

Supplement of

Molecular characterization of organic aerosols in the Kathmandu Valley, Nepal: insights into primary and secondary sources

Xin Wan et al.

Correspondence to: Zhiyuan Cong (zhiyuancong@itpcas.ac.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

23 Improvements for future studies

24 There are additional improvements for future studies to be addressed.

Firstly, in our current study, we identified the organic tracers of biomass burning, plant-debris, 25 fungal spores, biogenic secondary organic aerosols (BSOA) and aromatics-derived secondary organic 26 aerosols. In order to explain the other sources of organic aerosols in the Kathmandu Valley, much more 27 tracers need to be identified or if some new organic tracers special for the aerosols in the Kathmandu 28 Valley, even better. Secondly, the conversion factors of tracers to organic carbon from local emissions 29 and formation (e.g., hardwood combustion, BSOA formation, etc.) are critical for more precise source 30 apportionments and therefore, it is valuable to increase the investigation of emission characteristics not 31 32 only in the suburban region but also rural or urban regions. It would reduce the uncertainties of the source appointment using the tracer-based methods. Thirdly, comprehensive methods (e.g., carbon isotope and 33 modeling) need to be integrated for the source apportionment of organic aerosols in the Kathmandu Valley. 34 35 For example, constraints on primary and secondary particulate carbon sources using chemical tracers and ¹⁴C methods have recently been used in many regions (e.g., California, East China, northern Italy, etc.) 36 37 (Zhang et al., 2015:Liu et al., 2016:Bonvalot et al., 2016:Salma et al., 2017:Sheesley et al., 2017:Gilardoni et al., 2011). It will provide strong constraints on the relative contributions of the major sources of 38 carbonaceous aerosols (both organic and black carbon), discriminating anthropogenic from natural, and 39 40 primary from secondary aerosols. Fourthly, the results of the present study demonstrate that the biomass burning plays a significant role in atmospheric aerosols in the Kathmandu Valley, therefore, the influences 41 of biomass burning on the formation of secondary organic aerosols could be further studied, especially 42 during the heavily polluted dry season, with additional simultaneous measurements of precursors (e.g., 43 44 NOx and O_3), $PM_{2.5}$ and so on at the same time. In addition, knowledge of various chemical species in size-segregated aerosols is important for understanding the physical and chemical atmospheric processes 45 that affect aerosol properties, especially during haze episodes. However, such studies are limited in the 46 Kathmandu Valley, South Asia. Therefore, the size-resolved chemical investigations are especially needed 47

- 48 in the future. Finally, it is necessary to conduct a systematic and comprehensive study in Kathmandu
- 49 Valley and South Asia to assess the potential positive and negative artifacts and corresponding impacts
- 50 on the organic tracers.

Compounds	Addition	$\mathbf{P}_{\alpha\alpha\alpha\nu}(0/)$	MDLs (ng m ⁻³)	
Compounds	(ppb) (n=6)	Recovery (%)		
Levoglucosan	100	81.6 ± 10.4	0.08	
Mannosan	100	80.7 ± 11.7	0.07	
Galactosan	100	76.3 ± 9.43	0.07	
p-Hydroxybenzoic acid	100	80.8 ± 9.78	0.07	
Vanillic acid	100	79.4 ± 11.5	0.11	
Syringic acid	100	78.6 ± 14.2	0.11	
Dehydroabietic acid	100	85.4 ± 13.4	0.11	
Glucose	100	86.2 ± 13.2	0.05	
Fructose	100	86.5 ± 9.57	0.06	
Trehalose	100	80.9 ± 10.4	0.13	
Sucrose	100	82.2 ± 12.6	0.08	
Xylose	100	81.7 ± 10.1	0.09	
Mannitol	100	80.6 ± 7.25	0.12	
Arabitol	100	85.8 ± 8.57	0.06	
Sorbitol	100	77.5 ± 11.1	0.12	
Erythtitol	100	90.8 ± 3.80	0.07	
Diethyl	100	87.7 ± 10.0	0.12	
Di-n-butyl	100	89.5 ± 11.5	0.12	
Bis-(2-ethylhexy)	100	89.9 ± 5.36	0.12	
Malic acid	100	76.4 ± 5.44	0.13	
Pinic acid	100	76.1 ± 7.85	0.10	
cis-Pinonic acid	100	73.9 ± 5.00	0.08	
Azelaic acid	100	87.2 ± 6.77	0.11	
Methyl- β -D-xylanopyranoside	100	90.1 ± 13.2		
<i>D</i> ₃ -malic acid	100	70.5 ± 14.6		

Tracers	Tracer formula	Surrogates formula		EQ (%)	^a ER (%)	EA (%)
cis-Pinonic acid	$C_{10}H_{16}O_{3}$	cis-Pinonic acid	is-Pinonic acid		26.1	
Pinic acid	$C_9H_{14}O_4$	Pinic acid	Pinic acid		23.9	
3-Methyl-1,2,3-butantricarboxylic acid	$C_8H_{12}O_6$	cis-Pinonic acid	C10H16O3	60	26.1	65.4
3-Hydroxyglutaric acid	$C_5H_8O_5$	cis-Pinonic acid	$C_{10}H_{16}O_{3}$	95	26.1	98.5
3-Hydroxy-4,4-dimethylglutaric acid	C7H12O5	cis-Pinonic acid	C10H16O3	65	26.1	70.0
cis-2-Methyl-1,3,4-trihydroxy-1-butene	$C_{5}H_{10}O_{3}$	Erythritol	$C_4H_{10}O_4$	85	9.2	85.5
3-Methyl-2,3,4-trihydroxy-1-butene	$C_{5}H_{10}O_{3}$	Erythritol	$C_4H_{10}O_4$	85	9.2	85.5
trans-2-Methyl-1,3,4-trihydroxy-1-butene	$C_{5}H_{10}O_{3}$	Erythritol	$C_4H_{10}O_4$	85	9.2	85.5
2-Methylglyceric acid	$C_4H_8O_4$	Erythritol	$C_4H_{10}O_4$	20	9.2	22.0
2-Methylthreitol	$C_5H_{12}O_4$	Erythritol	$C_4H_{10}O_4$	15	9.2	17.6
2-Methylerythritol	$C_5H_{12}O_4$	Erythritol	$C_4H_{10}O_4$	15	9.2	17.6
β-Caryophyllenic acid	$C_{13}H_{20}O_4$	Pinic acid	C9H14O4	120	23.9	122.4
2,3-Dihydroxy-4-oxopentanoic acid	C5H8O5	Azelaic acid	C9H16O4	90	12.8	90.9

Table S2 Estimation of measurement uncertainty

^a ER is the difference between 100% and mean recovery of each surrogate standard.

		Lev/OC ratios						
		8.14%	8.27%	7.94%	14.0%	12.0%	10.1%	
Pre-monsoon	Average	28.5	28.0	29.2	16.6	19.3	23.0	
	Stdev	10.3	10.1	10.5	5.96	6.96	8.29	
	Median	28.0	27.5	28.7	16.3	19.0	22.6	
Monsoon	Average	17.7	17.4	18.2	10.3	12.0	14.3	
	Stdev	5.11	5.03	5.24	2.97	3.47	4.13	
	Median	17.2	16.9	17.6	9.99	11.7	13.9	
Post-monsoon	Average	36.3	35.8	37.3	21.1	24.7	29.4	
	Stdev	10.4	10.3	10.7	6.07	7.08	8.44	
	Median	32.3	31.8	33.2	18.8	21.9	26.1	
Winter	Average	27.9	27.5	28.6	16.2	18.9	22.6	
	Stdev	8.63	8.50	8.85	5.02	5.86	6.98	
	Median	24.9	24.5	25.5	14.5	16.9	20.1	
Annual	Average	24.9	24.6	25.6	14.5	16.9	20.2	
	Stdev	10.4	10.3	10.7	6.07	7.08	8.44	
	Median	22.4	22.1	23.0	13.0	15.2	18.1	

Fig. S1. Temporal variations of (a) wind speed (WS), wind direction (WD), temperature (T), (b) relative
humidity (RH), (c) precipitation (PR), and (e) visibility (V) monitored at Tribhuvan International Airport
and (d) mixing layer height (MLH) from Vaisala ceilometer at Bode site, Kathmandu Valley from April
2013 to April 2014.

Fig. S2. Correlations between levoglucosan and xylose during the sampling period (April 2013 to April
2014).

Fig. S3. Correlations between (a) levoglucosan and *p*-hydroxybenzoic acid, (b) levoglucosan and vanillic
acid, (c) levoglucosan and syringic acid, (d) levoglucosan and dehydroabietic acid in Bode aerosols during
the whole year (April 2013 to April 2014).

70 Fig. S4. Monthly variations of phthalic acid esters at Bode site, Kathmandu Valley during April 2013-

Fig. S5. Correlations between (a) 2-methylthreitol and 2-methylerythritol, (b) C5-alkene triols and 2-

methylterols in Bode aerosols during the sampling period (April 2013 to April 2014).

Fig. S6. Correlations between (a) MBTCA and levoglucosan, (b) 3-HGA and levoglucosan in Bode
aerosols during the sampling period (April 2013 to April 2014).

78 References

- Bonvalot, L., Tuna, T., Fagault, Y., Jaffrezo, J.-L., Jacob, V., Chevrier, F., and Bard, E.: Estimating contributions
 from biomass burning, fossil fuel combustion, and biogenic carbon to carbonaceous aerosols in the Valley
 of Chamonix: a dual approach based on radiocarbon and levoglucosan, Atmospheric Chemistry and
 Physics, 16, 13753-13772, 10.5194/acp-16-13753-2016, 2016.
- Gilardoni, S., Vignati, E., Cavalli, F., Putaud, J. P., Larsen, B. R., Karl, M., Stenström, K., Genberg, J., Henne, S.,
 and Dentener, F.: Better constraints on sources of carbonaceous aerosols using a combined 14C macro
 tracer analysis in a European rural background site, Atmospheric Chemistry and Physics, 11, 5685-5700,
 10.5194/acp-11-5685-2011, 2011.
- Liu, J., Li, J., Liu, D., Ding, P., Shen, C., Mo, Y., Wang, X., Luo, C., Cheng, Z., Szidat, S., Zhang, Y., Chen, Y., and
 Zhang, G.: Source apportionment and dynamic changes of carbonaceous aerosols during the haze bloomdecay process in China based on radiocarbon and organic molecular tracers, Atmospheric Chemistry and
 Physics, 16, 2985-2996, 10.5194/acp-16-2985-2016, 2016.
- Salma, I., Nemeth, Z., Weidinger, T., Maenhaut, W., Claeys, M., Molnar, M., Major, I., Ajtai, T., Utry, N., and
 Bozoki, Z.: Source apportionment of carbonaceous chemical species to fossil fuel combustion, biomass
 burning and biogenic emissions by a coupled radiocarbon-levoglucosan marker method, Atmospheric
 Chemistry and Physics, 17, 13767-13781, 10.5194/acp-17-13767-2017, 2017.
- Sheesley, R. J., Nallathamby, P. D., Surratt, J. D., Lee, A., Lewandowski, M., Offenberg, J. H., Jaoui, M., and
 Kleindienst, T. E.: Constraints on primary and secondary particulate carbon sources using chemical tracer
 and C-14 methods during CalNex-Bakersfield, Atmospheric Environment, 166, 204-214,
 10.1016/j.atmosenv.2017.07.025, 2017.

Zhang, Y. L., Huang, R. J., El Haddad, I., Ho, K. F., Cao, J. J., Han, Y. M., Zotter, P., Bozzetti, C., Daellenbach, K.,
and Canonaco, F.: Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during
the extreme winter haze episode of 2013, Atmospheric Chemistry and Physics, 15, 1299-1312, 2015.