

Supplement of

Impact of halogen chemistry on summertime air quality in coastal and continental Europe: application of the CMAQ model and implications for regulation

Qinyi Li et al.

Correspondence to: Alfonso Saiz-Lopez (a.saiz@csic.es)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

	-		
Reaction level	Reaction	Rate Expression	Ref
C101	Cl + O3 = ClO + O2	$k=2.3 \times 10^{-11} e^{(-200/T)}$	1
C102	CIO + CIO = 0.3 CI2 + 1.4 CI + O2	$k=1.63 \times 10^{-14}$	1
C103	ClO + NO = Cl + NO2	$k=6.4 \times 10^{-12} e^{(290/T)}$	1
C104	CIO + HO2 = HOC1 + O2	$k=2.7 \times 10^{-12} e^{(220/T)}$	1
C105	C1O + NO2 = C1NO3	$k{=}\{k_o[M]/(1{+}k_o[M]/k_\infty)\}\ F^z$	2
		$k_0 = 1.8 \times 10^{-31} (T/300)^{-3.4}$	
		$k_{\infty} = 1.5 \times 10^{-11} (T/300)^{-1.9}$	
		F = 0.6 and $N = 1.0$	
		$Z = \{(1/N) + \log_{10}[k_0 [M]/k_{\infty}]^2\}^{-1}$	
C106	Cl + NO2 = ClNO2	$k=\{k_0[M]/(1+k_0[M]/k_{\infty})\} F^z$	1
		$k_0 = 1.8 \times 10^{-31} (T/300)^{-2.0}$	
		$k_{\infty} = 1.0 \times 10^{-10} (T/300)^{-1.0}$	
		F = 0.6 and $N = 1.0$	
		$Z = \{(1/N) + \log_{10}[k_o [M]/k_{\infty}]^2\}^{-1}$	
C107	HCl + OH = Cl + H2O	$k=6.58 \times 10^{-13} (T/300)^{1.16} e^{(-58/T)}$	1
C108	FMCl + OH = Cl + CO + H2O	$k=3.67 \times 10^{-11} e^{(-1419/T)}$	1
C109	ClO + MEO2 = Cl + FORM + HO2	$k=4.1 \times 10^{-13} e^{(-800/T)}$	1
Cl10	CH4 + Cl = HCl + MEO2	$k=6.6 \times 10^{-12} e^{(-1240/T)}$	1
Cl11	PAR + Cl = HCl	$k=5.00 \times 10^{-11}$	1,3
Cl12	ETHA + Cl = HCl + 0.991 ALD2 + 0.991 XO2 + 0.009 XO2N + HO2	$k=8.3 \times 10^{-11} e^{(-100/T)}$	1
C113	ETH + Cl = FMCl + 2.0 XO2 + HO2 + FORM	$k=1.07 \times 10^{-10}$	1
C114	OLE + Cl = FMCl + 0.33 ALD2 + 0.67 ALDX + 2.0 XO2 + HO2 - PAR	k=2.5 × 10 ⁻¹⁰	1
Cl15	IOLE + Cl = 0.3 HCl + 0.7 FMCl + 0.45 ALD2 + 0.55 ALDX + 0.3 OLE + 0.3 PAR + 1.7 XO2 + HO ₂	k=3.5 × 10 ⁻¹⁰	1
C116	ISOP + Cl = 0.15 HCl + XO2 + HO2 + 0.85	$k=4.3 \times 10^{-10}$	1

Table S1: Chlorine chemistry used in the study

	FMCl + ISPD		
Cl17	FORM + Cl = HCl + HO2 + CO	$k=8.2 \times 10^{-11} e^{(-34/T)}$	1
C118	ALD2 + Cl = HCl + C2O3	k=7.9 × 10 ⁻¹¹	1
C119	ALDX + Cl = HCl + CXO3	$k=1.3 \times 10^{-10}$	1
C120	MEOH + Cl = HCl + HO2 + FORM	k=5.5 × 10 ⁻¹¹	1
Cl21	ETOH + Cl = HCl + HO2 + ALD2	$k=8.2 \times 10^{-11} e^{(45/T)}$	1
C122	TOL + Cl = HCl + 0.88 XO2 + 0.88 HO2 + 0.12 XO2N	k=6.1 × 10 ⁻¹¹	1
C123	XYL + Cl = HCl + 0.84 XO2 + 0.84 HO2 + 0.16 XO2N	k=1.2 × 10 ⁻¹⁰	1
C124	NAPH + Cl = HCl + 0.84 XO2 + 0.84 HO2 + 0.16 XO2N	k=1.2 × 10 ⁻¹⁰	1
Cl25	Cl2 = 2 Cl	Photolysis	1
C126	HOCl = OH + Cl	Photolysis	1
Cl27	FMCl = Cl + CO + HO2	Photolysis	1
C128	CINO2 = CI + NO2	Photolysis	1
C129	CINO3 = CIO + NO2	Photolysis	4
C130	CINO3 = CI + NO3	Photolysis	4
HET_N2O5	N ₂ O ₅ (+ H ₂ O) \rightarrow Y × (HNO3 + ClNO ₂) + 2 × (1 - Y) HNO ₃	$k = \left(\frac{\widetilde{d}}{2D} + \frac{4}{\dot{c}\gamma}\right)^{-1}A$	5
		$\gamma = t(aerosol composition)$	
HET_CINO3_WA	$CINO_3 (+ H_2O) \rightarrow HOCI + HNO_3$	$k = \left(\frac{d}{2D} + \frac{4}{c\gamma}\right)^2 A$	6
		Y = 0.024	

Note:

20

25

Cl2 = molecular chlorine, Cl = atomic chlorine, HOCl = hypochlorous acid, ClNO2 = nitryl chloride, ClNO3 = chlorine nitrate, HCl = hydrochloric acid, OH = hydroxyl radical, O2 = oxygen, O3 = ozone, ClO = chlorine oxide, NO = nitric oxide, NO2 = nitrogen dioxide, H2O = water vapor, HO2 = hydroperoxy radical, FMCl = formyl chloride, CO = carbon monoxide, CH4 = methane, ETHA = ethane, MEO2 = methylperoxy radical, PAR = paraffin carbon bond, XO2 = NO-to-NO₂ operator, XO2N = NO-to-nitrate operator, FORM = formaldehyde, ALD2 = acetaldehyde, ALDX = propionaldehyde and higher aldehydes, OLE = terminal olefinic carbon bond, IOLE = internal olefinic carbon bond, ETH = ethene, ISOP = isoprene, ISPD = isoprene product, MEOH = methanol, ETOH = ethanol, C2O3 = acetylperoxy radical, CXO3 = higher acylperoxy radicals, TOL = toluene, XYL = xylene,

NAPH = napthalene, T= temperature, k = rate constant, M = total pressure, d = effective diameter, D = diffusivity in

air, \dot{c} = mean molecular velocity, A = aerosol surface area concentration, γ = reactive uptake coefficient, Y = yield of ClNO2 (7). Cl01-Cl30 are gas-phase reactions while HET_N2O5 and HET_ClNO3_WA are heterogeneous reactions.

Ref: 1 - Sarwar, et al. 2019; 2 - Sander, et al., 2011; 3- Yarwood et al., 2014; 4 – Atkinson et el., 2007; 5 – Davis et al., 2008; 6 – Deiber et al., 2004; 7 – Bertram et al., 2009.

Category	Setup WRF simulation	
Shortwave radiation	MM5 Shortwave radiation scheme (Dudhia, 1988)	
Longwave radiation	Eta Geophysical Fluid Dinamics Laboratory (GFDL) (Schwarzkopf and Fels, 1991)	
Land-surface model	Noah LSM (Chen and Dudhia, 2001)	
Microphysics scheme	WSM6 (Hong and Lim, 2006)	
PBL scheme	BULK: Yonsei University (YSU) (Hong et al., 2006)	
Horizontal resolution	12 km	
	35 sigma levels (Lowest level \approx 20 m).	
	Sigma (σ) levels: 1.000, 0.998, 0.995, 0.990, 0.985, 0.980,	
Vertical resolution	0.970, 0.960, 0.950, 0.940, 0.930, 0.920, 0.910, 0.900,	
ventical resolution	0.880, 0.860, 0.840, 0.820, 0.800, 0.770, 0.740, 0.700,	
	0.650, 0.600, 0.550, 0.500, 0.450, 0.400, 0.350, 0.300,	
	0.250, 0.200, 0.150, 0.100, 0.050, 0.000.	

Figure S1. Correlation coefficient of observed and predicted (HAL simulation) hourly O_3 and NO_2

Figure S2. Diurnal variation of observed and simulated (BASE and HAL) O_3 and NO_2 over northern (>50°N) and southern (<50°N) Europe.

Figure S3. Diurnal variation of simulated (BASE and HAL) OH and HO₂ over northern and southern Europe.

Figure S4. Diurnal variation of simulated (BASE and HAL) NO3 and Cl over northern and southern Europe.

Figure S5. Monthly average NO concentration in the BASE simulation, and changes induced by chlorine (CL) and full halogen chemistry (HAL).

Figure S6. Number of days with daily maximum 8 h O₃ concentration over 120 μg·m⁻³ in BASE and HAL simulations, and the absolute variation between the two simulations.

Figure S7. Monthly average of daily maximum 8 h O₃ concentrations in BASE and HAL simulations, and the absolute and relative changes between the two simulations.

Reference:

Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – gas phase reactions of inorganic halogens. Atmos. Chem. Phys., 7, 981-1191, 2007.

Bertram, T. H.; Thornton, J.A.: Toward a general parameterization of N2O5 reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride. Atmos. Chem. Phys, 2009, 9, 8351–8363, doi:10.5194.

Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part II: Preliminary Model Validation, Mon. Weather Rev., 129(4), 587–604, doi:10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2, 2001.

75 Davis, J. M.; Bhave, P. V.; Foley, K. M.: Parameterization of N2O5 reaction probabilities on the surface of particles containing ammonium, sulfate, and nitrate. Atmos. Chem. Phys., 8, 5295–5311, 2008.

60

65

70

Deiber, G.; George, C.; Calvé, S.; Schweitzer, F.; Mirabel, P.: Uptake study of ClONO2 and BrONO2 by Halide containing droplets. Atmos. Chem. Phys., 4, 1291–1299, doi:10.5194/acp-4-1291-2004, 2004.

80

85

95

Dudhia, J.: Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model, J. Atmos. Sci., 46(20), 3077–3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2, 1988.

Hong, S.-Y. and Lim, J.-O. J.: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6), J. Korean Meteorol. Soc., 42(2), 129–151, 2006.

Hong, S.-Y., Noh, Y. and Dudhia, J.: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes, Mon. Weather Rev., 134(9), 2318–2341, doi:10.1175/MWR3199.1, 2006.

Sander, S. P.; Friedl, R. R.; Abbatt, J. P. D.; Barker, J. R.; Burkholder, J. B.; Golden, D.
M.; Kolb, C. E.; Kurylo, M. J.; Moortgat, G. K.; Wine, P. H.; Huie, R. E.; Orkin, V. L.: Chemical kinetics and photochemical data for use in atmospheric studies, Evaluation Number 17, Tech. rep., NASA Jet Propulsion Laboratory, Pasadena, 2011.

Sarwar, G.; Simon, H.; Bhave, P; G. Yarwood, G.: Examining the impact of heterogeneous nitryl chloride production on air quality across the United States. Atmos. Chem. Phys, 2012, 12, 1-19.

Schwarzkopf, M. D. and Fels, S. B.: The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes, J. Geophys. Res. Atmos., 96(D5), 9075–9096, doi:10.1029/89JD01598, 1991.

Yarwood, G.; , Sakulyanontvittaya, T.; Nopmongcol, O.; Koo, B.: Ozone depletion by bromine and iodine over the Gulf of Mexico, Final Report to the Texas Natural Resource Conservation Commission, November, 2014.

10