

Supplement of

Sources and formation of carbonaceous aerosols in Xi'an, China: primary emissions and secondary formation constrained by radiocarbon

Haiyan Ni et al.

Correspondence to: Ru-Jin Huang (rujin.huang@ieecas.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

13 S1. Sensitivity study for potential pyrolysis effects on $\delta^{13}C_{EC}$

- 14 In this study, we used a two-step method (OC step: 375 °C for 3 h; EC step: 850 °C for 5 h) to
- 15 isolate OC and EC for δ^{13} C analysis, as described in Sect. 2.3. Our earlier study in Xi'an found that
- 16 EC recovery for δ^{13} C analysis (relative to EC quantified by the thermal-optical reflectance protocol
- 17 IMPROVE_A; Chow et al., 2007) was on average 123 ± 8 %, higher than 100% (Zhao et al., 2018).
- 18 The reason is that pyrolyzed OC (formed through charring during the OC removal procedure) and
- 19 possibly some remaining OC compounds (e.g., high molecular weight refractory carbon) can be
- 20 released at the high temperature of the EC step.
- 21 The resulted δ^{13} C of EC could be biased by δ^{13} C of pyrolyzed OC, if the contribution from
- 22 pyrolyzed OC to the isolated EC is high and δ^{13} C of pyrolyzed OC is very different from δ^{13} C of
- 23 pure EC. To examine the effect of pyrolyzed OC on δ^{13} C of EC, a sensitivity analysis is performed.
- δ^{13} C of pyrolyzed OC is not known, but our recent studies suggest that δ^{13} C of pyrolyzed OC is not
- 25 very different from $\delta^{13}C_{OC}$ (<1% in many cases). We thus use $\delta^{13}C_{OC}$ to represent $\delta^{13}C$ of pyrolyzed
- 26 OC. δ^{13} C of pure EC is calculated based on isotope mass balance. This analysis shows that for high
- 27 contribution from pyrolyzed OC to the isolated EC of 20%, the expected difference in δ^{13} C between
- 28 measured EC and true EC is still <1‰. This will not significantly change any conclusions made in
- this study.

30 S2. Estimation of the probability density functions (PDFs) of *p* values

31 The *p* value used in Eq. (11) in the main text is the fraction of EC from coal combustion (EC_{coal})

32 in EC from fossil sources (EC_{fossil}). That is,

33
$$p = \frac{EC_{coal}}{EC_{fossil}} = \frac{EC_{coal}}{EC_{coal} + EC_{liq.fossil}}$$
(S1)

where EC_{fossil} is the sum of EC_{coal} and EC from liquid fossil fuel combustion (i.e., vehicle emissions;
 EC_{liq.fossil}).

36 Eq. (S1) can be formulated as:

37
$$p = \frac{f_{\text{coal}}}{f_{\text{fossil}}} = \frac{f_{\text{coal}}}{f_{\text{coal}} + f_{\text{liq,fossil}}}$$
(S2)

38 where f_{coal} and $f_{\text{liq.fossil}}$ is the relative contribution of coal combustion emission and liquid fossil fuel

39 combustion to EC. The sum of f_{coal} and $f_{\text{liq.fossil}}$ is f_{fossil} of EC, which is well constrained by F¹⁴C of 40 EC.

- 41 The PDFs of f_{coal} and $f_{\text{liq.fossil}}$ (eg., Fig. 6 in the main text), derived from the Bayesian calculations
- 42 detailed in Sect. 2.6 in the main text, are used to calculated the PDFs of *p*.

Figure S1. Selected samples for ¹⁴C analysis. Three composite samples that represent high (H),
medium (M) and low (L) TC concentrations are combined from several individual filter samples
per season. Each composite sample is consisting of 2 to 4 24-hr filter pieces with similar TC

47 loadings and air mass backward trajectories (Table S1).

48

49 **Figure S2.** Fraction modern ($F^{14}C$) of elemental carbon (EC), organic carbon (OC), water-insoluble

50 OC (WIOC) and water-soluble OC (WSOC) ($F^{14}C_{(EC)}$, $F^{14}C_{(OC)}$, $F^{14}C_{(WIOC)}$ and $F^{14}C_{(WSOC)}$ 51 respectively). $F^{14}C_{(WSOC)}$ is calculated from the measured $F^{14}C_{(OC)}$ and $F^{14}C_{(WIOC)}$ following the

isotope mass balance. The blue dashed area for best estimate of $F^{14}C_{(WSOC)}$ (blue filled circle) indicates ranges of $F^{14}C_{(WSOC)}$ (Sect. 2.5).

- 55 Figure S3. (a) Example probability density functions (PDFs) of concentrations of POC_{fossil} (red), SOC_{fossil} (light blue) for sample Autumn-L. (b)
- 56 PDFs of concentrations of $OC_{o,nf}$ (light blue) and POC_{bb} (red) for the same sample. Their concentrations are estimated by ¹⁴C-apportioned OC and
- 57 EC using the EC tracer method (Sect. 2.5). The mean and median are indicated by the dashed and solid vertical lines.

Table S1. Sample information as well as the fraction modern $(F^{14}C)$ of elemental carbon (EC), 59

organic carbon (OC), water-insoluble OC (WIOC) and water-soluble OC (WSOC) (F¹⁴C_(EC), 60

 $F^{14}C_{(OC)}$, $F^{14}C_{(WIOC)}$ and $F^{14}C_{(WSOC)}$ respectively), and stable carbon isotopic compositions ($\delta^{13}C$, ‰) 61

62	of EC ($\delta^{13}C_{EC}$).
----	--------------------------------

Sample name	Sampling Date (month/day/year)	$F^{14}C_{(EC)}{}^{a}$	$F^{14}C_{(OC)}{}^a$	$F^{14}C_{(WIOC)}{}^{a}$	F ¹⁴ C (WSOC) ^b	$\delta^{13}C_{EC}$
Winter-H	12/20/2015	0.340 ± 0.005	0.640 ± 0.009	0.565 ± 0.006	0.704	-24.64 ± 0.02
	12/21/2015				(0.682–0.717)	
Winter-M	11/30/2015	0.258 ± 0.005	0.609 ± 0.007	0.558 ± 0.007	0.649	-25.04 ± 0.04
	12/8/2015				(0.635–0.657)	
	12/9/2015					
Winter-L	12/14/2015	0.320 ± 0.005	0.626 ± 0.007	0.553 ± 0.006	0.69	-24.71 ± 0.02
	12/16/2015				(0.675–0.699)	
	12/17/2015					
Spring-H	5/5/2016	0.123 ± 0.004	0.534 ± 0.006	0.514 ± 0.006	0.543	-24.66 ± 0.04
	5/10/2016				(0.541–0.543)	
Spring-M	4/19/2016	0.145 ± 0.006	0.531 ± 0.007	0.450 ± 0.006	0.577	-24.77 ± 0.02
	4/20/2016				(0.567–0.583)	
Spring-L	4/23/2016	0.184 ± 0.004	0.557 ± 0.007	0.445 ± 0.006	0.637	-24.24 ± 0.02
	4/24/2016				(0.610–0.654)	
	4/27/2016					
Summer-H	7/21/2016	0.159 ± 0.004	0.549 ± 0.006	0.438 ± 0.006	0.605	-24.67 ± 0.02
	7/23/2016				(0.587–0.616)	
Summer- M	7/11/2016	0.191 ± 0.004	0.593 ± 0.007	0.497 ± 0.006	0.651	-25.25 ± 0.09
	7/16/2016				(0.631–0.663)	
	7/27/2016					
Summer-L	7/5/2016	0.181 ± 0.006	0.637 ± 0.007	0.394 ± 0.006	0.795	-24.96 ± 0.02
	7/6/2016				(0.750–0.822)	
	7/12/2016					
	7/13/2016					
Autumn-H	11/3/2016	0.169 ± 0.004	0.562 ± 0.007	0.516 ± 0.007	0.599	-25.24 ± 0.04
	11/4/2016				(0.591–0.603)	
	11/13/2016					
Autumn-M	10/17/2016	0.154 ± 0.004	0.547 ± 0.007	0.492 ± 0.006	0.587	-25.51 ± 0.03
	10/18/2016				(0.575–0.595)	
	11/1/2016					
Autumn-L	10/15/2016	0.194 ± 0.004	0.593 ± 0.006	$0.518 \pm 0.00\overline{6}$	0.635	-25.10 ± 0.02
	10/16/2016				(0.623–0.643)	
	10/20/2016					

63

^a $F^{14}C$ values are given in average \pm measurement uncertainty. ^b $F^{14}C_{(WSOC)}$ is calculated from the measured $F^{14}C_{(OC)}$ and $F^{14}C_{(WIOC)}$ following the isotope mass balance (Eq. 64

4 in the main text). The range of $F^{14}C_{(WSOC)}$ is presented in the parentheses, calculated following the method 65

66 detailed in Sect 2.5.

- 67
- **Table S2.** Consensus value of $F^{14}C$ for secondary standards IAEA- C7 and -C8 along with measured $F^{14}C$ values. Data corrections for the measured $F^{14}C$ of secondary standards are the same 68
- as those for samples. 69

Standards	Consensus value of F ¹⁴ C	measured F14C	measured mass (µgC)
IAEA-C7	0.4953 ± 0.0012	0.4884 ± 0.0059	76
		0.5017 ± 0.0064	80
IAEA-C8	0.1503 ± 0.0017	0.1511 ± 0.0039	63
		0.1540 ± 0.0038	100

Sample name	EC _{bb}	EC _{fossil}	OC _{nf}	OC _{fossil}	WIOC _{nf}	WIOC _{fossil}	WSOC _{nf}	WSOC _{fossil}
Winter-H	3.08 ± 0.18	6.86 ± 0.39	27.66 ± 1.56	19.43 ± 1.20	10.78 ± 0.78	10.12 ± 0.74	16.72 ± 1.82	9.43 ± 1.08
Winter-M	1.44 ± 0.09	4.70 ± 0.28	21.17 ± 1.17	16.73 ± 0.97	8.25 ± 0.62	7.95 ± 0.59	12.80 ± 1.36	8.89 ± 0.96
Winter-L	0.82 ± 0.06	1.99 ± 0.14	8.31 ± 0.48	6.16 ± 0.37	3.33 ± 0.17	3.27 ± 0.17	4.95 ± 0.53	2.94 ± 0.32
Spring-H	0.36 ± 0.03	2.86 ± 0.19	5.62 ± 0.33	5.85 ± 0.34	1.56 ± 0.08	1.77 ± 0.09	4.03 ± 0.33	4.12 ± 0.34
Spring-M	0.30 ± 0.03	2.00 ± 0.15	3.68 ± 0.22	3.87 ± 0.23	1.08 ± 0.06	1.56 ± 0.08	2.58 ± 0.24	2.34 ± 0.22
Spring-L	0.22 ± 0.02	1.09 ± 0.10	2.48 ± 0.16	2.37 ± 0.15	0.79 ± 0.06	1.15 ± 0.09	1.68 ± 0.19	1.23 ± 0.14
Summer-H	0.32 ± 0.03	1.88 ± 0.14	3.71 ± 0.23	3.65 ± 0.22	0.94 ± 0.08	1.41 ± 0.11	2.75 ± 0.26	2.25 ± 0.21
Summer-M	0.17 ± 0.02	0.83 ± 0.08	2.25 ± 0.15	1.89 ± 0.13	0.68 ± 0.06	0.82 ± 0.07	1.55 ± 0.17	1.07 ± 0.12
Summer-L	0.12 ± 0.02	0.60 ± 0.07	1.96 ± 0.14	1.39 ± 0.10	0.46 ± 0.03	0.82 ± 0.05	1.49 ± 0.17	0.58 ± 0.08
Autumn-H	1.05 ± 0.07	5.79 ± 0.33	12.05 ± 0.68	11.32 ± 0.64	4.77 ± 0.22	5.37 ± 0.24	7.22 ± 0.72	6.03 ± 0.61
Autumn-M	0.54 ± 0.04	3.29 ± 0.21	5.88 ± 0.35	5.83 ± 0.35	2.13 ± 0.15	2.62 ± 0.18	3.71 ± 0.38	3.24 ± 0.34
Autumn-L	0.28 ± 0.02	1.29 ± 0.11	3.29 ± 0.21	2.76 ± 0.18	0.99 ± 0.07	1.11 ± 0.08	2.29 ± 0.23	1.67 ± 0.17

Table S3. Concentrations of EC, OC, WIOC and WSOC from non-fossil sources (EC_{bb}, OC_{nf}, WIOC_{nf} and WSOC_{nf}) and fossil sources (EC_{fossil}, 72 OC_{fossil}, WIOC_{fossil}) in units of μ g m⁻³ for each sample.

74 **Table S4.** Concentrations (µg m⁻³) of primary OC from biomass burning (POC_{bb}), OC from non-

75 fossil sources excluding primary biomass burning ($OC_{o,nf}$), primary OC from fossil sources

76 (POC_{fossil}), secondary OC from fossil sources (SOC_{fossil}) (median and interquartile range). The 77 median values for POC_{bb} and OC_{o,nf} are very close to their mean values due to their symmetric

77 Internal values for FOCob and OCob and OCob.
 78 PDFs (Fig. S3b).

Sample Name	POC _{bb}	OC _{o.nf}	POC _{fossil}	SOC _{fossil}
Winter-H	12.27	15.34	9.24	10.10
	(11.26–13.37)	(13.87–16.78)	(7.52–11.64)	(7.64–11.97)
Winter-M	5.77	15.37	5.99	10.55
	(5.26–6.27)	(14.45–16.29)	(4.95–7.70)	(8.92–11.84)
Winter-L	3.26	5.03	2.69	3.42
	(2.98-3.55)	(4.61–5.46)	(2.19–3.39)	(2.73-3.99)
Spring-H	1.44	4.17	3.87	1.97
	(1.31–1.58)	(3.92–4.42)	(3.05–5.05)	(0.81 - 2.77)
Spring-M	1.22	2.46	2.58	1.28
	(1.11–1.33)	(2.27 - 2.64)	(2.10-3.34)	(0.52 - 1.77)
Spring-L	0.87	1.60	1.58	0.77
	(0.79–0.96)	(1.46 - 1.74)	(1.25–1.98)	(0.38 - 1.12)
Summer-H	1.26	2.45	2.49	1.15
	(1.15–1.38)	(2.26–2.64)	(2.00-3.22)	(0.42–1.66)
Summer-M	0.69	1.55	1.00	0.87
	(0.62–0.77)	(1.43–1.67)	(0.84–1.25)	(0.60 - 1.06)
Summer-L	0.47	1.48	0.76	0.62
	(0.42–0.53)	(1.38–1.59)	(0.62–0.98)	(0.40-0.78)
Autumn-H	4.20	7.88	7.07	4.21
	(3.84–4.56)	(7.30-8.45)	(5.93–9.06)	(2.21–5.43)
Autumn-M	2.14	3.73	3.75	2.02
	(1.96–2.34)	(3.43–4.03)	(3.23–4.78)	(0.99–2.61)
Autumn-L	1.11	2.18	1.61	1.13
	(1.00 - 1.22)	(2.01–2.35)	(1.34 - 2.05)	(0.68 - 1.43)

Season	f _{bb} (EC)	$f_{\text{fossil}}(\text{EC})$	$f_{\rm nf}({\rm OC})$	$f_{\rm fossil}({\rm OC})$	$f_{\rm nf}({\rm WIOC})$	$f_{\rm fossil}({\rm WIOC})$	$f_{\rm nf}(\rm WSOC)$	$f_{\rm fossil}({\rm WSOC})$
Winter	0.279 ± 0.039	0.721 ± 0.039	0.573 ± 0.014	0.427 ± 0.014	0.510 ± 0.006	0.490 ± 0.006	0.619 ± 0.026	0.381 ± 0.026
Spring	0.137 ± 0.028	0.863 ± 0.028	0.496 ± 0.013	0.504 ± 0.013	0.428 ± 0.035	0.572 ± 0.035	0.533 ± 0.042	0.467 ± 0.042
Summer	0.161 ± 0.015	0.839 ± 0.015	0.544 ± 0.040	0.456 ± 0.040	0.404 ± 0.047	0.596 ± 0.047	0.620 ± 0.089	0.380 ± 0.089
Autumn	0.157 ± 0.019	0.843 ± 0.019	0.521 ± 0.021	0.479 ± 0.021	0.464 ± 0.013	0.536 ± 0.013	0.552 ± 0.023	0.448 ± 0.023
Annual	0.183 ± 0.062	0.817 ± 0.062	0.534 ± 0.037	0.466 ± 0.037	0.451 ± 0.049	0.549 ± 0.049	0.581 ± 0.060	0.419 ± 0.060

Table S5. Relative non-fossil sources contribution to EC, OC, WIOC and WSOC ($f_{bb}(EC)$, $f_{nf}(OC)$, $f_{nf}(WIOC)$, $f_{nf}(WSOC)$), and relative fossil sources contribution to EC, OC, WIOC and WSOC ($f_{fossil}(EC)$, $f_{fossil}(OC)$, $f_{fossil}(WIOC)$) in different seasons and throughout the year.

Season	EC _{bb}	EC _{fossil}	OC _{nf}	OC _{fossil}	WIOC _{nf}	WIOC _{fossil}	WSOC _{nf}	WSOC _{fossil}
Winter	1.78 ± 1.17	4.52 ± 2.44	19.05 ± 9.85	14.11 ± 7.01	7.45 ± 3.79	7.11 ± 3.50	11.49 ± 5.99	7.09 ± 3.60
Spring	0.29 ± 0.07	1.98 ± 0.89	3.93 ± 1.58	4.03 ± 1.75	1.14 ± 0.39	1.49 ± 0.31	2.76 ± 1.18	2.56 ± 1.46
Summer	0.20 ± 0.10	1.10 ± 0.68	2.64 ± 0.94	2.31 ± 1.19	0.69 ± 0.24	1.02 ± 0.34	1.93 ± 0.71	1.30 ± 0.86
Autumn	0.62 ± 0.39	3.46 ± 2.25	7.07 ± 4.50	6.64 ± 4.34	2.63 ± 1.94	3.03 ± 2.16	4.41 ± 2.54	3.65 ± 2.21
Annual	0.72 ± 0.84	2.76 ± 2.03	8.17 ± 8.23	6.77 ± 5.94	2.98 ± 3.34	3.16 ± 3.06	5.15 ± 4.85	3.65 ± 2.97

Table S6. Concentrations of EC, OC, WIOC and WSOC from non-fossil sources (EC_{bb}, OC_{nf}, WIOC_{nf} and WSOC_{nf}) and fossil sources (EC_{fossil}, 84 OC_{fossil}, WIOC_{fossil} and WSOC_{fossil}) in units of μ g m⁻³ in different seasons and throughout the year.

Table S7. Fractional contribution of different incomplete combustion sources to EC in different
 seasons (median, interquartile range (25th-75th percentile)).

Sources		Winter	Spring	Summer	Autumn
Biomass	median	0.28	0.146	0.163	0.159
burning	25th-75th percentile	(0.26–0.31)	(0.13–0.17)	(0.15–0.18)	(0.15–0.18)
Coal	median	0.246	0.296	0.227	0.19
combustion	25th-75th percentile	(0.13–0.41)	(0.15–0.50)	(0.11–0.41)	(0.09–0.36)
Liquid fossil fuel combustion	median	0.459	0.534	0.598	0.638
	25th-75th percentile	(0.29–0.59)	(0.33–0.69)	(0.41–0.72)	(0.45–0.74)

89	Table S8. EC concentrations (in unit of $\mu g m^{-3}$) from biomass burning (EC _{bb}), coal combustion
90	(EC_{coal}) and liquid fossil fuel combustion $(EC_{liq,fossil})$ for each sample (median and interquartile
91	range in unit of $\mu g m^{-3}$), and the seasonal averaged concentrations ($\mu g m^{-3}$) calculated by averaging

1	runge in unit of µg in), and the seasonal averaged concentr
92	the median values for each sample in each season ^a .

	$\mathrm{EC}_{\mathrm{bb}}$	EC_{coal}	$EC_{liq.fossil}$	
	median (interquartile range)	median (interquartile range)	median (interquartile range)	
Winter-H	3.07 (2.94–3.22)	2.79 (1.43–4.51)	4.03 (2.32–5.42)	
Winter-M	1.44 (1.38–1.52)	1.42 (0.67–2.60)	3.25 (2.07–4.00)	
Winter-L	0.82 (0.77–0.86)	0.69 (0.36–1.18)	1.28 (0.80–1.62)	
Spring-H	0.36 (0.34–0.38)	1.02 (0.44–1.90)	1.81 (0.94–2.39)	
Spring-M	0.30 (0.29–0.32)	0.70 (0.31–1.30)	1.29 (0.69–1.67)	
Spring-L	0.22 (0.21–0.23)	0.50 (0.24–0.79)	0.57 (0.29–0.84)	
Summer-H	0.32 (0.30–0.34)	0.66 (0.30–1.20)	1.20 (0.66–1.55)	
Summer-M	0.17 (0.16–0.19)	0.20 (0.10–0.39)	0.61 (0.43–0.72)	
Summer-L	0.12 (0.11–0.13)	0.16 (0.08–0.32)	0.42 (0.28–0.52)	
Autumn-H	1.05 (1.00–1.10)	1.46 (0.68–2.99)	4.29 (2.80–5.08)	
Autumn-M	0.54 (0.51–0.56)	0.68 (0.33–1.33)	2.58 (1.94–2.94)	
Autumn-L	0.28 (0.26–0.29)	0.37 (0.18–0.68)	0.91 (0.60–1.11)	
Winter ^a	1.78 ± 1.16	1.63 ± 1.06	2.86 ± 1.42	
Spring ^a	0.30 ± 0.07	0.74 ± 0.26	1.23 ± 0.62	
Summer ^a	0.20 ± 0.10	0.34 ± 0.28	0.75 ± 0.41	
Autumn ^a	0.62 ± 0.39	0.84 ± 0.57	2.59 ± 1.69	

93 ^aThe seasonal averaged concentrations calculated by averaging the median values for each sample

94 in each season.

95 **References**

- Chow, J. C., Watson, J. G., Chen, L.-W. A., Chang, M. O., Robinson, N. F., Trimble, D., and Kohl,
 S.: The IMPROVE_A temperature protocol for thermal/optical carbon analysis: maintaining
- 98 consistency with a long-term database, J. Air Waste Manage., 57, 1014–1023, 2007.
- 99 Zhao, Z., Cao, J., Zhang, T., Shen, Z., Ni, H., Tian, J., Wang, Q., Liu, S., Zhou, J., Gu, J., and Shen,
- 100 G.: Stable carbon isotopes and levoglucosan for PM_{2.5} elemental carbon source apportionments in
- 101 the largest city of Northwest China, Atmos. Environ., 185, 253-261,
- 102 https://doi.org/10.1016/j.atmosenv.2018.05.008, 2018.