6.0 to 74◦ N latitude.

Simulated ffCO2 signals (the enhancement of CO2 con-
centration due to ffCO2 emissions within the model do-
main) are calculated by taking the product of the footprint
and an emission estimate, both with the spatial resolution of
the footprint at the native footprint resolution. The result-
ing concentration is summed for individual air basins. Fol-
lowing previous work, we assume a transport model uncer-
tainty of 0.5 times the mean monthly signal in the pseudo-
observations at each site (referred to as the “uncertainty pa-
rameter”; Jeong et al., 2013; Fischer et al., 2017). We also
test the effect of changing the uncertainty parameter to 0.3
and 0.8. Ten ensembles were run for UM-NAME to test the
effect of random errors on the calculation of the footprint.
The RMSE was within 10 % of the mean monthly signal for
most observation sites. This is similar to the findings of Jeong
et al. (2012a), which the transport model uncertainty is based
on. Two observation sites (Trinidad Head – THD, and Vic-
torville – VTR) had a slightly higher RMSE, but both were
within 20 % of the mean monthly signal.

2.4 Inversion method

Our inversion method is a Bayesian synthesis inversion to
scale emissions in separate regions of California. We follow
the same approach as Fischer et al. (2017) to solve for a vec-
tor of scaling factors, λ, for 15 air basins and a 16th region
representing the area outside of California. Unlike Fischer et
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al. (2017), we do not split the San Joaquin Valley into two
regions. The inversion uses the set of observations, c, and the
matrix of predicted ffCO2 signals from each air basin, K, to
optimize the cost function J :

Jλ =(c−Kλ)TR−1(c−Kλ)+
(
λ−λprior

)T
Q−1
λ

(
λ−λprior

)
. (2)

λprior is the prior estimate of the scaling factors (a vector of
those with length equal to the number of regions), and R and
Qλ are the error covariance matrices relating to observational
and model transport errors and prior emission estimate er-
rors respectively. The non-diagonal elements of R and Qλ
are zero, assuming uncorrelated errors in the prior emis-
sions in each air basin and in the model and observations.
This assumption for R is robust, as we only generate one
pseudo-observation every 2–3 days. Included in R are obser-
vational errors and transport model errors, added in quadra-
ture. Therefore if the average signal at an observation site
is very small, then observational uncertainty (1.5 ppm) will
dominate R. Minimizing J using the standard least-squares
formulation under the assumption of Gaussian-distributed
uncertainties gives the posterior estimate for λ as follows:

λpost =
(

KTR−1K+Q−1
λ

)−1 (
KTR−1c+Q−1

λ λprior

)
, (3)

with the posterior error covariance given as

Vpost =
(

KTR−1K+Q−1
λ

)−1
. (4)

λpost and Vpost are computed separately for each of the three
campaigns outlined in Sect. 2.1. Posterior emission estimates
are the product of the λ post-emission and prior emission es-
timate from each air basin. Total state emissions are then cal-
culated by summing the emissions in each air basin. Uncer-
tainty in the statewide Californian posterior flux, including
error correlations, is calculated as

σ 2
E =EpriorVpostE

T
prior, (5)

where Eprior is a vector of ffCO2 emissions from each air
basin.

2.5 Simulation experiments

We conduct a series of experiments to test the performance of
the inversion in estimating the true emissions when the emis-
sion estimates or transport models used to produce pseudo-
observations are different to those used to produce the prior
simulations. The tests explore the effect differences in the
magnitude, spatial distribution, and temporal variation of
prior emissions have on posterior emissions. We also exam-
ine the effect of using different transport models to simulate
pseudo-observations and to simulate prior concentrations.

As part of these experiments, we evaluate the impact of
outlier removal on the simulation experiments. Outlier re-
moval is generally used in atmospheric inversions when there
is an issue with the ability of the model to simulate a par-
ticular observation. We use the outlier removal method out-
lined in Graven et al. (2018) and compare it with inversion
results where no outliers are removed. In this outlier removal
method, an observation (here, a pseudo-observation) is des-
ignated as an outlier if (1) the absolute difference between the
ffCO2 signals in the observation and the prior simulation is
greater than the average of the observed and simulated ffCO2
and (2) either the observed or simulated ffCO2 is greater than
5 ppm.

2.5.1 Difference in magnitude of emissions

First we test how well the inversion estimates the true emis-
sions if the prior emissions have a systematic error in magni-
tude but have no error in the spatial or temporal distribution
of emission and no error in atmospheric transport. In this ex-
periment, the prior emission estimate is given by EDGAR,
and the true ffCO2 signals were generated by scaling the
EDGAR emissions in each air basin to match the annually
averaged Vulcan emissions in that air basin. These differ-
ences range from 0.1 Tg C in San Diego to 11.6 Tg C in the
San Joaquin Valley (Table 1). The EDGAR total state emis-
sions are 12 % higher than the Vulcan emissions, so the bias
in the prior estimate in the total state ffCO2 emissions is
+12 %. The experiment is run for all the transport models
with no temporal variation in emissions. This experiment as-
sesses the performance of the inversion and the strength of
the data constraint provided by the observation network in
the simplest case, where the only errors in prior regional flux
estimates are biases in their magnitudes. Prior uncertainty is
fixed per air basin for all experiments.

2.5.2 Difference in spatial distribution of emissions

To investigate the bias in the posterior emission estimate that
could result from errors in the spatial distribution of prior
emissions within each air basin, we now use annually aver-
aged Vulcan emissions as the true emissions and EDGAR
emissions scaled in each air basin to match the annually av-
eraged Vulcan emissions in that region as the prior estimate
of emissions. In this experiment, the prior estimate of the
total emissions in each air basin is unbiased, and we assess
how differences in the spatial distribution of emissions be-
tween Vulcan and EDGAR in each air basin may lead to a
bias in the posterior emission estimate. As shown in Fig. 1c,
the most significant discrepancies in spatial distribution are
in the major urban areas of Los Angeles and the San Fran-
cisco Bay. This experiment is also run for all the transport
models using the same transport model for both the true and
prior simulation and including no temporal variation in emis-
sions.
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2.5.3 Difference in temporal variation of emissions

To assess the impact of temporally varying emissions on the
inversion result, we generated true ffCO2 signals with tempo-
rally invariant annually averaged Vulcan emissions and prior
ffCO2 signals with temporally varying Vulcan emissions. It
may seem counter-intuitive to choose the simpler scenario
(i.e. time invariant) as true emissions, however this was dic-
tated by the simulations available; we did not have simulated
ffCO2 concentrations from each air basin for temporally in-
variant emissions coupled with WS-LBL footprints, only the
total ffCO2 concentrations. We do not expect that switching
the prior and true emissions would significantly affect our
conclusions. We scaled the temporally varying Vulcan emis-
sions in each air basin so that the total ffCO2 emissions were
the same magnitude as the total ffCO2 emissions in the an-
nually averaged Vulcan emissions for each field campaign.
As shown in Fig. 1d, scaling was less than 10 % of annual
mean emissions, with campaigns occurring during maxima
and minima of the annual emission cycle. Here the prior es-
timate is again unbiased, and we assess how differences in
the diurnal variation of emissions (see Fig. 1b) may lead to
a bias in the posterior emission estimate. This experiment is
also run for all the transport models using the same transport
model for both the true and prior simulation. Prior uncer-
tainty is specified relative to prior emissions, hence it differs
in absolute magnitude for monthly differences in emissions.
Over the state this variation is ∼ 15 % when comparing May
or October–November to January–February (see Fig. 1d).

2.5.4 Difference in atmospheric transport

To test the effect of differences in the simulated atmospheric
transport of emissions, the same emission estimate (annu-
ally averaged Vulcan) is coupled with two different transport
models to generate prior and true ffCO2 signals. This exper-
iment investigates potential effects of transport errors within
the variations in transport across the three models we use.
WS-LBL is considered the true atmospheric transport, while
UM-NAME and WS-CTL are used for the prior simulation in
individual experiments. Here the prior estimate is again un-
biased, and we assess how differences in the modelled atmo-
spheric transport may lead to a bias in the posterior emission
estimate.

3 Results

3.1 Simulated ffCO2 observations

Before presenting the results of the inversion experiments,
we first examine simulated ffCO2 contributions in different
regions at each of the nine observation sites. This allows us
to quantify which air basins have the largest influence on
simulated concentrations at observation sites and better in-
terpret the results of the experiments. Figure 2 shows simu-

lated concentrations at observation sites resulting from emis-
sions in the six highest-emitting air basins in California and
from outside California. The highest signals (> 10 ppm) are
simulated at urban sites (e.g. CIT – Caltech – and SBC –
San Bernardino) for emissions from urban air basins (e.g.
South Coast, 14.SC). The nine air basins not shown in Fig. 2
contributed signals below 0.1 ppm due to the small size or
low emissions of the air basin (e.g. Lake County and Lake
Tahoe) or distance from the observation network (e.g. North-
east Plateau, Great Basin valleys, and Salton Sea). In gen-
eral, the northern sites (THD to SLT in Fig. 2) are sensitive
to northern air basins (Sacramento and San Joaquin valleys
and SF Bay), and the southern sites (VTR to Scripps Insti-
tute of Oceanography – SIO) are sensitive to emissions from
southern air basins (Mojave Desert, South Coast, and San
Diego). All transport models show that the observation sites
are sensitive to more air basins in the October–November
and January–February campaigns compared to the May cam-
paign (Fig. 2). Signals simulated by WS-CTL come from
fewer air basins than UM-NAME or WS-LBL, particularly
in May.

In our simulation experiments, signals from outside Cal-
ifornia are generally small compared to the total signal for
most sites (< 10 % on average), although they can average
from 20 %–50 % for Sutter Buttes (STB), STR, SLT and SIO
for individual campaigns. For THD, located near the northern
border of the state, a larger influence from outside California
is found to be 10 %–90 %, due to a combination of relatively
low local emissions and northerly winds transporting emis-
sions from the northwestern United States and Canada.

3.1.1 Difference in magnitude of emissions

Figure 3a shows the statewide inversion result for the exper-
iment testing the effect of a bias in magnitude in regional
emissions in the prior simulation. In this figure, and in similar
figures that follow for the other experiments, prior estimates
are represented by black markers and posterior estimates are
represented by coloured markers, with the 2σ uncertainty on
the x axis and the bias relative to the truth on the y axis. The
diagonal lines show 1 : 1 and 1 : −1 lines so that a marker
lying to the right of these lines indicates the posterior bias
is smaller than the posterior uncertainty, whereas a marker to
the left of these lines indicates the posterior bias is larger than
the posterior uncertainty. Filled markers show results using
SD prior uncertainty, and empty markers show results using
70 % prior uncertainty. Prior and posterior uncertainties are
expressed as 2σ .

For all transport models and campaigns, the inversion is
able to reduce prior bias and scale posterior emissions to-
wards the truth. The +12 % bias in the statewide emissions
in the prior was reduced to a posterior bias of between 0 %
and +9 % (mean bias is +5 %) for SD prior uncertainty. Us-
ing 70 % prior uncertainty reduced prior bias to between −3
and +6 (mean is +1 %). Statewide posterior uncertainty was
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Figure 2. The average ffCO2 signal (ppm) simulated by each atmospheric transport model as a result of emissions from the six largest
emitting air basins and one region outside California (denoted as 16.out) at each observation site over the three measurement campaigns.
Signals were simulated based on the EDGAR emission map.

10 %–14 % (mean 12 %) and 14 %–32 % (mean is 21 %) for
the SD and 70 % prior uncertainty respectively, where un-
certainty is expressed as 2σ , lower than the statewide prior
uncertainties of 16 % for the SD and 69 % for 70 % prior
uncertainty. There were no outliers identified in this exper-
iment.

To determine what is driving the statewide results, we ex-
amine the individual air basin inversion results. Figure 3b
shows the inversion results for the six main emission regions
of California, with the San Joaquin Valley (8.SJV) and South
Coast (14.SC) having the largest prior biases. For the San
Joaquin Valley (8.SJV) and South Coast (14.SC) regions with
the largest prior bias, the biases are reduced in most cases;
however, only the posterior estimates from the 70 % prior un-
certainty experiment overlap the true emissions. The poste-
rior estimates for SD prior uncertainty do not overlap with
the truth, indicating that the 2σ prior uncertainty of 24 %
in South Coast (14.SC), for example, restricts the inversion
from eliminating biases of 30 % in these regions (Table 1),
given the observations available. The nine air basins omitted
from Fig. 3b are generally not being scaled by the inversion
due to a lack of constraint from the observation network, low
emissions, or small prior uncertainty (Fig. S1 in the Supple-
ment).

The bias in the posterior estimate of statewide emissions
is larger in May than in October–November and January–
February (Fig. 3a, triangles). This poorer performance of the
inversion in May can be largely attributed to the San Joaquin
Valley (8.SJV), where the posterior emissions are largely un-
changed from the prior in May. There is no observation site

in the San Joaquin Valley, and as shown in Fig. 2, emis-
sions in the San Joaquin Valley do not reach observation sites
in neighbouring air basins in May, but they do reach these
sites in October–November and January–February. In con-
trast, the South Coast (14.SC) influences the two observation
sites, CIT and SBC, located in the region as well as several
other sites (Fig. 2). Both CIT and SBC show that prior signals
are too high compared to true signals for all campaigns and
models (Fig. 3c), reflecting the positive bias in prior emis-
sions in the South Coast region, which is reduced in the pos-
terior. Changing the uncertainty parameter from 0.5 to 0.3 or
0.8 had the result of decreasing the ability of the inversion
to scale statewide emissions towards true emissions by 1 %–
4 %, with an increase in posterior uncertainty by a similar
percentage.

3.1.2 Difference in spatial distribution of emissions

The statewide inversion results for the experiment, includ-
ing errors in the spatial distribution of emissions, are shown
in Fig. 4a. In this case the magnitude of prior emissions in
each air basin is equal to true emissions, and we aim to
quantify how errors in the spatial distribution of emissions
(EDGAR as prior and Vulcan as true distribution) lead to bias
in posterior emission estimates. Posterior emissions are nega-
tively biased, apart from WS-LBL in January–February. Pos-
terior bias was between−10 % and+1 % (mean is−4 %) for
SD prior uncertainty and between −10 % and +4 % (mean
is −4 %) for 70 % prior uncertainty across transport mod-
els and campaigns. As might be expected from the experi-
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Figure 3. (a) Statewide and (b) individual air basin inversion results
for an error in the magnitude of prior emissions. Prior emissions
are given by EDGAR, and true emissions are given by EDGAR
scaled to Vulcan total in each air basin. Air basin results are
shown for Sacramento Valley (3.SV), San Francisco Bay (13.SFB),
San Joaquin Valley (8.SJV), Mojave Desert (10.MD), South
Coast (14.SC), and San Diego (15.SD). Prior results are presented
by black markers, and posterior results are represented by coloured
markers. Filled markers show results using SD prior uncertainty,
and empty markers show results using 70 % prior uncertainty. The
prior bias in each air basin is given by the dashed lines in (b), with
SD prior uncertainty (dark grey) and 70 % prior uncertainty (light
grey). Prior and posterior uncertainties are expressed as 2σ . The
bottom plot (c) shows the mean signal error in simulated average
ffCO2 concentration. Mean signal error is calculated by subtracting
the average true signal from the average prior signal. Error lines are
drawn between the maximum and minimum signal bias per cam-
paign.

mental set-up with an unbiased prior, posterior emission es-
timates generated using SD prior uncertainty have a smaller
mean bias and smaller range of posterior estimates compared
to those generated using 70 % prior uncertainty. Statewide
uncertainty was reduced from 16 % to 10 %–14 % (mean is
12 %) for SD prior uncertainty and from 58 % to 14 %–21 %
(mean is 18 %) for 70 % air basin prior uncertainty. Biases
induced are smaller than the 2σ posterior uncertainty across
all transport models, campaigns, and choices of prior uncer-
tainty.

Figure 4. (a) Statewide and (b) individual air basin inversion re-
sults for an error in the spatial distribution of prior emissions. Prior
emissions are given by EDGAR scaled to Vulcan emission totals in
each air basin, and true emissions are given by Vulcan; (c) shows
the mean signal error in simulated average ffCO2 concentration.

Posterior emission results in the two largest emitting air
basins (the San Francisco Bay and South Coast) are also neg-
atively biased in most cases (Fig. 4b). In several cases, poste-
rior biases are larger than the associated posterior uncertain-
ties, for example in the South Coast for WS-LBL in all cases.
Considering Fig. 4c, prior ffCO2 signals are being overesti-
mated more often than underestimated, particularly for the
relatively more urban sites CIT and SLT.

Since the prior emissions from EDGAR have been scaled
to have the same total as Vulcan (the true emissions) in each
region, the pattern of more negative posterior emissions is
only caused by the subregional spatial distribution of emis-
sions. Comparing Vulcan and EDGAR native grid cell emis-
sions in Figs. 1c and S2, EDGAR tends to have greater emis-
sions in high-emission grid cells. In other words, the emis-
sions are more concentrated in EDGAR and more dispersed
in Vulcan. This pattern explains the negative bias in posterior
emissions for the urban South Coast air basin. The opposite
effect does not appear to hold for rural observation sites and
regions, perhaps because rural emissions are already rather
dispersed and have less of an influence on the observations.
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Figure 5. (a) Statewide and (b) individual air basin inversion results
for an error in the temporal distribution of prior emissions. Prior
emissions are given by temporally varying Vulcan and true emis-
sions are given by annually averaged Vulcan. Prior emissions were
scaled to be equal in magnitude to annually averaged Vulcan emis-
sions; (c) shows the mean signal error in simulated average ffCO2
concentration.

In these experiments, 0 %–3 % of observations were iden-
tified as outliers, but excluding outliers did not change the
statewide result significantly (< 1 % change in mean bias).

3.1.3 Difference in temporal variation of emissions

Figure 5a shows the statewide inversion result for the exper-
iment where the emissions are Vulcan temporally varying in
the prior simulation (see Fig. 1b) but are Vulcan temporally
invariant in the true simulation. Posterior bias was between
−13 % and +5 % (mean is −3 %) for SD uncertainty and
between −15 % and +6 % (mean is −3 %) for 70 % prior
uncertainty. Posterior uncertainty was 11 %–15 % (mean is
12 %) for SD prior uncertainty and was 15 %–24 % (mean is
18 %) in posterior emissions for SD (70 %) prior uncertainty.
Outlier removal resulted in 0 %–1 % (mean is 0 %) of data
points being removed, which did not change the statewide
results.

The posterior estimate for WS-LBL in May with SD prior
uncertainty has a significant negative bias of−13 %, approx-

imately the same magnitude as the associated 2σ posterior
uncertainty. As can be seen by the air basin results of Fig. 5b,
the statewide bias for WS-LBL in May is being driven by a
large regional bias in the South Coast but also in the San
Francisco Bay and San Diego air basins. These regional bi-
ases are larger than their associated posterior uncertainties.
Figure 5c shows that the prior ffCO2 signals at CIT av-
erage ∼ 7 ppm too high in May for WS-LBL. In contrast,
prior ffCO2 signals at CIT and SBC are too low in October–
November for WS-CTL, leading to a high bias in posterior
emissions from the South Coast. San Diego also exhibited
both high and low biases in the posterior emissions. Over-
all, temporal variations in emissions led to posterior biases
generally within ±6 % but as large as 15 %; however, a con-
sistent pattern in the posterior bias due to the temporal repre-
sentation in emissions was not found.

3.1.4 Difference in atmospheric transport

The statewide inversion results for the experiment where the
atmospheric transport in the prior simulation uses WS-CTL
or UM-NAME but the atmospheric transport in the true sim-
ulation uses WS-LBL are shown in Fig. 6a. Outliers were
identified in these experiments, and we present results for in-
versions including all data and for inversions where outliers
were removed.

When all data are included, differences in the atmospheric
transport model introduce a bias in statewide posterior emis-
sions of between −42 % and −3 % (mean is −12 %) for
SD prior uncertainty and between −32 % and 0 % (mean is
−15 %) for 70 % prior uncertainty. For one case, using WS-
CTL to generate prior signals in October–November, the bias
in the posterior emission estimate was larger than the 2σ un-
certainty for both the SD and 70 % prior uncertainty. Chang-
ing the uncertainty parameter from 0.5 to 0.3 or 0.8 resulted
in posterior emissions remaining closer to true emissions by
0 %–4 % and increasing the posterior uncertainty by 1 %–
5 %.

Removing outliers significantly improved the inversion re-
sults (Fig. 6b); the mean bias was between −10 % and 0 %
(mean is −3 %) for SD prior uncertainty and between −9 %
and +6 % (mean is −5 %) for 70 % prior uncertainty when
outliers were removed. Posterior uncertainty was 9 %–15 %
(mean is 12 %) and 15 %–24 % (mean is 18 %) for the SD
and 70 % prior uncertainty respectively, with all posterior es-
timates within 2σ of the true statewide emissions. The reduc-
tion in posterior bias when outliers are removed is mostly due
to the removal of a few large positive outliers in prior simu-
lated signals by WS-CTL (Fig. 7). Figure 7 illustrates the
time series of simulated ffCO2 in each model, with outliers
shown as an x. Outliers removed were between 6.9 % and
20.6 % of all observations (mean is 10.5 %). This is similar to
the fraction of outliers identified in Graven et al. (2018) using
the same method with real data (∼ 8 %). It is also similar to
that of Jeong et al. (2012a, b; 0 %–27 %) for monthly inver-
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Figure 6. Inversion results for the experiment where the atmospheric transport in the prior simulation uses WS-CTL or UM-NAME, but the
atmospheric transport in the true simulation uses WS-LBL. Posterior statewide emissions (a, b), individual air basin emissions (c, d), and
percentage error in simulated average ffCO2 concentration (e, f) are shown with no outlier removal (a, c, e) and outliers removed (b, d, f).
Prior and true emissions are given by annually averaged Vulcan emissions.

sions of CH4 in California using a different method of iden-
tifying outliers where model-data residuals are larger than
3σ of model-data uncertainty. This is an important result for
the atmospheric inversion community working at such spatial
scales, as it highlights the benefits of removing outliers.

While the statewide posterior emission estimate is sig-
nificantly biased in only one case (WS-CTL in October–
November) when outliers are not removed, the posterior
emission estimates for the main emission regions are signif-
icantly biased in several cases (Fig. 6c). The largest bias is
in the South Coast region, where posterior estimates are bi-
ased by more than−75 % (with 1 % posterior uncertainty) in
October–November when using WS-CTL to generate prior
signals. This large posterior emission bias in the South Coast
and the statewide total can be attributed to overestimates
in the prior ffCO2 signal of more than 6 ppm on average
at CIT and SBC and more than 2 ppm at WGC and STR
(Fig. 6e) due to some high outliers in the WS-CTL simu-
lations (Fig. 7). Posterior estimates for San Francisco Bay,
South Coast, and San Diego were also significantly biased
in some other cases, particularly for 70 % prior uncertainty
but also for SD prior uncertainty. This indicates that regional
biases caused by differences in atmospheric transport appear
to compensate over the statewide scale and that results for
individual regions are less robust than aggregate results for
the statewide network. It also suggests that an observation
network with multiple sites in a variety of settings is bene-

ficial for reducing the impact of uncertainty in atmospheric
transport.

To investigate the differences in simulated ffCO2 and to
assess whether these could be attributed to specific aspects
of modelled meteorology, we compared the PBLH and wind
speed in WS-LBL and the UM for five of the nine obser-
vation sites where the PBLH output was available. PBLH
was not available for WS-CTL. Estimates for the PBLH
in WS-LBL are based on the MYNN2 parameterization
scheme that estimates the PBLH using localized turbulence
kinetic-energy closure parameterization (Nakanishi and Ni-
ino, 2004, 2006). Estimates of the PBLH are calculated in-
ternally within the UM. The PBLH and wind speed were av-
eraged over 6 h from 12:00 to 18:00 PST to compare the af-
ternoon means (Seibert et al., 2000). We found no consistent
correlation between differences in the PBLH or wind speed
and differences in simulated ffCO2 between models across
sites and campaigns (Fig. S3). Absolute values of wind di-
rection and ffCO2 did not show consistent correlations ei-
ther. The lack of correlation suggests that we cannot attribute
differences in simulated ffCO2 to any single meteorological
variable estimated at any individual station in the transport
models.

We also examined if differences in simulated ffCO2 sig-
nals across transport models could be explained by the differ-
ences in spatial resolution of the models. WS-CTL footprints
were re-gridded from a 0.1◦ native grid to the coarser UM-

www.atmos-chem-phys.net/19/2991/2019/ Atmos. Chem. Phys., 19, 2991–3006, 2019



3002 K. Brophy et al.: Characterizing uncertainties in atmospheric inversions of fossil fuel CO2 emissions

Figure 7. All simulated ffCO2 from May (first column), October–November (second column), and January–February (third column). Sim-
ulated ffCO2 values using WS-LBL are shown in black markers (triangles for May, squares for October–November, and diamonds for
January–February), whilst prior WS-CTL signals are shown in blue and UM-NAME signals are shown in magenta. All simulated signals
are generated using the Vulcan gridded emission map. The fourth column shows true vs. prior ffCO2 signals, with colours corresponding to
models and markers corresponding to campaigns. Outliers omitted from the standard inversion are shown with an x.
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NAME grid of 17 or 25 km and were then used to simulate
ffCO2. For this comparison, we simulated ffCO2 every day
over the campaign period. We found no consistent reduction
in mean ffCO2 bias between sites over the two campaigns,
however there is a reduction in spread of bias at four sites
for both campaigns (WGC, SLT, SBC, and SIO), suggesting
that the model resolution could potentially have an impact
for these sites. In general however, we cannot say that trans-
port model resolution error in atmospheric transport is a key
driver of ffCO2 signal bias across observation sites (Fig. S4).

4 Discussion

Our results show that atmospheric inversions can reduce a
hypothetical bias in the magnitude of prior ffCO2 emission
estimates for the US state of California using the ground-
based observation network from Graven et al. (2018), under
the idealized assumptions of perfect atmospheric transport
and perfect spatio-temporal distribution of emission in the
prior estimate. By exploring differences in model transport
and spatio-temporal distribution of prior emissions, we found
that biases of magnitudes of 1 %–15 % in monthly posterior
estimates of statewide emissions can result from differences
in the temporal variation, spatial distribution, and modelled
transport of the prior simulation. However, these biases were
less than the 2σ posterior uncertainty in total state emissions
when outliers were removed. In some cases, the biases in
posterior emissions for individual air basins were significant
compared to the posterior uncertainties, suggesting that esti-
mates for individual regions are less reliable than the aggre-
gate estimates of the statewide total.

The largest bias in statewide posterior estimates was found
to be caused by errors in the temporal variation in emis-
sions. This highlights the necessity for temporally varying
emissions to be estimated and included in prior emission es-
timates, particularly for urban regions. Similar results have
been found in other regions including Indianapolis (Turnbull
et al., 2015) and Europe (Peylin et al., 2011) and, more gen-
erally, for high-emission regions around the globe (Zhang et
al., 2016). Although the afternoon sampling is near to the
diurnal maximum in emissions in California (Fig. 1c, Gur-
ney et al., 2009), which might be expected to lead to higher
simulated ffCO2 in temporally varying vs. temporally invari-
ant emissions, we did not find consistently positive biases in
ffCO2 but rather both positive and negative biases. This sug-
gests that the overall impact of temporally varying emissions
depends on the model transport and the characteristics of the
observation site. Furthermore, uncertainties in the temporal
distribution of emissions at an hourly resolution have not yet
been fully quantified (Nassar et al., 2013).

Errors in model transport, as represented in our experi-
ments by using different transport models, were shown to
bias posterior ffCO2 emissions by 10 % or less when out-
liers were removed. These biases related to transport error

are somewhat lower than estimated by similar simulation ex-
periments for ffCO2 emission estimates for the US by Basu
et al. (2016) using different transport models (> 10 %), al-
though their spatial scale was larger and the alternate model
they used was intentionally biased. In contrast, the three
models we use are all actively applied in regional greenhouse
gas inversions. Our results are comparable to the estimate
of ±15 % uncertainty in atmospheric transport in WS-LBL
using comparisons with atmospheric observations of carbon
monoxide (CO) in California (Bagley et al., 2017).

The fraction of pseudo-observations we identified as out-
liers in these transport error experiments (10.5 %, range of
6.9 %–20.6 %) was similar to Graven et al. (2018), where 8 %
of all observations were removed as outliers using the same
method. The outliers in our experiments were primarily high
ffCO2 signals simulated by WS-CTL in October–November.
When included in the inversion, these did lead to significant
biases in the posterior estimates for the experiment on model
transport. This highlights the need for careful examination of
simulated ffCO2 and consideration of outliers in atmospheric
ffCO2 inversions.

Attributing differences in simulated ffCO2 between the
different transport models to specific meteorological vari-
ables proved inconclusive, and model resolution error did
not appear to explain the differences in simulated signals,
although we were not able to investigate aggregation error
in comparison to the high-resolution WS-LBL model. Wang
et al. (2017) found aggregation error to be only a minor
contributor to errors in simulated ffCO2 in Europe, while
Feng et al. (2016) found that high-resolution gridded emis-
sion estimates could be more important than high-resolution
transport models for simulations of greenhouse gases in the
greater Los Angeles area. We found that differences in the
spatial representation of prior emissions in EDGAR com-
pared to Vulcan led to consistently lower, although not sig-
nificantly different, posterior statewide estimates due to the
emissions in EDGAR being more concentrated in urban re-
gions. The spatial allocation of emissions between urban and
rural regions in gridded emission estimates have much larger
percentage uncertainties than national totals (Hogue et al.,
2016), suggesting that several different gridded emission es-
timates should be used in regional ffCO2 inversions to cap-
ture this source of uncertainty.

The results of these experiments suggest that the choice of
a prior emission estimate and transport model (among those
considered here and currently used in the community) used
in our ffCO2 inversion would result in differences of 15 % or
less in posterior statewide ffCO2 emissions in California, us-
ing the observation network from Graven et al. (2018). These
differences are generally not significant, compared to the
posterior 2σ uncertainties of 10 % to 15 %. In comparison,
Graven et al. (2018) found that posterior statewide ffCO2
emissions were not statistically different when using tempo-
rally varying emissions from Vulcan, as compared to annual
mean emissions from Vulcan or EDGAR, with posterior un-
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certainties of ±15 % to ±17 %. Our results may be specific
to the California region, observation network, and inversion
set-up we consider here, but we expect that similar differ-
ences of 1 %–15 % are likely to be found elsewhere in similar
inversions at comparable regional scales. We note that while
we have assessed individual contributions to uncertainty in
the experiments formulated here, these contributions can also
interact with each other. These interactions could act to in-
crease the resulting biases, or partly cancel them, depending
on the combination used. The possibility of interacting ef-
fects implies that multiple prior emission estimates and trans-
port models should be used in inversions of real data.

In our results, emissions from many small or rural air
basins did not have a significant contribution to the local en-
hancement of ffCO2 at the observation sites and were not ad-
justed by the inversion in most cases (Figs. 2 and S1). Com-
bined with our experimental set-up specifying the magnitude
of prior emissions to be equal to true emissions, it might be
expected that our results could underestimate the predicted
biases in posterior emissions. However, these experiments
were designed specifically for quantifying representation and
transport error using the inversion set-up and the observa-
tion network from Graven et al. (2018) as a test case. Here,
we have assumed the model–measurement mismatch uncer-
tainty matrix is diagonal, following previous work (e.g. Ger-
big et al., 2003; Fischer et al., 2017), however the consider-
ation of correlated errors in the uncertainty matrix has also
been found to affect posterior emissions for methane in Cali-
fornia and reduce their uncertainty at the level of several per-
cent (Jeong et al., 2016). Fischer et al. (2017) showed in in-
dividual simulation experiments that using either EDGAR or
a spatially uniform flux of 1 µmol m−2 s−1 as a biased prior
produced posterior emissions that were substantially closer
to true emissions, but only if the prior uncertainties are set
large enough to encompass biases in prior emissions. There-
fore, further experiments using a different experimental set-
up such as choice of mismatch error or specification of inver-
sion regions (e.g. to change the inversion region size based on
proximity to the observation network; Manning et al., 2011)
would help to characterize uncertainties in regional ffCO2
inversions and the robustness of posterior estimates to the
choices made in the inversion set-up.

5 Conclusion

We have shown that atmospheric inversions for the US state
of California can reduce a hypothetical bias in the magnitude
of prior emission estimates of ffCO2 in California using the
ground-based observation network from Graven et al. (2018).
Experiments for characterizing the effect of differences in
the spatial and temporal distribution in prior emissions re-
sulted in biases in posterior total state emissions with mag-
nitudes of 1 %–15 %, similar to monthly posterior estimates
of Basu et al. (2016) for the western US. Our results high-

light the need for (1) temporal variation to be included in
prior emissions, (2) different estimates of the spatial distri-
bution of emissions between urban and rural regions to be
considered, and (3) representation of atmospheric transport
in regional ffCO2 inversions to be further evaluated.
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