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Abstract. Many applications of geophysical data – whether
from surface observations, satellite retrievals, or model sim-
ulations – rely on aggregates produced at coarser spatial
(e.g. degrees) and/or temporal (e.g. daily and monthly) res-
olution than the highest available from the technique. Al-
most all of these aggregates report the arithmetic mean and
standard deviation as summary statistics, which are what
data users employ in their analyses. These statistics are most
meaningful for normally distributed data; however, for some
quantities, such as aerosol optical depth (AOD), it is well-
known that distributions are on large scales closer to log-
normal, for which a geometric mean and standard deviation
would be more appropriate. This study presents a method of
assessing whether a given sample of data is more consistent
with an underlying normal or log-normal distribution, using
the Shapiro–Wilk test, and tests AOD frequency distributions
on spatial scales of 1◦ and daily, monthly, and seasonal tem-
poral scales. A broadly consistent picture is observed using
Aerosol Robotic Network (AERONET), Multiangle Imaging
SpectroRadiometer (MISR), Moderate Resolution Imagining
Spectroradiometer (MODIS), and Goddard Earth Observing
System Version 5 Nature Run (G5NR) data. These data sets
are complementary: AERONET has the highest AOD accu-
racy but is sparse, and MISR and MODIS represent different
satellite retrieval techniques and sampling. As a model simu-
lation, G5NR is spatiotemporally complete. As timescales in-
crease from days to months to seasons, data become increas-
ingly more consistent with log-normal than normal distribu-
tions, and the differences between arithmetic- and geometric-
mean AOD become larger, with geometric mean becoming

systematically smaller. Assuming normality systematically
overstates both the typical level of AOD and its variability.
There is considerable regional heterogeneity in the results: in
low-AOD regions such as the open ocean and mountains, of-
ten the AOD difference is small enough (< 0.01) to be unim-
portant for many applications, especially on daily timescales.
However, in continental outflow regions and near source re-
gions over land, and on monthly or seasonal timescales, the
difference is frequently larger than the Global Climate Ob-
servation System (GCOS) goal uncertainty in a climate data
record (the larger of 0.03 or 10 %). This is important because
it shows that the sensitivity to an averaging method can and
often does introduce systematic effects larger than the total
goal GCOS uncertainty. Using three well-studied AERONET
sites, the magnitude of estimated AOD trends is shown to be
sensitive to the choice of arithmetic vs. geometric means, al-
though the signs are consistent. The main recommendations
from the study are that (1) the distribution of a geophysical
quantity should be analysed in order to assess how best to ag-
gregate it, (2) ideally AOD aggregates such as satellite level 3
products (but also ground-based data and model simulations)
should report a geometric-mean or median AOD rather than
(or in addition to) arithmetic-mean AOD, and (3) as this is
unlikely in the short term due to the computational burden in-
volved, users can calculate geometric-mean monthly aggre-
gates from widely available daily mean data as a stopgap, as
daily aggregates are less sensitive to the choice of aggrega-
tion scheme than those for monthly or seasonal aggregates.
Furthermore, distribution shapes can have implications for
the validity of statistical metrics often used for comparison
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and evaluation of data sets. The methodology is not restricted
to AOD and can be applied to other quantities.

1 Introduction

Geophysical data are obtained from a variety of data sources
and model simulations across many disciplines in the Earth
sciences. As one example, aerosol optical depth (AOD) is of-
ten measured on the ground by Sun photometry (e.g. Giles
et al., 2019), retrieved from passive (single- or multispectral,
single- or multi-view, and single- or multi-polarisation state)
or active (lidar) satellite observations (e.g. Kokhanovsky and
de Leeuw, 2009; Lenoble et al., 2013; Dubovik et al., 2019)
and simulated by global models (e.g. Kinne et al., 2006).
While each sensor or model has its own distinct spatial and
temporal sampling characteristics, for applications in many
research areas it is common to use aggregates represented
by daily to seasonal averages and on length scales of the or-
der of tens of kilometres to several degrees. These are often
somewhat coarser than the highest resolution available from
a technique. For satellite retrievals, these daily or monthly
aggregates are known as level 3 (L3) data. Level 2 (L2) data
represent an instantaneous snapshot, often along the orbit
track at the native resolution of the sensor (or some mul-
tiple of it), and level 1 (L1) data consist of the geolocated
satellite measured radiances which are used as inputs to L2
algorithms. Daily L3 data are constructed by aggregating L2
retrievals; monthly L3 data are typically constructed by ag-
gregating daily L3 data, although in some cases they have
also been constructed from L2 directly, which gives different
results if the contributing days have unequal sampling (Levy
et al., 2009).

Reasons for preferring L3-type (i.e. aggregated) data for
some applications over L2-type data include the decreased
storage and computational overhead, the fact that aggregates
are typically reprojected onto a regular grid and so are of-
ten more user-friendly, and a desire to have a data set with
fewer gaps. Gaps can be caused by unfavourable retrieval
conditions; for example, algorithms to retrieve atmospheric
aerosol or surface reflective and emissive properties often re-
quire cloud-free, snow-free, and daytime scenes. Gaps also
arise from the simple fact that surface and satellite obser-
vations do not observe every location all the time. Unfortu-
nately, sampling incompleteness adds an additional represen-
tativity error in comparisons; in some fields, such as aerosol
remote sensing, this can be difficult to quantify and some-
times is non-negligible (Levy et al., 2009; Sayer et al., 2010;
Colarco et al., 2014; Geogdzhayev et al., 2014; Schutgens
et al., 2017). While global or regional model simulations
are typically already on a fixed grid and spatiotemporally
complete, the use of daily or monthly model averages like-
wise has the appeal of lower computational requirements and
ease of use, particularly when comparing to an incomplete
ground-based or satellite product.

While the principles of uncertainty propagation in remote
sensing are well established (Povey and Grainger, 2015;
Merchant et al., 2017), until recently comparatively little ef-
fort (relative to L1 and L2 development) has been put into de-
termining the most meaningful ways to construct L3 data and
assess their uncertainties. This occurs despite the wide use
of these data products in research. One notable exception is
sea surface temperature, for which comprehensive estimates
of multiple components of L3 uncertainties have been de-
veloped (Kennedy, 2014; Bulgin et al., 2016a, b). Implicit
in the calculation of summary statistics such as mean and
standard deviation in a L3-type data set (or model average)
is the assumption that the points aggregated belong to some
local population such that the calculation of summary statis-
tics is meaningful for describing the state of the Earth. The
use of binned data is another option, although analyses using
binned aggregates are generally less common than those us-
ing averages. One fundamental aspect of this is the question
of how to average the data; i.e. which distribution’s summary
statistics provide the most useful and meaningful metrics to
report? No simple distribution is likely to provide a perfect
fit to any observational data set, so the relevant problem is in
finding an approximate distribution sufficient for a particu-
lar application. Choice of mean (and often additionally stan-
dard deviation), as is most common in many fields (including
AOD), takes as a given that the normal distribution (which is
described in terms of these two parameters) is an appropriate
distribution to summarise this population. For a given mean
τ̄n and standard deviation σn of AOD, the normal frequency
distribution P(τ)∼N (τ̄n,σ

2
n ) is given by

P(τ)=
dN
dτ
=

N
√

2πσn
exp

[
−

1
2

(
τ − τ̄n

σn

)2
]
, (1)

whereN is a normalisation constant (the total number of data
points). As this is symmetric about τ̄N , this mean value is
also the distribution’s median and mode.

This assumption runs counter to the fact that AOD at a
given location tends not to be normally distributed, which
has been indicated in the literature for at least 50 years. Writ-
ing in terms of aerosol-induced turbidity (directly propor-
tional to AOD), Flowers et al. (1969) presented measure-
ments at 500 nm, collected through the early 1960s using
Sun photometers designed by Volz (1959) as part of an ob-
servation network of several dozen sites across the United
States of America (USA). Note that this was but one of sev-
eral networks observing atmospheric turbidity (sometimes
separating aerosols from other contributions and sometimes
not) with various types of instruments through the 20th cen-
tury. Holben et al. (2001) reviews others, with the earliest
being bolometer measurements in Washington, District of
Columbia (DC), USA, beginning in 1902 (Roosen et al.,
1973). Instrumentation and data processing (e.g. calibration,
data collection and reporting, and cloud screening) methods
limit the accuracy and use of some of these earlier records;
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Forgan et al. (1993) provide a thorough discussion. Never-
theless, Flowers et al. (1969) found (their Fig. 4) cumulative
distribution functions consistent with log-normal distribu-
tions, i.e. normal when the data are represented in log space;
analogous to Eq. (1), the log-normal frequency distribution
P(log10τ)∼ L(τ̄l,σ

2
l ) is given by

P(log10τ)=
dN

dlog10τ

=
N
√

2πσl
exp

[
−

1
2

(
log10τ − log10τ̄l

σl

)2
]
. (2)

Here τ̄l and σl are the geometric mean and geometric stan-
dard deviation of AOD, respectively; as for the normal dis-
tribution, the geometric-mean value is also its median and
mode. A base 10 logarithm is used here for numerical conve-
nience. For easier comparison between the two distribution
forms, in this study, τ̄n (i.e. arithmetic mean) and τ̄l (i.e. geo-
metric mean) are represented and will be discussed in abso-
lute, rather than logarithmic, units. Note that due to the addi-
tive properties of logarithms, τ̄l is equivalent whether calcu-
lated as the geometric mean of τ or the arithmetic mean of
log10τ ; i.e.

τ̄l =

(
N∏
i=1
τi

) 1
N

= 10
1
N

∑N
i=1(log10τi). (3)

The geometric standard deviation σl is the standard de-
viation of log-transformed data (log10τ ). Because of this,
unlike arithmetic standard deviation, it is a multiplicative
rather than additive factor (Kirkwood, 1979), i.e. the cen-
tral one standard deviation of the data is encompassed by the
range 10log10(τ̄l−σl) to 10log10(τ̄l+σl) (multiplicative), imply-
ing an asymmetric range when expressed in absolute (non-
logarithmic) units, compared to τ̄n±σn (additive) for an arith-
metic mean.

Note that Eq. (2) is often expressed in terms of dN/dτ
rather than dN/dlog10τ (i.e. linear rather than logarithmic
ordinate). In this case, using the chain rule and properties
of logarithms, the relation between the two formulations is
given by

dN
dτ
=

dN
dlog10τ

dlog10τ

dτ
=

dN
dlog10τ

1
ln(10)τ

, (4)

where ln(10) denotes the natural logarithm of 10, which
is approximately 2.30. Some further relations between nor-
mal and log-normal distribution parameters, including trans-
formations between the arithmetic and geometric mean and
standard deviation, are given by Table 1 of O’Neill et al.
(2000) and omitted here for brevity.

Other studies published around this time (e.g. Ahlquist and
Charlson, 1967; Volz, 1970; Volz and Sheehan, 1971; Ran-
garajan, 1972) reported AOD measurements in other parts
of the world. These analyses were more concerned with

estimating the value and distribution (which turned out to
be close to normal) of its wavelength-dependence, via the
Ångström exponent α (Ångström, 1929), than those of AOD.
This was of interest both for visibility applications and be-
cause α was often used to estimate one of the parameters in
the aerosol particle size distribution model of Junge (1955,
1963), which was used widely at the time. Intriguingly, one
implication of log-normally distributed AOD is that α should
be normally distributed (if the data belong to a single popu-
lation). This arises from the definition of α,

α =−
dlog(τ (λ))

dlog(λ)
≈−

log
τλ1
τλ2

log λ1
λ2

=−
logτλ1 − logτλ2

logλ1− logλ2
, (5)

for AOD (τ ) at some wavelength λ, approximated in these
studies using bispectral AOD measurements at wavelengths
λ1 and λ2. Due (again) to the additive properties of algo-
rithms, α as the log-ratio of two log-normal distributions is
equivalent to the difference of two normally distributed ran-
dom variables (even when they are correlated, as is the case
for AOD), which is itself normally distributed. If AOD were
normally distributed, then (because it is a positive-definite
quantity) in low-AOD conditions, α would exhibit significant
skew and possibly multiple modes (in high-AOD conditions,
α might appear close to normal but with incorrect kurtosis).
Hence, the fact that α distributions presented in some of those
studies are close to normality, given the fairly low-AOD con-
ditions, support (although are not alone unambiguous evi-
dence for) log-normally distributed AOD populations. One
caveat is that α distributions can exhibit false skew depen-
dent on the magnitude and spectral correlation of the uncer-
tainties in τ(λ) (Wagner and Silva, 2008). Note that Eq. (5)
is insensitive to the choice of logarithmic base.

Daily and monthly averages of extinction at multiple loca-
tions presented by Roosen et al. (1973) also show skewed
distributions associated with log-normality, although fre-
quency distributions are not directly shown. Several years
later, Malm et al. (1977) and King et al. (1980) presented
spectral AOD measurements from the opposite ends (Page
and Tucson, respectively) of Arizona, USA. They realised
that it was most appropriate to represent the resulting fre-
quency distributions with logarithmic (geometric), rather
than arithmetic, averages and standard deviations. More re-
cent work has taken advantage of the great increase in data
quality, volume, and coverage possible from better instru-
mentation and computational power. O’Neill et al. (2000)
showed that AOD derived from Sun photometer measure-
ments at a variety of individual Aerosol Robotic Network
(AERONET) sites spread around the world tends to have
frequency distributions which statistically resemble a log-
normal distribution to a much stronger degree than nor-
mal. All these previous studies were of data aggregated over
time summarised at individual locations; around the same
time, providing an early satellite example, Ignatov and Stowe
(2000) found approximately log-normal AOD (and normal
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Figure 1. Synthetic frequency distributions for log-normally dis-
tributed AOD with a mean of 0.2 and geometric standard deviation
0.35, L(0.2,0.352), shown on (a) linear and (b) logarithmic AOD
axes. Vertical red and blue dashed lines represent geometric- and
arithmetic-mean values, respectively. Horizontal red and blue ar-
rows indicate the range of geometric and arithmetic mean ± one
standard deviation.

α) in aerosol retrievals over ocean scenes. This indicated
that log-normal tendencies might be found in AOD data also
aggregated spatially as opposed to just temporally. Similar
skewed distributions were reported by Smirnov et al. (2011)
for ship-based Sun photometer AOD observations taken on
cruises. Maps of retrieved or simulated AOD, and scatter
density plots in satellite validation studies, show a similar
pattern (e.g. Kinne et al., 2006; Remer et al., 2008; Sayer
et al., 2012): a large cluster of points at a comparatively low
AOD, with a rapidly decreasing number of points as AOD
increases, corresponding to locations and times affected by
severe smoke, dust storms, or pollution episodes.

Due to this asymmetry, normal statistics (i.e. arithmetic
mean τ̄n and standard deviation σn) will overstate the typ-
ical level of AOD observed and its variability, implying
in some cases unphysical negative AOD. Here “typical” is
used in the sense of “common”; the positive tail of log-
normally distributed data means that its arithmetic mean lies
above its median such that the arithmetic mean is “uncom-
mon” in the sense of being somewhat larger than the me-
dian value. This is illustrated in Fig. 1, which compares
arithmetic and geometric statistics for a synthetic AOD dis-
tribution L(0.2,0.352) similar to that of many locations
across the United States and Europe (e.g. O’Neill et al.,
2000). The central one standard deviation (1σ ) about the
mean, which corresponds to an AOD range of 0.09–0.45 (i.e.
log10(τ̄l)± σl in log space) when calculated using the geo-
metric mean and standard deviation, correctly encompasses
approximately 68.4 % of the data. In contrast calculating
arithmetic mean and standard deviation gives 0.28 (i.e. over-
stating the typical AOD) and 0.27; the resulting 1σ range
(τ̄n± σn, 0.01–0.55) includes 89.2 % of the data (i.e. over-
stating the variability). Figure 1b reveals the symmetry of the
distribution when shown in log space. Thus, representing a
log-normally distributed quantity using normal-distribution-
appropriate statistics has systematic quantitative implications
for the interpretation of the data.

Figure 2. Difference between geometric- and arithmetic-mean
AOD (τ̄l− τ̄n) as a function of median (equivalent to geometric
mean) AOD and geometric standard deviation for log-normally dis-
tributed data. Diamonds indicate the median AOD and geometric
standard deviation (calculated over all direct Sun data) found at as-
sorted AERONET sites which have been well-used in the literature.

Figure 2 takes a more general look at the difference be-
tween geometric- and arithmetic-mean AOD calculated from
an underlying log-normal distribution; this becomes more
negative as either the median AOD or geometric standard de-
viation increases (i.e. as the distribution moves rightward or
broadens). Also shown are long-term values of both parame-
ters for selected AERONET sites which are frequently used
in the literature. The resulting geometric–arithmetic-mean
AOD difference for these sites spans from around −0.01 to
more negative than −0.10, which are non-negligible values.
This implies that, at least on multi-year timescales, knowl-
edge of the shape of the underlying distribution can be im-
portant for the choice and interpretation of summary metrics.

Log-normal distributions are common across quantities
in the natural sciences and tend to arise when the underly-
ing phenomenon is governed partly by multiplicative (rather
than additive) factors; Limpert et al. (2001) provides gen-
eral examples and discussion. Hinds (1999) and Anderson
et al. (2003) discuss aerosol-specific factors such as, for ex-
ample, changes in emissions or removal (e.g. onset of fires
and soil fragmentation on the one hand or precipitation on
the other) or turbulence and dispersion affecting different
parts of the size distribution, which are not additive in effect.
Aerosol particle size distributions may be represented suffi-
ciently well by combinations of log-normal modes (Dubovik
et al., 2002); this is common practice in satellite retrieval al-
gorithms. Note that, for a given size distribution, AOD is pro-
portional to total mass. Kok (2011a, b) presented a theoretical
model of dust emissions based on fragmentation theory and
log-normal size distributions, which agreed with measure-
ments better than existing parametrisations in global mod-
els. A further issue important to consider is that the observed
distribution of a quantity is a convolution of the true distri-
bution; the sampling of the sensor (or model); and any mea-
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surement, model, or retrieval error. Depending on the form
of these errors, the underlying shape of a distribution might
be skewed. For example if a satellite AOD retrieval algo-
rithm makes a biased assumption about the aerosol single-
scattering albedo (SSA), it can lead to a fractional error in
retrieved AOD (e.g. Eck et al., 2013), broadening or narrow-
ing the tail of the observed AOD distribution (dependent on
whether SSA is under- or overestimated).

Similar behaviour is found for many other remotely
sensed quantities; for example, Campbell (1995) assessed
log-normality on large scales for oceanic chlorophyll, water-
leaving radiance, and photosynthetic yield, while cloud op-
tical depth (COD) is also known to be distributed approx-
imately log-normally (King et al., 2013), and some of the
most widely used cloud classification schemes (introduced
by Rossow and Schiffer, 1999) are based on joint histograms
of (roughly log-normal) COD against cloud-top pressure.
Both rainfall rates and cloud particle size distributions can
sometimes be represented well by both log-normal and
gamma distributions (Cho et al., 2004; Platnick et al., 2017).
A commonality these quantities share with AOD is that they
are positive-definite quantities (i.e. cannot take zero or nega-
tive values) and often have a long tail, which are also features
of log-normal and gamma distributions.

Recent efforts by other researchers have helped with
understanding spatial and temporal scales in AOD varia-
tions and their potential effects on data aggregates. Ander-
son et al. (2003) used surface-level aerosol scattering and
column AOD and found that autocorrelation could remain
high on scales of tens to several hundreds of kilometres
and timescales of days to weeks. Noting that study, Ko-
vacs (2006) assessed validation statistics of Moderate Res-
olution Imaging Spectroradiometer (MODIS) AOD against
AERONET as a function of the distance of satellite retrievals
from AERONET sites. The level of agreement showed site-
specific drop-offs with distance, with generally less variabil-
ity over ocean sites which were less likely to be influenced
by local sources. Alexandrov et al. (2004) used a network of
shadow-band radiometers across the southern Great Plains in
the USA to perform an energy spectrum analysis on AOD
variations. They observed a scale break at length scales of
around 12–15 km (interestingly, slightly larger than many
space-borne L2 AOD products), below which the structure
function of AOD variations showed one exponent and above
which they showed another, corresponding to regimes where
variations were dominated by 3-D and 2-D turbulence, re-
spectively. Using field campaign observations and satellite
retrievals over the southeastern USA, Kaku et al. (2018) note
that correlation lengths can differ for surface level vs. col-
umn aerosol loading. These studies of correlation structure
are important for defining suitable scales for a population to
be aggregated and for describing how the error characteris-
tics of such aggregates might vary spatially and temporally.

Several studies have sought to assess representation un-
certainty in L3-type aggregates; Sayer et al. (2010) exam-
ined how the completeness of sampling of satellite AOD re-
trievals within model grid cells affected the level of agree-
ment between data sets. Li et al. (2016) assessed how repre-
sentative long-term AERONET sites are on satellite L3 spa-
tial scales and monthly timescales, as part of a larger body
of work to characterise and reduce the uncertainty in multi-
sensor monthly mean AOD records. From a perspective of
comparing global model grid cells to point measurements,
Schutgens et al. (2016a) assessed the extent to which repre-
sentativeness errors caused by coarse model grid size could
be decreased by temporal averaging. They found that AOD
uncertainties could be decreased to a greater extent than other
aerosol properties but that such errors were often still larger
than desirable. Schutgens et al. (2017) then attempted to esti-
mate representation uncertainties on ground- or satellite-type
aerosol data aggregates on different spatiotemporal scales.
They found that spatiotemporal collocation was important,
and, as in the prior study, representation errors could still be
significant in some cases, such as when near aerosol point
sources or in complex terrain. Alexandrov et al. (2016) pro-
posed describing the logarithm of AOD in terms of Gaussian
structure functions (accounting for aerosol loading, variance,
and autocorrelation) and presented a comparison between
MODIS retrievals with global-circulation-model simulations
represented in this way. Povey and Grainger (2019) aggre-
gated satellite AOD retrievals on a monthly basis (i.e. L2 to
monthly L3 directly) and represented the results in terms of
sums of log-normal modes. They found that doing so both
highlighted regions of significant variability and aided in
identifying systematic differences between data sets.

This analysis aims to complement these other recent stud-
ies, building most directly on O’Neill et al. (2000), as a fur-
ther step towards a more robust calculation and use of AOD
aggregates in ground-based, satellite, and model-simulation
studies. While the example application is to AOD, the frame-
work introduced is applicable more generally to other (geo-
physical or not) data aggregates. The central questions to be
addressed are as follows: on commonly used spatial and tem-
poral scales, does a normal or log-normal distribution bet-
ter represent AOD frequency distributions? When and where
does the choice matter? When and where might neither dis-
tribution be adequate? And what are the implications for L3
data and related analyses if a log-normal representation is
used instead? Section 2 describes the data and methodology
employed. Section 3 presents the results of the analysis, and
Sect. 4 discusses the implications of the findings for the cre-
ation and use of aggregated AOD data or model simulations.
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2 Definitions, methodology, and data

2.1 Data and model simulations used

This analysis uses ground-based observations from
AERONET, together with satellite retrievals from the
Multiangle Imaging SpectroRadiometer (MISR) and
MODIS instruments, and model simulations from the God-
dard Earth Observing System (GEOS) Version 5 Nature Run
(G5NR). All of these have different spatiotemporal sampling
techniques and associated uncertainties in their estimates of
AOD. Considering a diverse set of data sources such as this
provides a more comprehensive picture of the frequency dis-
tributions of AOD than would be obtained from only a single
data type. It allows the strengths of individual techniques
to be used while helping to avoid erroneous conclusions
stemming from limitations of individual techniques. The
data sources are described below.

2.1.1 AERONET

AERONET provides aerosol (and water vapour) data from
Sun photometer measurements, obtained with standardised
acquisition, calibration, and processing protocols. This anal-
ysis uses the latest Version 3 direct-Sun level 2 (cloud-
screened, post-deployment-calibrated, and quality-assured)
AERONET AOD data. Note that “level 2” in AERONET
terminology refers to quality-assurance level, regardless of
temporal aggregation level, as opposed to the satellite level
2, which refers to instantaneous data only. Version 3 includes
improvements to sensor characterisation, site geolocation ac-
curacy, and cloud–aerosol discrimination (Giles et al., 2019),
particularly in the detection of stable optically thin cirrus
cloud layers and rapidly evolving fine-mode aerosol plumes.
Here, all direct-Sun observations from all sites (1185 at the
time of writing) from the start of 1993 to the end of 2018
are used. Measurement cadence depends on the instrument
model used and can be adjusted depending on the desired mix
of scan types, but for direct-Sun observations, it is typically
every 5–15 min in cloud-free skies during daylight hours.

All instruments deployed as part of AERONET provide
AOD at 440, 675, 870, and 1020 nm at a minimum; the ma-
jority include additional channels between 340 and 1600 nm,
with 500 nm being a common addition. In this analysis,
AERONET AOD is interpolated spectrally to 550 nm, as this
is a common reference wavelength for many satellite data
products and model simulations, although the conclusions
do not change if other wavelengths are used instead. Here-
after, mentions of AOD without a specified wavelength refer
to AOD at 550 nm. This is performed with a least-squares
fit of all available AERONET AODs within the 440–870 nm
wavelength range (typically four, more for some configura-
tions) to a quadratic polynomial,

log(τλ)= a0+ a1 log(λ)+ a2 log(λ)2, (6)

where coefficients a0, a1, and a2 are calculated on a point-
by-point basis. This quadratic formulation is more robust to
calibration problems in individual channels than a linear two-
channel interpolation. It also reflects the fact that the rela-
tionship between log(τ ) and log(λ) is not linear but shows
curvature dependent on fine-mode particle size (Eck et al.,
1999; Schuster et al., 2006). When more than two wave-
lengths are available, this is a more realistic description of
the spectral derivative of AOD than the bispectral approxi-
mation in Eq. (5). The uncertainty in AERONET midvisible
AOD is∼ 0.01 (Eck et al., 1999), which is somewhat smaller
than typical uncertainties in satellite retrievals or model sim-
ulations.

2.1.2 MISR

The latest version, 23, of MISR L2 data provides AOD at
558 nm, over land and ocean, with a horizontal pixel size of
4.4 km; the use of 558 rather than 550 nm has a negligible
impact on the analysis here. The instrument includes nine
cameras with a maximum swath width around 400 km, al-
though the edges of the scan are not covered by all cameras
and so retrievals are provided over a slightly narrower swath.
This provides repeat views of a given scene roughly once per
week at tropical latitudes and once every 3 d at high latitudes.
MISR flies on the Sun-synchronous Terra platform, provid-
ing data from early 2000, with a 10:30 local solar equato-
rial crossing time. Separate processing algorithms are ap-
plied over land and dark water; version 23 updates and ini-
tial evaluation are provided by Garay et al. (2017) and Witek
et al. (2018). These have not yet been validated on a global
basis but are expected to reduce some high biases seen over
low-AOD water scenes, and low biases seen over high-AOD
scenes, reported in validation analyses of previous data ver-
sions (e.g. Kahn et al., 2010).

This analysis uses 5 years (2004–2008) of L2 data, cor-
responding to around half a million retrievals per day (af-
ter accounting for unfavourable retrieval conditions). The
choice of record length is a balance between the robustness of
the analyses and storage and processing concerns; 1 year of
the MISR L2 product (MIL2ASAE) corresponds to approx-
imately 170 GB. As an order-of-magnitude estimate, assum-
ing (on average) a revisit time of 5 d and half the data being
unsuitable for retrieval due to, for example, cloudiness, ap-
proximately 200 views of a given point on the Earth would be
expected over a 5-year period. While this would show con-
siderable spatial variation, qualitatively it is expected to be
sufficient, as it is well-known from observations and mod-
elling that the main features of the global aerosol system
are systematic and repeat year-to-year (e.g. d’Almeida et al.,
1991; Holben et al., 2001; Kinne et al., 2006; Remer et al.,
2008). Recently, Lee et al. (2018) used MISR (version 22)
and MODIS retrievals to assess how many years of data were
required (on both an annual and a seasonal basis) for a cal-
culated climatology to converge to within an AOD of ±0.01.
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They found that over much of the open ocean and many land
regions, 5 or fewer years were sufficient, although for some
aerosol source regions even the full MISR record (17 years at
the time) was insufficient. This does not directly answer the
question of the record length that is necessary for the present
analysis, although it does suggest that except for near strong
source regions the results should sample sufficient interan-
nual variability to be only weakly sensitive to the specific
time period chosen.

2.1.3 MODIS

The MODIS instruments fly on the Terra and Aqua plat-
forms; L2 data from the latest Collection 6.1 (C61) from
Aqua (launched 2002) are used here for the same 5-year pe-
riod as the MISR analysis. MODIS Aqua is thought to have
slightly better radiometric performance than Terra (e.g. Lya-
pustin et al., 2014). Additionally, the Aqua orbit has a 13:30
local solar equatorial crossing time, so this provides a higher
degree of sampling independence from the MISR retrievals
than if MODIS Terra were used. The MODIS Atmosphere
aerosol product used here (MYD04) includes retrievals from
two Dark Target (DT) algorithms, for pixels identified as wa-
ter and vegetated land, plus the Deep Blue (DB) algorithm.
The C61 DT land algorithm is similar to that of the previ-
ous Collection 6 (C6; Levy et al., 2013) but implements an
updated surface reflectance model, detailed in Gupta et al.
(2016), to reduce a systematic positive bias of DT over urban
surfaces. The C61 DB data include numerous small updates
to surface and aerosol models and cloud and quality assur-
ance (QA) tests to reduce known error sources (Hsu et al.,
2019; Sayer et al., 2019). All three algorithms also benefit
from sensor calibration updates. Since C6, MODIS retrievals
have included a QA-filtered merged data set combining DB
and DT retrievals to increase spatial coverage. The C6 merg-
ing algorithm is described by Sayer et al. (2014) and essen-
tially uses the water DT algorithm for water scenes and picks
from or averages the DB and DT algorithms dependent on
surface type over land. The same merging logic is applied in
the creation of the C61 merged product, which is used here.
Note that the DT land algorithm permits retrieval of AOD
down to −0.05, although negative AOD is unphysical; here,
zero or negative AOD values are set to 0.0001 instead (as
logarithms are only defined for positive values). The results
of this analysis are negligibly sensitive to the choice of AOD
floor threshold.

MODIS’ 2330 km swath results in near-global daily obser-
vations in the tropics and once-daily or twice-daily observa-
tions at higher latitudes. Retrievals are provided at the 10 km
nominal horizontal pixel size at the sub-satellite point. To-
wards the edge of the scan, the scan geometries and Earth’s
curvature cause a “bow-tie distortion” where pixels become
larger and consecutive scans begin to overlap (Xiong et al.,
2006). This distortion at the edge of the swath is about a fac-
tor of 2 in the along-track and 5 in the across-track direction

(i.e. 10-fold increase in pixel area), and overlap is close to
100 %, which has consequences for AOD retrieval character-
istics (Sayer et al., 2015). For about half of the swath, how-
ever, the areal expansion is less than a factor of 2 compared
to the nominal 10 km× 10 km pixel size.

2.1.4 GEOS-5 Nature Run

The G5NR is a global 7 km non-hydrostatic mesoscale sim-
ulation based on the Ganymed version of GEOS-5 (Putman
et al., 2014). The aerosol component is described and evalu-
ated by Castellanos et al. (2018). This is a 2-year (May 2005–
2007) simulation, and while some factors (e.g. volcanic and
biomass-burning emission sources) were prescribed, meteo-
rology was not. Hence, the G5NR is not a direct simulation
of that specific historical period (and should not be compared
one-to-one against real observations from that period) but is
designed to provide a realistic and representative simulation
of the Earth system from which synthetic observations could
be generated for, for example, observation system develop-
ment.

Aerosol output fields are provided on a 30 min time step
on a 0.0625◦ regular latitude–longitude grid. This includes
column AOD contributed by organic carbon, black carbon,
dust, sea salt, and sulfate, and following the recommenda-
tions of Castellanos et al. (2018), scaling factors (their Ta-
ble 3) are applied to these component AODs before summing
to get the total AOD. These scaling factors bring the G5NR
component AODs into line with a climatology from the Mod-
ern Era Retrospective analysis for Research and Applications
Aerosol Reanalysis (MERRAero). MERRAero was a long-
term reanalysis which assimilated MODIS-based AOD; its
aerosol component is evaluated by, for example, Buchard
et al. (2015). Data from the simulated year 2006 only are
used; Castellanos et al. (2018) noted that G5NR aerosol
fields were initialised to zero and so did not use the initial
6 months of the simulation to ensure that equilibrium had
been reached. The final 6 months of the simulation are also
discarded here to ensure that each calendar month has equal
representation in the analysis. As this leaves only four avail-
able seasons, G5NR output is analysed on only a daily and
monthly basis.

2.2 The Shapiro–Wilk test and its application

Shapiro and Wilk (1965) present a method for testing
whether a sample of data is consistent with draws from a nor-
mally distributed population. Their derivation included some
empirical comparisons to other tests, and they found it to
have some advantages over those techniques. Yap and Sim
(2011) performed Monte Carlo simulations of various distri-
butions to assess eight different normality tests and found
that the Shapiro–Wilk (SW) test has the greatest statisti-
cal power in most circumstances. The SW test computes
the squared discrepancy between the quantiles of the sam-
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ple with those expected from random samples from a nor-
mally distributed population. Implementations are available
in many software packages and languages. The test statistic
W for a sample x is defined as

W =

(
N∑
i=1
aix(i)

)2

N∑
i=1
(xi − x̄)

2
, (7)

where x(i) indicates the ith smallest sample member (known
as the ith order statistic of x), and ai values are weighting co-
efficients calculated from the expected values (m) and covari-
ance (V ) of order statistics from normally distributed data:

(a1, . . .,aN )=
mTV −1

(mTV −1V −1m)1/2
. (8)

The test requires N ≥3, and W can take values between
0 and 1. Sarhan and Greenberg (1956) (their Table 1),
later corrected in Sarhan and Greenberg (1969), provide V
for N ≤ 20; Shapiro and Wilk (1965) provide approximate
calculations for larger sample sizes, and Royston (1982,
1992) provide approximate m and V up to N = 5000. Rel-
evant sample sizes in the present study are up to sev-
eral hundred points. As the normal distribution is symmet-
rical about its mean, the coefficients ai are symmetrical;
e.g. a = (−0.643,−0.281,−0.088,0.088,0.281,0.643) for
N = 6. The coefficients are larger for the outer elements of
ai , corresponding to the tails of the data sample (i.e. the outer
order statistics x(i)). The numerator of Eq. (7) thus represents
a tail-weighted squared sum, while the denominator repre-
sents a sum of squared deviations from the sample mean x̄.
For normally distributed samples these increase around the
same rate such that W is close to 1; for non-normal data the
denominator increases more rapidly such that W becomes
closer to 0.

Royston (1992) provides a normalisation forW in order to
estimate a p value for the result, i.e. the probability that a W
score at least as extreme would be observed under the null
hypothesis of the sample being drawn from a normally dis-
tributed population. The Royston (1992) extension for large
N and normalisation are used here. Note that the equivalent
test for log-normality is simply W calculated using the log-
arithm of the data, i.e. here log10τ rather than τ . A high p
value indicates consistency with draws from a normal (or
log-normal) distribution. One important point to note is that
this test only evaluates the degree of departure from normal-
ity: it does not test the importance of that departure. As with
any test like this, the power (i.e. efficacy at detecting a given
departure) is a function of sample size. Thus for large sample
sizes it is easier to detect a discrepancy from normally dis-
tributed data even if the discrepancy is trivial. Both of these
points should be kept in mind when interpreting the results.

The SW test is employed here as follows. First, spatial dis-
tributions of AOD are assessed by aggregating the MISR,

MODIS, and G5NR data from their native spatial resolu-
tions to 1◦ (as this is a common spatial scale for L3 AOD
products and model output) and applying the SW test with-
out any aggregation in time. The resulting aggregates thus
have a daily time step for MISR and MODIS (consider-
ing all orbits from a given calendar day) and 30 min for
G5NR. Next, temporal variations in AOD within a day are
assessed by aggregating the AERONET and (previously spa-
tially aggregated) G5NR data on a daily basis and applying
the SW test to each site and grid cell. Aggregating G5NR
first in space and then in time is more similar to the way
polar-orbiting L3 aggregates sample the global aerosol sys-
tem (as each L2 product is essentially a near-instantaneous
snapshot), although the results are not significantly differ-
ent if G5NR is analysed first in time and then in space. Fi-
nally, the resulting daily aggregates from all data sets are
aggregated to monthly and seasonal time steps and the SW
test applied to each site and grid cell. Seasons are defined
as December–January–February (DJF), March–April–May
(MAM), June–July–August (JJA), and September–October–
November (SON). Note that the monthly and seasonal calcu-
lations use daily τ̄l as a basis, although results differ negligi-
bly if τ̄n is used instead.

In each case, at least three data points are required for
an aggregate to be considered valid; this is the minimum
required for the SW test calculation and also the minimum
number of observations for AERONET or MODIS standard
processing to report a daily average value and the minimum
number of days for MODIS products to report a monthly av-
erage value. The SW p value is computed for distributions
of τ and log10τ , with resulting p values denoted by p(τ) and
p(log10τ), respectively, and the results fall into one of four
possible categories.

1. |τ̄l− τ̄n| ≤ τt. In this case the choice of normal or log-
normal summary statistics may be considered unimpor-
tant, as the resulting arithmetic and geometric averages
are similar. The threshold τt is taken as 0.01, which is
the typical uncertainty in AERONET midvisible AOD
(Eck et al., 1999), and thus represents a reasonable
lower bound on achievable uncertainty in average AOD
from models and observations at the present time. It is
also similar to the thresholds for AOD accuracy over
land (±0.016) and ocean (±0.011) estimated by Chylek
et al. (2003) to be necessary to be able to constrain the
aerosol direct radiative effect to ±0.5 W m−2.

2. |τ̄l−τ̄n|> τt, but both p(τ) < pt and p(log10τ) < pt. In
this case both tests return a smaller p value than some
threshold pt, indicating evidence of detectable devia-
tion from both normal and log-normal distributions at
this significance level. Here pt is taken as 0.001; if the
underlying AOD data really were perfectly normally or
log-normally distributed (and if the distinction were im-
portant), then approximately 0.1 % of data would be ex-
pected to fall into this category. However, in reality it is
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expected that the true distributions are neither of these,
and additionally measurement and model errors may
distort the observed distributions, leading to more points
within this category. Since the p value is not informa-
tive about the magnitude of a deviation from normality
or log-normality, the additional criterion |τ̄l− τ̄n|> τt is
included, as it indicates that the magnitude of the AOD
difference is large enough that it might be important for
some scientific applications (i.e. both statistically and
scientifically relevant). Note that the analysis here is
only weakly sensitive to the choice of pt.

3. p(τ) > p(log10τ), p(τ) > pt, and |τ̄l− τ̄n|> τt. Here
the data are more consistent with draws from a nor-
mal than a log-normal distribution, the data are reason-
ably consistent with a normal distribution, and the dif-
ference between arithmetic- and geometric-mean AOD
is non-negligible. In this case, the use of normal sum-
mary statistics is more appropriate.

4. p(τ) < p(log10τ), p(log10τ) > pt, and |τ̄l− τ̄n|> τt.
The converse of category 3, here the data are best repre-
sented by log-normal summary statistics.

The results will be interpreted in terms of relative frequen-
cies of these four categories, as it is important to realise that
the idiosyncrasies in real-world data complicate the estima-
tion and calculation of p values. For example, the ideal case
of independent random samples from the true population
cannot be achieved due to correlated errors in observations or
simulations and non-random sampling in space and/or time.
SW (or other tests) cannot say whether or not the data are
normally or log-normally distributed for any given instance
but instead only help say the extent to which the two distri-
butions are reasonable, useful approximations on the whole.
In cases of small sample sizes the statistical power of the
test may remain small; if the test results for a given area are
essentially noise, then similar frequencies of normality and
log-normality might be expected. The best that can be done
is to keep in mind the limitations of the data, and the statisti-
cal tests, in the interpretation of the analysis.

3 SW test categorisation results

3.1 Spatial and temporal variation within a day

Figures 3 and 4 respectively show the categorisation results
for temporal (from AERONET and G5NR) and spatial (from
MISR, MODIS, and G5NR) frequency distributions of AOD
on daily scales. As a summary, Table 1 shows the global
mean fractions of data in each category; note that these are
the mean of each valid AERONET site and grid cell (i.e. all
sufficiently sampled areas are treated equally). Sites and grid
cells require at least 50 valid days with data to be included in
these statistics. As the spatial sampling between the data sets

Table 1. Mean fraction of data falling into the four categories of
SW test results.

Category or Daily Daily Monthly Seasonal
data set spatial temporal temporal temporal

Difference |τ̄l− τ̄n| ≤ 0.01

AERONET – 0.892 0.436 0.315
MISR 0.942 – 0.647 0.503
MODIS 0.843 – 0.335 0.177
G5NR 0.961 0.916 0.679 –

|τ̄l− τ̄n|> 0.01 and more consistent with normal distribution

AERONET – 0.022 0.094 0.058
MISR 0.015 – 0.113 0.109
MODIS 0.074 – 0.272 0.290
G5NR 0.001 0.013 0.038 –

|τ̄l− τ̄n|> 0.01 and more consistent with log-normal distribution

AERONET – 0.043 0.465 0.594
MISR 0.022 – 0.239 0.385
MODIS 0.049 – 0.385 0.423
G5NR 0.003 0.025 0.275 –

|τ̄l− τ̄n|> 0.01 and inconsistent with both distributions

AERONET – 0.043 0.006 0.033
MISR 0.021 – 0.0003 0.004
MODIS 0.034 – 0.007 0.111
G5NR 0.034 0.045 0.008 –

is quite different (Figs. 3 and 4), the results from the differ-
ent data sets are not expected to match, but reading the table
from left to right gives a sense for how the categorisations
change on the different scales assessed. The following gen-
eral conclusions can be drawn about variability relevant to
daily aggregation.

1. Patterns shown between Figs. 3 and 4 are similar;
i.e. daily AOD frequency distributions tend to have sim-
ilar shapes whether for temporal aggregation over a day
(as from AERONET or model output) or spatial aggre-
gation on scales of 1◦ (as from polar-orbiting satellites).
This establishes that it is reasonable to aggregate spatial
and temporal data on a daily basis in a similar way.

2. In areas of low to moderate AOD, including the global
oceans, mountains, and fairly clean continental regions,
for a strong majority (typically 80 % or more) of days
the difference between arithmetic- and geometric-mean
AOD (|τ̄l− τ̄n|) is smaller than 0.01. In these circum-
stances, calculating an arithmetic mean when the un-
derlying distribution is log-normal (or vice versa) intro-
duces an offset smaller than 0.01.

3. In southern and eastern Asia and parts of North Africa,
where the AOD is often high, the difference between the
arithmetic and geometric mean is more frequently (up
to around half the time) larger than 0.01. This implies
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Figure 3. Fraction of data falling into each of the four categories of Shapiro–Wilk test results for AOD distributions aggregated temporally
over a day. Columns show (left) AERONET and (right) G5NR data (note that the latter were previously spatially aggregated to 1◦). From
top to bottom, rows indicate the fraction where the data are more consistent with a normal distribution and |τ̄l− τ̄n|> 0.01, fraction more
consistent with a log-normal distribution and |τ̄l−τ̄n|> 0.01, fraction where |τ̄l−τ̄n| ≤ 0.01, and fraction where |τ̄l−τ̄n|> 0.01, and the data
show large discrepancies from frequencies expected by both normal and log-normal distributions. For AERONET, at least 50 d are required
for a site to be considered valid.

greater sensitivity to the choice of averaging method.
For these cases, log-normality tends to be a better rep-
resentation of the distributions than normality, although
for a non-negligible fraction of the data, neither distri-
bution shape provides a good fit.

Figure 5 provides brief examples of AOD distribu-
tions falling into three of the SW test categorisations for
AERONET AOD data collected within a single day. As will
be shown later, differences between normal and log-normal
distributions become more pronounced at longer timescales
than in these examples. The case for Midway Island (in the
Pacific Ocean), a location dominated by low-AOD maritime

conditions (Smirnov et al., 2003), shows a case where the
arithmetic- and geometric-mean AOD are both around 0.055,
and thus the choice of summary statistic is likely unimportant
for most applications (although note that p(log10τ) > p(τ),
indicating greater consistency with a log-normal distribu-
tion). The case for Moscow (Russia), taken from a period
of extreme wildfires during summer 2010, is characterised
by intense smoke (Chubarova et al., 2012). Here, the data
are more consistent with a normal distribution than a log-
normal one, and |τ̄l− τ̄n| = 0.05. This example (N = 21) il-
lustrates some difficulties in purely visual inference about
distribution shape when histograms are sparse; the median
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Figure 4. As in Fig. 3 except for AOD distributions aggregated spatially from full resolution to 1◦, considering data collected on individual
days. Columns show (left) MISR, (middle) MODIS, and (right) G5NR data. At least 50 contributing days are required for a grid cell to be
valid; grid cells with insufficient data are shaded in grey.

number of points contributing to a single day of AERONET
data globally was 25. In this case the data are more consistent
with a normal distribution due to a closer match toward the
tails of the distribution, but the data are consistent with both
normal and log-normal distributions under most relevant sig-
nificance levels. The final case is from Pontianak (Borneo,
Indonesia) during an intense period of biomass burning in
2015, an event analysed in detail by Eck et al. (2019). For
this date, |τ̄l− τ̄n| = 0.08, and the data show greater consis-
tency with log-normality due to the skew of the distribution.

Days where neither normal nor log-normal distributions
provide a good fit to AOD observations are commonly those
where multiple regimes are present within a grid cell or dur-
ing a day. Figure 6 presents a case study from the AERONET
site in Essex, Maryland, USA, on 5 July 2011. This day
was previously analysed by Eck et al. (2014) as a case of
rapid AOD enhancement following the development of a cu-
mulus cloud field just after 17:00 UTC (universal time co-
ordinated), near solar noon (Fig. 6a). The Sun photome-
ter was operated with a 3 min sampling cadence, with 132

points in total throughout the day. For the day as a whole,
p(τ)� pt and p(log10τ)� pt; i.e. the data are inconsistent
with both normal and log-normal distributions, revealed by
the bimodality of the histogram in Fig. 6b. However, for the
111 points before 17:00 UTC p(τ)= 0.002 and p(log10τ)=

0.009, and for the 14 points after 18:00 UTC, p(τ)= 0.38
and p(log10τ)= 0.54, in both cases indicating stronger evi-
dence for log-normality than normality. By combining vari-
ous data sets and lines of evidence, Eck et al. (2014) attribute
enhancements like these to a combination of humidification
and new particle formation rather than cloud contamination
in the direct-Sun data, so there is physical reasoning for this
bimodality. In situations like this the multimodal-fitting ap-
proach of Povey and Grainger (2019) would give a more
complete representation of the aerosol field than presenting
single-distribution summary statistics. Distribution-agnostic
metrics (such as reporting various percentiles of the AOD)
are an alternative option.

Note also that the near-universal choice of aggregating
daily on a UTC calendar day basis, rather than in terms of
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Figure 5. Histograms (grey) of 550 nm AOD observed at three AERONET sites on individual dates (given in panel titles), corresponding to
different SW test classification results. Arithmetic- and geometric-mean AOD (τ̄n, τ̄l, respectively), p values for the SW test for the respective
distributions, number of points, and category are also given for each case. Bin sizes are site-dependent. Normal and log-normal fits to each
histogram are shown in blue and red, respectively.

Figure 6. (a) Time series and (b) histogram (bin size 0.025) of
550 nm AOD observed at the Essex, Maryland, AERONET site on
5 July 2011.

local solar time (LST), can further complicate matters for lo-
cations far from the meridian. For example, AERONET sites
in eastern Asia, Australasia, and the western Americas of-
ten contain data from midnight to mid-morning UTC, with a
long gap, and then from late evening to midnight UTC. The
break in the middle is due to local nighttime, during which
no data are collected; i.e. observations from a single UTC
day can contain data from 2 local days. If something happens
during this gap to affect the AOD distribution, which is of-
ten the case due to the diurnal variations or meteorology, this
will naturally increase the chances of multimodality. Thus,
something as basic as the definition of the day to aggregate to
can affect the inferred AOD distribution shape. This could be
contributing to some of the cases where neither distribution
fits (Figs. 3 and 4) in these parts of the world. This affects all
the data sets. This issue has also been explored by Schutgens
et al. (2016b), examining the correlation between hourly and
daily modelled AOD fields for two different definitions of a
day (UTC vs. LST).

While similar, the patterns in Figs. 3 and 4 are not identi-
cal between data sets. G5NR is the only data set which en-
ables both spatial and temporal aggregation on a daily ba-
sis. Here, both aggregates show, for example, small differ-
ences between τ̄l and τ̄n over much of the global ocean and a

higher frequency of large differences over southern and east-
ern Asia. However, the spatial aggregates also show areas of
large difference (fit well by neither normal nor log-normal
distributions) for grid cells with strong elevation variations,
such as along the edges of the Himalayas or Andes, while the
temporal aggregates do not. If the bulk of the aerosol here is
low-lying, then this naturally leads to another case of mul-
tiple populations within a grid cell. This is not seen to the
same extent in the satellite retrievals here, although they are
known to undersample (due to misinterpreting spatial het-
erogeneity of the scene for cloud cover) and sometimes have
retrieval artefacts which could distort the distributions (Zela-
zowski et al., 2011; Sayer et al., 2014; Loría-Salazar et al.,
2016). In these cases moving to a finer spatial scale might
be useful to provide summary metrics for these populations
separately; i.e. 1◦ might be too coarse. The aforementioned
retrieval artefacts might also explain some of the discrepan-
cies between MODIS and other results in other mountainous
areas such as western North America, Europe, and the Horn
of Africa.

G5NR temporal aggregates also show increased incidence
of log-normality and of neither distribution fitting well in
the Southern Ocean, while G5NR spatial aggregates do not;
this implies diurnal cycles which affect the aerosol field here
coherently on scales larger than 1◦. A similar feature, with
10 %–20 % occurrence of normally distributed AOD in the
Southern Ocean, is seen in the MODIS results. MODIS re-
trievals are known to report higher AOD here than other data
sets (including active sensors, Sun photometry, and data sets
with stricter cloud screening); Toth et al. (2013) attributed
much of this to a combination of cloud contamination and
retrieval assumptions of surface wind speed (which affect
surface brightness). This latter factor was addressed in more
recent MODIS data versions (Levy et al., 2013) compared to
those used by Toth et al. (2013), although the enhanced AOD
remains, implying that cloud contamination is still a factor. A
similar enhancement was seen in older version of the MISR
data product but largely removed in the latest version used
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here (Witek et al., 2018). This implies that the occasional
normality seen in MODIS daily AOD in the Southern Ocean
is likely to be an artefact of biases in the AOD retrievals.
MODIS and MISR also report normal or log-normal AOD
distributions each up to about 30 % of the time over various
North African and Central Asian deserts, while G5NR does
not. Unfortunately, the remoteness of many of these areas
means that AERONET has few sites in them. It is therefore
hard to resolve the reasons for differences between the vari-
ous data sets.

AERONET also provides some opportunities to study the
spatial distribution of AOD on horizontal scales of tens
of kilometres to around 100 km, similar to L3 and global-
climate-model resolution. These are mostly in so-called Dis-
tributed Regional Aerosol Gridded Observation Networks
(DRAGONs) of up to several dozen sites, as detailed by Hol-
ben et al. (2018), deployed during intensive operating pe-
riods (IOPs) of field campaigns. Some DRAGON deploy-
ments have been in areas also containing several long-term
AERONET sites (e.g. those around Washington, DC, USA),
enabling spatial characterisation (to a lesser extent) outside
these IOPs. Furthermore, a few areas have had three or more
AERONET sites deployed simultaneously within ∼ 100 km
of each other; often (but not always) this overlap was tem-
porary as one site replaced another. Table 2 shows the cate-
gorisation resulting from applying the SW and AOD differ-
ence threshold tests on daily geometric-mean AOD for each
of these field campaign deployments or groups of spatially
clustered AERONET sites. More details of the DRAGON
deployments are available in Holben et al. (2018), and the
AERONET web page (https://aeronet.gsfc.nasa.gov, last ac-
cess: 14 November 2019) provides additional background
information and the locations of other clustered sites. Cat-
egorisation results are broadly in line with Figs. 3 and 4,
and Table 1, in that typically the most common finding is
that the difference between daily arithmetic- and geometric-
mean AOD is smaller than 0.01. For the 10 field campaign
deployment regions listed in Table 2, log-normality is more
commonly observed than normality in 6 of them for the days
when the resulting difference in AOD is at least 0.01. For the
seven clusters of sites outside of field campaigns (which have
fewer, i.e. three to four sites total), log-normality is more
common in five. While this is consistent with the picture from
the larger-scale analysis, it is also important to recall that
these deployments are typically short in time (often weeks to
months) and tend to be around major metropolitan areas. As
a result the frequencies in Table 2 might not be extensible to
longer time periods at these locations or other environments.

3.2 Temporal variation on monthly and seasonal scales

Maps of categorisation of monthly and seasonal AOD ag-
gregates, in both cases from daily AOD, are shown in Figs. 7
and 8, respectively. Global-average fractions are again shown
in Table 1. Monthly satellite and AERONET composites re-

quire at least 16 contributing months to be considered valid,
and seasonal composites require at least eight contributing
seasons; for the satellites, using 5 years of data, a maximum
of 60 months or 15 seasons are possible. Increasing these
thresholds removes some shorter-term AERONET sites and
satellite retrievals at high latitudes and some tropical loca-
tions, where retrieval coverage is limited. As only 1 year of
G5NR data are used, the monthly analysis is performed but
seasonal analysis is not. Moving from daily to monthly ag-
gregates in Table 1, the overall tendency is for AOD differ-
ences to become larger (i.e. the fraction within the category
|τ̄l− τ̄n| ≤ 0.01 decreases), and the distributions increasingly
favour log-normality over normality. Going from monthly
to seasonal, the trend is more pronounced both in the abso-
lute fraction of data (Table 1) and in the spatial distributions
(Fig. 8). As in the daily data, some features are broadly con-
sistent between the data sets.

1. Unlike daily aggregation, for monthly or seasonal ag-
gregation the difference between arithmetic and ge-
ometric means is frequently more than 0.01. Thus,
monthly and seasonal aggregates are more sensitive to
the choice of averaging method. This implies generally
larger variability on timescales of months and seasons
than of spatial variability within a day, which is con-
sistent with previous work (e.g. Schutgens et al., 2017)
that has established that temporal colocation on daily,
rather than monthly, timescales is important in reducing
sampling-related differences between AOD data sets.

2. The exception to the above is very clean areas that are
parts of the open ocean, Australasia, and mountainous
or remote continental areas, which are outside of aerosol
transport paths. Here, for much (but not always a major-
ity) of the time, the AOD difference remains less than
0.01.

3. Downwind of major aerosol source regions, over both
and land and ocean, all data sets tend to report higher
consistency more frequently with log-normal than with
normal distributions.

Some of the differences between the data sets identified in the
daily analysis, such as the Southern Ocean AOD in MODIS,
are still present in the monthly and seasonal analyses. While
patterns are often consistent, differences in magnitudes of
each category may be driven in part by sampling differences,
which are more pronounced at these scales. Of up to 31 d
contributing to a month and 92 d to a season, AERONET and
MODIS often sample ∼ 10–25 and 20–70, respectively (de-
pendent on cloud cover and polar night), while MISR (due
to its narrower swath) often samples only 3–7 d per month
and 5–15 d per season. Dependent on the temporal scales of
aerosol system change, these differences may be important.
This limited sampling accounts for the sparser MISR cover-
age at high latitudes in Fig. 7. Monthly and seasonal data are
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Table 2. Fractional SW test assignment of spatial AOD variation with a day from selected AERONET DRAGON-like deployments and
clustered sites.

Deployment IOP(s) Maximum Number Fraction in each category

location sites∗ of days Normal Log-normal Difference Neither
≤ 0.01 fits

Field campaign and similar deployments

Greater Washington, June–August 2007, 41 2627 0.057 0.086 0.855 0.004
DC, USA July 2011
Osaka, Japan March–June 2012 8 122 0.197 0.057 0.746 0.00
Seoul, South Korea March–June 2012, 8 565 0.250 0.317 0.432 0.009

May–June 2016
Penang, Malaysia September 2012 8 66 0.152 0.227 0.621 0.00
Singapore September 2012 5 50 0.100 0.260 0.640 0.00
San Joaquin Valley, January–February 2013 15 81 0.037 0.123 0.840 0.00
California, USA
Houston-Galveston, August 2013 16 134 0.090 0.0448 0.858 0.007
Texas, USA
Colorado, USA July 2014 15 1888 0.093 0.038 0.868 0.001
Hentiesbaai, Namibia August–September 2016 6 32 0.00 0.063 0.938 0.00

Locations with AERONET sites clustered within ∼ 100 km

Abu Dhabi, – 3 35 0.114 0.057 0.829 0.00
United Arab Emirates
Beijing, China – 3 889 0.282 0.334 0.384 0.001
New York, USA – 3 215 0.033 0.065 0.902 0.00
Sierra Nevada, Spain – 3 88 0.091 0.193 0.716 0.00
Taipei, Taiwan – 4 301 0.312 0.329 0.359 0.00
Tenerife – 4 1574 0.370 0.174 0.456 0.001
Western Provence, – 3 380 0.026 0.058 0.916 0.00
France

∗ Maximum number of sites providing data on a single day may be less than number of sites deployed in total.

not affected by the same potential “definition-of-day” issues
as identified for daily composites. Seasonal aggregates may,
however, be influenced by definition of seasons, and in some
parts of the world (e.g. southern and eastern Asia due to their
summer monsoons at various points from May to September;
Kang et al., 1999) definitions other than the canonical DJF,
MAM, JJA, and SON used here may be more appropriate.

4 Implications and recommendations

4.1 Magnitude differences between arithmetic-mean
and geometric-mean AOD

The previous portion of the analysis focuses mostly on the
occurrence and distinguishability of normal and log-normal
distributions for AOD; also relevant are the magnitudes of
the differences introduced into the data sets by the choice
of averaging method and summary statistic. Figure 9 shows
the difference between geometric- and arithmetic-mean AOD
(τ̄n− τ̄l) binned as a function of arithmetic-mean AOD, on
daily and monthly timescales, from the four data sets. For

the daily plots the G5NR temporal aggregation is shown, al-
though results are similar for the spatial aggregation. Also
shown in both panels is the Global Climate Observing Sys-
tem (GCOS) goal uncertainty in AOD for an aerosol climate
data record (CDR), which is the greater of 0.03 or 10 % of
the AOD (GCOS, 2011). AOD differences approaching or
exceeding this level imply that the aggregation method alone
causes a sensitivity of similar magnitude to the total desired
uncertainty and therefore that if data are to be aggregated,
then the choice of an appropriate technique is crucial.

It is important to realise that the AOD difference τ̄l− τ̄n
is always zero or negative, as geometric means are always
smaller than or equal to arithmetic means (Cauchy, 1821).
This means that the offsets will always be systematic. For
daily data (left panel of Fig. 9), the median offset, and its
dependence on AOD, are reasonably consistent between all
four data sets. The central 68 % of the observed offsets are
also somewhat smaller than the GCOS uncertainty require-
ment and below a total AOD of around 0.6, generally smaller
than 0.02.
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Figure 7. As in Fig. 3 except for AOD distributions aggregated temporally from daily to monthly. Columns show (from left to right)
AERONET, MISR, MODIS, and G5NR data. Except for G5NR, at least 16 contributing months are required for an AERONET site or grid
cell to be valid; grid cells with insufficient data are shaded in grey.

Even a small offset in reported AOD, if systematic, can
have important implications for calculations of climate forc-
ing. This is particularly true for aerosol–cloud interactions,
as these are very sensitive to both the anthropogenic pertur-
bation and the natural background state assumed. For exam-
ple, using perturbed parameter simulations to global climate
models, Carslaw et al. (2013) estimated that 45 % of the un-
certainty in the global mean forcing due to the cloud albedo
effect of aerosols was related to uncertainties in the natural
background aerosol burden, compared to 34 % for anthro-
pogenic emissions. Others, including Penner et al. (2011) and
Grandey and Wang (2019), have similarly found large de-
pendence of forcing depending on the choice of background.
Where AOD is low, such as over much of the global ocean,
a small absolute AOD change can be a large relative per-
turbation. Although the limitations of satellite retrievals for
some of these applications are well-known (e.g. Penner et al.,
2011; Stier, 2016), the same argument may apply if forcing
parametrisations are developed from model simulations ag-
gregated in certain ways. As a result, even differences smaller
than the GCOS goal uncertainty, such as the daily differences
in Fig. 9, may be significant for these purposes. To paint
a more complete picture of the forcing, ideally the overall
shape of the distribution, rather than a single number, should

be considered; this has also been found to be important for
parametrisations related to the cloud radiative effect (Chen
et al., 2019) and rainfall (Vlc̆ek and Huth, 2009).

In contrast to the daily results, and even in low–moderate
AOD loadings around 0.3, for monthly aggregates (right
panel of Fig. 9) the difference is often similar to or larger
than this GCOS uncertainty. This means that the choice of
arithmetic- or geometric-mean AOD as a summary metric in
itself can and often does introduce systematic offsets in re-
ported monthly AOD of a similar size to the goal total uncer-
tainty for an AOD CDR. While this is not strictly an error (in
the mathematical sense), if the analyst is using the arithmetic
mean as a summary of log-normally distributed data, then,
as stated earlier, the inferred typical (common) level of AOD
will be biased. Inferences made may be misleading, and less
complete, than those if the shape and width of the distribu-
tion were considered explicitly. As with the daily data, the
magnitude of the offset is AOD-dependent; the magnitude
is, however, less consistent than for the daily results, with
the median offset being largest for AERONET. This might
in part reflect known tendencies for a high bias in low-AOD
conditions and/or low bias in high-AOD conditions in these
satellite products (Kahn et al., 2010; Eck et al., 2013; Levy
et al., 2013; Sayer et al., 2019), meaning that the difference
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Figure 8. As in Fig. 3 except for AOD distributions aggregated temporally from daily to seasonal. Columns show (left) AERONET, (middle)
MISR, and (right) MODIS data. At least eight contributing seasons are required for an AERONET site or grid cell to be valid; grid cells with
insufficient data are shaded in grey.

τ̄l− τ̄n is dampened due to diminished spatial and temporal
variability within and between days. The asymmetry of the
variabilities (vertical lines) in both panels of Fig. 9 indicates
a dependence of the difference on the specific local condi-
tions, i.e. the factors affecting the width of the distribution.

As Fig. 9 established that on monthly timescales sensi-
tivities to averaging method often exceed GCOS goal CDR
uncertainties, and Fig. 10 maps how frequently such ex-
ceedances occur. The behaviour for seasonal aggregates (not
shown) is more pronounced than that of monthly and shows
similar spatial features. As seen in earlier parts of this study,
the four data sets give broadly consistent spatial patterns but
differences in magnitude. Specifically, this is seen most fre-
quently (30 %–90 %, dependent on grid cell and data set)
in eastern Asia and Saharan outflow regions, which is un-
fortunate because these are important and frequently stud-
ied components of the global aerosol system. Exceedance
of GCOS thresholds in 10 %–40 % of months is also seen
fairly consistently across much of eastern North America
and Eurasia, South America, southeastern Asia, and south-

ern Africa. This is most common during the summer months
(former two cases) and local biomass-burning seasons (other
cases), when AOD levels are generally higher. GCOS thresh-
old exceedance is infrequent (observed < 10 % of the time)
over the remote open ocean in any of the data sets, although
they may be slightly elevated for oceanic regions downwind
of continental aerosol sources. In all of these regions, the
monthly data show higher consistency with log-normality
more often than they do than normality (Fig. 7), particularly
for the AERONET record, which has the most reliable AOD.
Therefore, the locations where the difference between τ̄n and
τ̄l is largest are also generally those where the data support
log-normal summary statistics the most.

A potential counterexample to the need to account for dis-
tribution shape is the case of particulate matter (PM) esti-
mation from AOD retrievals, in which case it might be more
sensible to report arithmetic-mean AOD than the geometric-
mean AOD, even if the underlying distribution is log-normal.
This is because the arithmetic mean is directly proportional
to the total, while the geometric mean requires knowledge
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of distribution width as well to return total mass, and in PM
studies it is often the total mass which is of interest. However,
in practical terms, PM forecasts and nowcasts and daily ex-
posure estimates typically use the finest resolution data avail-
able rather than aggregates (Lee et al., 2016). Still, this may
be relevant for long-term studies looking at total PM expo-
sure levels, which are often finely spatially resolved but are
aggregated temporally (van Donkelaar et al., 2016).

The issue may also be less crucial in analyses where
the purpose is to assess the offsets between two data sets
(e.g. difference between L3 composites), as opposed to the
geophysical fields themselves, as differences between the
arithmetic means of two data sets and geometric means of
the same two data sets are likely to be of the same sign. The
magnitudes will, however, differ depending on the tails of the
distributions. As indicated earlier, for AOD, sampling differ-
ences between data sets can often be a large determinant of
observed offsets (Levy et al., 2009; Sayer et al., 2010; Schut-
gens et al., 2016b, 2017). Still, examining multiple differ-
ences (e.g. differences between arithmetic means, between
geometric means, and median differences) can be informa-
tive with respect to how much the distributions are influenced
by outliers and as a general indicator of skew. Examples in-
clude Fig. 2 of Hsu et al. (2012) or Fig. 11 of Sayer et al.
(2014).

4.2 Implications for AOD trend analyses

As the differences between arithmetic and geometric mean
are larger for higher-AOD regions (Figs. 9 and 10), choice
of summary statistic could also influence the calculation of
AOD trends. Specifically, as τ̄l < τ̄n by an increasing amount
as AOD increases, smaller magnitudes of calculated trends
would be expected (as the maxima are dampened to a higher
degree than the minima). Multiple studies over the past few
decades have looked at AOD trends globally and region-
ally, whether over oceans only (e.g. Mishchenko and Ge-
ogdzhayev, 2007; Zhao et al., 2008; Thomas et al., 2010;
Zhang and Reid, 2010; Li et al., 2014a) or both oceans and
land (e.g. Hsu et al., 2012; Chin et al., 2014; Li et al., 2014b;
Yoon et al., 2014; Pozzer et al., 2015; Klingmüller et al.,
2016). While data sources, periods of analysis, and analysis
techniques differ, as do quantitative results, several features
tend to be consistently reported.

1. AOD over the global ocean, and over many ocean
basins, has not changed very much.

2. AOD over parts of eastern North America and Europe
has decreased in recent decades.

3. Some of the strongest positive AOD changes tend to be
seen over the Arabian Peninsula.

Using three long-term AERONET sites (one for each of
the above features), Table 3 provides decadal AOD trends

calculated using geometric-mean AOD τ̄l and arithmetic-
mean AOD τ̄n as a basis. These sites were used in some
of the above studies to complement satellite retrieval and
model-simulation analyses; in all cases, those studies used
arithmetic-mean AOD. Ascension Island is in the South At-
lantic Ocean, where reported AOD trends are typically small,
and presently has data available from 1998 to 2016. The God-
dard Space Flight Center (GSFC) in Maryland, USA, a re-
gion of decreasing AOD, has data from 1993 onwards and
is one of the longest-running AERONET sites; Solar Vil-
lage (operated from 1999 to 2013) was at a solar-power farm
northwest of Riyadh, Saudi Arabia, and near the maximum
of AOD trends reported in previous studies. At these sites,
on monthly timescales, the data fell more often into SW cate-
gory 4 (AOD difference is larger than 0.01, and data are most
consistent with draws from a log-normal distribution) 40 %,
61 %, and 70 % of the time for Ascension Island, GSFC, and
Cabo Verde, respectively, than category 3 (more consistent
with draws from a normal distribution). In most cases the
bulk of the remainder of months fell into category 1 (AOD
difference smaller than 0.01). On a seasonal basis this pref-
erence for log-normality over normality is even more pro-
nounced, corresponding to 68 %, 79 %, and 82 % of the time
to category 4, respectively.

The purpose here is not to perform an exhaustive global
trend analysis but to assess quantitatively the implications
of log-normally distributed AOD on some well-reported fea-
tures of global aerosol trends. Prior studies typically calcu-
lated trends based on deseasonalised monthly mean AOD
time series and calculating a linear least-squares regression
fit. Deseasonalisation was achieved either by subtracting
the mean AOD annual cycle over the time period or, as in
Thomas et al. (2010) and Klingmüller et al. (2016) by us-
ing harmonic regression to model the annual cycle. Li et al.
(2014a, b) took a somewhat different approach by analysing
the temporal variability in principal components of monthly
AOD fields rather than the AOD fields themselves. In some
of these analyses, seasonal trends were calculated by aver-
aging the monthly data within each season, although in this
case it is arguably more reasonable to use seasonal aggre-
gates from daily data as a basis. The motivation for consid-
ering seasonal trends is that some aerosol features, and their
variability, are characteristic of particular seasons (e.g. As-
cension Island and GSFC sample transported smoke through
summer and autumn but seldom during other seasons; at
Solar Village dust storms are most frequent and intense in
spring and summer).

Here, linear trends are calculated using both monthly and
seasonal aggregates for both normal (i.e. arithmetic mean)
and log-normal (i.e. geometric mean) aggregates, both cal-
culated from daily AOD (τ̄n or τ̄l, respectively). Monthly
trends are calculated using the monthly AOD time series,
after subtraction of the mean seasonal cycle, as in previ-
ous studies. Seasonal trends do not require a deseasonalisa-
tion step. The data are fit using linear least-squares regres-
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Figure 9. Median (symbols) and central 68 % (lines) of binned difference between geometric- and arithmetic-mean AOD (τ̄l− τ̄n) on daily
(a) and monthly (b) timescales. Colours indicate AERONET (black), MISR (red), MODIS (blue), or G5NR (green) data. The AOD bin size
is 0.15; data sets are horizontally offset slightly for clarity. The dashed grey lines indicate the GCOS goal AOD uncertainty of the maximum
of 0.03 or 10 %.

Table 3. Decadal trends (±1σ uncertainty estimates) in AERONET AOD at 550 nm, estimated using arithmetic- and geometric-mean AOD
as a basis for time series.

Trend Record From mean AOD From geometric-mean AOD

type length∗ Trend (AOD per decade) χ2 Trend (AOD per decade) χ2

Ascension Island (7.97639◦ S, 14.4147◦W)

Monthly 153 −0.001 (±0.005) 468 0.000 (±0.005) 447
DJF 16 −0.007 (±0.006) 52.0 −0.002 (±0.007) 60.8
MAM 15 −0.008 (±0.006) 64.6 −0.008 (±0.006) 55.0
JJA 14 0.004 (±0.010) 57.8 0.006 (±0.010) 39.2
SON 14 0.042 (±0.007) 89.2 0.032 (±0.007) 83.2

GSFC (38.9925◦ N, 76.8398◦W)

Monthly 287 −0.018 (±0.003) 931 −0.017 (±0.003) 734
DJF 24 −0.013 (±0.006) 18.4 −0.009 (±0.005) 11.2
MAM 26 −0.039 (±0.008) 109 −0.031 (±0.006) 80.6
JJA 25 −0.144 (±0.021) 79.8 −0.095 (±0.013) 67.6
SON 24 −0.021 (±0.005) 55.4 −0.015 (±0.002) 48.9

Solar Village (24.9069◦ N, 46.3973◦ E)

Monthly 158 0.093 (±0.024) 476 0.080 (±0.022) 505
DJF 13 0.104 (±0.042) 48.6 0.076 (±0.032) 60.1
MAM 15 0.218 (±0.040) 102 0.176 (±0.034) 108
JJA 14 0.176 (±0.043) 130 0.156 (±0.042) 136
SON 14 0.048 (±0.019) 92.6 0.041 (±0.019) 114

∗ Number of contributing months for the monthly time series, and number of contributing years for the seasonal time
series.

sion, with the weights equal to the standard error on the esti-
mated monthly (or seasonal) AOD. For the log-normal aver-
aging this is strictly asymmetric, although it is approximated
as symmetric in this case, which has negligible influence
on the results. The lower limit for these standard errors is
taken as 0.01, corresponding to the AERONET AOD uncer-
tainty. As this is largely dominated by calibration uncertainty
(Eck et al., 1999), it is not significantly reduced by averag-
ing and can therefore be considered systematic over a single

(roughly year-long) deployment but closer to random over
a multi-year time series. The standard error on the annual
cycle is added in quadrature to the estimated uncertainty in
the monthly time series to account for the uncertainty in the
deseasonalisation step. Following Weatherhead et al. (1998),
the lag-1 autocorrelation is estimated and used to adjust the
uncertainty estimates. Furthermore, the χ2 statistics on the
fits, which have an expected value of n− 2 (where n is the
record length and two parameters are fit in the regression),
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were in most cases somewhat in excess of this (Table 3). This
implies that the standard errors are not a complete represen-
tation of the uncertainty in the time series data and/or that
a linear model does not fully describe the variation. Thus,
in addition to the autocorrelation correction, the trend uncer-
tainty estimates in Table 3 are also scaled by

√(
χ2/(n− 2)

)
.

At each of the three sites, the decadal AOD trends are
qualitatively the same whether calculated using arithmetic-
or geometric-mean AOD time series as a basis. However, as
expected, trends using geometric-mean AOD are smaller in
magnitude (i.e. increases and declines in AOD are less pro-
nounced). The decrease in magnitude is often of the order
of 10 %–30 %, which is typically within the 1σ uncertainty
estimates on the calculated AOD trend. The implication of
this is that, as a result of assuming an underlying normal dis-
tribution, prior studies may be qualitatively correct on the
sign of AOD trends but quantitatively have a tendency to
overestimate their magnitude (again using the prior defini-
tion of “typical” or “common” aerosol loading). For log-
normally distributed data, trends in geometric quantities are
more straightforward to interpret.

Note that during presentations and reviews of this work,
a question arose as to whether, moving from point trends to
larger regional-scale trends, the central limit theorem (CLT)
would mean that arithmetic and geometric trends would con-
verge. The CLT does not imply that expanding the region
(adding more data) means that the AOD would become
closer to a normal distribution; this is a common misconcep-
tion of the CLT. Rather, the uncertainties on estimates of the
summary statistic (whether arithmetic or geometric means)
will behave approximately according to normal statistics,
even if the underlying AOD distribution is not normal. It does
not mean that the underlying quantity becomes closer to nor-
mally distributed; this misconception of the CLT is discussed
in Sect. 3.1.3 of the review by Sotos et al. (2007). The an-
swer therefore depends on the form of distributions in space
and time across the region (as well as, potentially, the or-
der in which the data are averaged). As the evidence from
data sets in this analysis (Figs. 3, 4, 7, and 8) indicates that
on larger scales AOD data become increasingly often more
consistent with the log-normal than the normal distribution,
and this was also found by prior spatial analyses (Ignatov
and Stowe, 2000), it seems likely that regional-scale (rather
than point) AOD trend estimates would show similar, or even
accentuated, differences between trends in arithmetic- and
geometric-mean trends.

4.3 Summary and recommendations for data use

Widely used spatiotemporal aggregates of aerosol data from
surface observations, satellite retrievals, and model simula-
tions typically consist of arithmetic means and standard de-
viations of finer-resolution data. These statistics are most
meaningful for normally distributed data, while previous
work has indicated that AOD is often distributed close to log-

normally on large scales. While one can transform between
normal and log-normal summary statistics (e.g. Table 1 of
O’Neill et al., 2000), in practice it is typical for data users to
(implicitly or explicitly) assume normality in their analyses
without considering the underlying distribution shape. This
can influence the inferences drawn from the data. This study
has illustrated the use of Shapiro–Wilk tests as a compara-
tive tool to assess whether quantities such as AOD are more
consistent with draws from normally or log-normally dis-
tributed populations. Data from ground-based observations
(AERONET), satellite retrievals (MISR and MODIS), and
model simulations (G5NR), despite their varying sampling
and error characteristics, provide broadly consistent results.

As timescales increase from days to months to sea-
sons, data become increasingly more consistent with log-
normal than normal distributions, and the differences be-
tween arithmetic- and geometric-mean AOD become larger;
assuming normality systematically overstates both the typ-
ical level of AOD and its variability. In low-AOD regions
such as the open ocean and mountains, often the AOD dif-
ference is small enough (< 0.01) to be unimportant for many
applications especially on daily timescales. However, in con-
tinental outflow regions and near source regions over land,
and on monthly or seasonal timescales, the difference is
frequently larger than the GCOS goal uncertainty in a cli-
mate data record (the larger of 0.03 or 10 %). As a result of
this, estimated trends in geometric-mean AOD are smaller in
magnitude than (although consistent in sign with) those in
arithmetic-mean AOD.

As noted earlier, using the arithmetic mean and standard
deviation to summarise log-normal data is not “wrong” in a
mathematical sense, as one can transform between the two.
The danger is in not explicitly considering the underlying
distribution when drawing an inference, as the result may be
misleading or, at a minimum, less of a full picture than could
otherwise be obtained.

The main recommendations from this study for future mis-
sions and reprocessing of current data sets and simulations
are as follows.

1. The frequency distribution of a geophysical quantity
should be analysed in order to assess how best to ag-
gregate it. This analysis should be done at the spatial
and temporal scale or scales of interest for the aggre-
gation because distributions are scale-dependent. The
Shapiro–Wilk technique is a powerful tool to assess dis-
crepancies from a normal or log-normal distribution and
should be further combined with desired performance
thresholds to assess whether discrepancies are scientifi-
cally relevant for a given quantity.

2. Ideally AOD aggregates such as satellite L3 prod-
ucts, but also from ground-based (e.g. AERONET) and
model simulations, should report geometric-mean or
median AOD rather than (or in addition to) arithmetic-
mean AOD. Where data sets permit zero or unphysical
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Figure 10. Fraction of months where the difference between arithmetic- and geometric-mean AOD is larger than the GCOS goal uncer-
tainty for an AOD climate data record; i.e. |τ̄l− τ̄n| ≥max[0.03,0.1τ̄l]. Panels show results for (a) AERONET, (b) MISR, (c) MODIS, and
(d) G5NR.

negative AOD values (incompatible with geometric cal-
culations), these should be truncated to some reason-
able lower bound which will not introduce meaning-
ful artefacts in derived statistics (such as 0.0001 used
here for MODIS and MISR). These summary statistics
are relevant because multiple data records provide evi-
dence that AOD distributions are generally closer to log-
normal than normal, particularly on monthly and sea-
sonal timescales, and the geometric mean is the more
natural and meaningful summary statistic for such data.
This information should be clearly communicated to po-
tential data users. Geometric mean AOD is systemati-
cally lower, often (on monthly or seasonal timescales)
by more than the GCOS goal climate data record un-
certainty of the larger of 0.03 or 10 %, so the choice of
averaging method is scientifically important.

3. Due to the computational burden required on the data
producer or user’s end (i.e. for satellites; obtaining
the full L2 data record to reaggregate to daily and
then monthly time steps), this is unlikely to happen
in the short term. In the meantime, calculation of
geometric-mean monthly aggregates from current stan-
dard (i.e. arithmetic mean) daily L3 aggregates could be
a useful stopgap measure. This is because the volume of
daily L3 data is smaller than L2, and daily spatial aggre-
gates were found to be less sensitive than monthly ones
to the choice of arithmetic vs. geometric averaging.

4. Comparisons and statistical assessments of AOD must
account for the expected numerical distribution. Some
common performance assessment techniques making
use of sum-of-squares calculations, such as the root-

mean-square error or coefficient of determination,
should not be used in all cases, as they can be systemat-
ically skewed by large tails on non-normally distributed
data (Seegers et al., 2018). Consequently, dependent on
the magnitudes of errors and the range of AOD ob-
served, their interpretation can be less meaningful if one
does not also look at the underlying data.

The analysis presented here refers to AOD, but the
methodology is general. GCOS (2011) provide goal uncer-
tainties for many geophysical CDRs, which may be helpful
for assessing the importance of averaging method in differ-
ent disciplines. Overall the log-normal distribution seems to
be a better reference for AOD aggregates than the normal
distribution, on spatial scales of single locations or 1◦ and
temporal scales from days to seasons.

It is important to bear in mind that these simple distribu-
tion forms are just approximations for the true underlying
distribution of a geophysical quantity, and the relevant prob-
lem is in identifying one which is a sufficiently accurate rep-
resentation for a given task. Normal and log-normal distri-
butions are mathematically convenient and represent many
data sets reasonably well, which is a motivating factor for
considering these two both historically and in the present
work. Sometimes multiple distribution forms are suitable:
this analysis has shown that often in low-AOD conditions
the choice of normal or log-normal representation may not
matter for many purposes. Furthermore, while not analysed
here, dependent on the choice of parameters, gamma distri-
butions (often used to describe cloud particle size distribu-
tions, e.g. Platnick et al., 2017) can be numerically similar to
log-normal ones. Indeed, both gamma and log-normal distri-
butions can provide good summaries of rain rates in some cir-
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cumstances (Cho et al., 2004; Vlc̆ek and Huth, 2009). Some-
times multiple modes are required, and sometimes neither
distribution is a suitable approximation.

If only a few distributions or points need to be sum-
marised, then it is of course preferable to show the actual
distributions and/or an informative summary which is agnos-
tic to any particular distribution shape, such as a box-and-
whisker plot. However for many larger-scale analyses, aggre-
gated outputs from observations and model simulations are
likely to remain the format of the choice for many data users
due to their convenience and significantly lower computa-
tional and storage requirements than full-resolution (e.g. L2)
data. While these unavoidably lead to a loss of information,
it is important that users consciously consider the underlying
distributions that the data sets are drawn from when utilis-
ing these summary statistics in research. The above recom-
mendations will result in more statistically and scientifically
meaningful data sets and decrease potential systematic biases
which can lead to erroneous qualitative and quantitative in-
terpretation about the state of the Earth system.

Data availability. The geometric-mean AOD output presented in
this work is available upon request to the authors. AERONET
data are available from https://aeronet.gsfc.nasa.gov (last access:
14 November 2019. NASA AERONET team, 2019). MISR and
MODIS data are available from https://earthdata.nasa.gov (last ac-
cess: 14 November 2019. NASA EarthData portal team, 2019), and
G5NR simulation output is available from https://g5nr.nccs.nasa.
gov/data/ (last access: 14 November 2019. NASA GMAO, 2019).

Author contributions. AMS and KDK jointly conceptualised the
analysis. AMS performed the analysis and drafted the paper. Both
authors contributed to the editing of the text.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This research was performed as part of the
NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission
development. The AERONET team and site principal investigators
and managers are thanked for the creation and maintenance of the
AERONET data record. Satellite retrieval and modelling teams,
and hosting entities, are acknowledged for the development and
archiving of these data sets. Tom F. Eck (USRA), Brent N. Hol-
ben (NASA GSFC), and Alexander Smirnov (SSAI) are thanked
for useful discussions about early AOD and turbidity measurement
networks and their strengths and limitations. Patricia Castellanos
(NASA GSFC) is thanked for advice on the use of the G5NR simu-
lation. Chris J. Merchant (University of Reading) is thanked for in-
put on uncertainty characterisation in sea surface temperature data.
This analysis was also presented as part of NASA GSFC’s Aero-
Center seminar series and to the NASA Ocean Ecology Labora-
tory. The insightful comments, questions, suggestions, and endorse-

ment of attendees of those seminars, as well as Yilun Chen (USTC),
Adam C. Povey (Oxford), and three anonymous reviewers, are ap-
preciated.

Financial support. This research has been supported by the NASA
PACE project.

Review statement. This paper was edited by Anja Schmidt and re-
viewed by three anonymous referees.

References

Ahlquist, N. C. and Charlson, R. J.: Measurement of the wave-
length dependence of atmospheric extinction due to scat-
ter, Atmos. Environ., 3, 551–564, https://doi.org/10.1016/0004-
6981(69)90045-6, 1967.

Alexandrov, M. D., Marshak, A., Cairns, B., Lacis, A. A.,
and Carlson, B. E.: Scaling Properties of Aerosol Opti-
cal Thickness Retrieved from Ground-Based Measurements,
J. Atmos. Sci., 61, 1024–1039, https://doi.org/10.1175/1520-
0469(2004)061<1024:SPOAOT>2.0.CO;2, 2004.

Alexandrov, M. D., Geogdzhayev, I. V., Tsigaridis, K., Marshak, A.,
and Levy, R.: New Statistical Model for Variability of Aerosol
Optical Thickness: Theory and Application to MODIS Data over
Ocean, J. Atmos. Sci., 73, 821–837, https://doi.org/10.1175/JAS-
D-15-0130.1, 2016.

Anderson, T. L., Charlson, R. J., Winker, D. M., Ogren, J. A.,
and Holmén, K.: Mesoscale Variations of Tropospheric Aerosols,
J. Atmos. Sci., 60, 119–136, https://doi.org/10.1175/1520-
0469(2003)060<0119:MVOTA>2.0.CO;2, 2003.

Ångström, A.: On the atmospheric transmission of Sun radi-
ation and on dust in the air, Geogr. Ann., 12, 130–159,
https://doi.org/10.1080/20014422.1929.11880498, 1929.

Buchard, V., da Silva, A. M., Colarco, P. R., Darmenov, A., Ran-
dles, C. A., Govindaraju, R., Torres, O., Campbell, J., and Spurr,
R.: Using the OMI aerosol index and absorption aerosol optical
depth to evaluate the NASA MERRA Aerosol Reanalysis, At-
mos. Chem. Phys., 15, 5743–5760, https://doi.org/10.5194/acp-
15-5743-2015, 2015.

Bulgin, C. E., Embury, O., Corlett, G., and Merchant, C. J.: In-
dependent uncertainty estimates for coefficient based sea sur-
face temperature retrieval from the Along-Track Scanning Ra-
diometer instruments, Remote Sens. Environ., 178, 213–222,
https://doi.org/10.1016/j.rse.2016.02.022, 2016a.

Bulgin, C. E., Embury, O., and Merchant, C. J.: Sampling un-
certainty in gridded sea surface temperature products and Ad-
vanced Very High Resolution Radiometer (AVHRR) Global Area
Coverage (GAC) data, Remote Sens. Environ., 177, 287–294,
https://doi.org/10.1016/j.rse.2016.02.021, 2016b.

Campbell, J. W.: The lognormal distribution as a model for bio-op-
tical variability in the sea, J. Geophys. Res., 100, 13237–13254,
https://doi.org/10.1029/95JC00458, 1995.

Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap,
A., Forster, P. M., Mann, G. W., Spracklen, D. V., Woodhouse,
M. T., Regayre, L. A., and Pierce, J. R.: Large contribution of

www.atmos-chem-phys.net/19/15023/2019/ Atmos. Chem. Phys., 19, 15023–15048, 2019

https://aeronet.gsfc.nasa.gov
https://earthdata.nasa.gov
https://g5nr.nccs.nasa.gov/data/
https://g5nr.nccs.nasa.gov/data/
https://doi.org/10.1016/0004-6981(69)90045-6
https://doi.org/10.1016/0004-6981(69)90045-6
https://doi.org/10.1175/1520-0469(2004)061<1024:SPOAOT>2.0.CO;2
https://doi.org/10.1175/1520-0469(2004)061<1024:SPOAOT>2.0.CO;2
https://doi.org/10.1175/JAS-D-15-0130.1
https://doi.org/10.1175/JAS-D-15-0130.1
https://doi.org/10.1175/1520-0469(2003)060<0119:MVOTA>2.0.CO;2
https://doi.org/10.1175/1520-0469(2003)060<0119:MVOTA>2.0.CO;2
https://doi.org/10.1080/20014422.1929.11880498
https://doi.org/10.5194/acp-15-5743-2015
https://doi.org/10.5194/acp-15-5743-2015
https://doi.org/10.1016/j.rse.2016.02.022
https://doi.org/10.1016/j.rse.2016.02.021
https://doi.org/10.1029/95JC00458


15044 A. M. Sayer and K. D. Knobelspiesse: AOD frequency distributions

natural aerosols to uncertainty in indirect forcing, Nature, 503,
67–71, https://doi.org/10.1038/nature12674, 2013.

Castellanos, P., Da Silva, A. M., Darmenov, A. S., Buchard,
V., Govindaraju, R. C., Ciren, P., and Kondraguntha, S.:
A Geostationary Instrument Simulator for Aerosol Observ-
ing System Simulation Experiments, Atmosphere, 10, 1–36,
https://doi.org/10.3390/atmos10010002, 2018.

Cauchy, A.-L.: Cours d’analyse de l’École Royale Polytechnique,
première partie, Analyse algébrique, Paris, 576 pp., 1821.

Chen, Y. L., Chong, K. Z., and Fu, Y. F.: Impacts of
distribution patterns of cloud optical depth on the cal-
culation of radiative forcing, Atmos. Res., 218, 70–77,
https://doi.org/10.1016/j.atmosres.2018.11.007, 2019.

Chin, M., Diehl, T., Tan, Q., Prospero, J. M., Kahn, R. A., Remer,
L. A., Yu, H., Sayer, A. M., Bian, H., Geogdzhayev, I. V., Hol-
ben, B. N., Howell, S. G., Huebert, B. J., Hsu, N. C., Kim, D.,
Kucsera, T. L., Levy, R. C., Mishchenko, M. I., Pan, X., Quinn,
P. K., Schuster, G. L., Streets, D. G., Strode, S. A., Torres, O.,
and Zhao, X.-P.: Multi-decadal aerosol variations from 1980 to
2009: a perspective from observations and a global model, At-
mos. Chem. Phys., 14, 3657–3690, https://doi.org/10.5194/acp-
14-3657-2014, 2014.

Cho, H., Bowman, K. P., and North, G. R.: A Compar-
ison of Gamma and Lognormal Distributions for Char-
acterizing Satellite Rain Rates from the Tropical Rain-
fall Measuring Mission, J. Appl. Meteor., 43, 1586–1597,
https://doi.org/10.1175/JAM2165.1, 2004.

Chubarova, N., Nezval’, Ye., Sviridenkov, I., Smirnov, A., and
Slutsker, I.: Smoke aerosol and its radiative effects during ex-
treme fire event over Central Russia in summer 2010, At-
mos. Meas. Tech., 5, 557–568, https://doi.org/10.5194/amt-5-
557-2012, 2012.

Chylek, P., Henderson, B., and Mishchenko, M.: Aerosol
radiative forcing and the accuracy of satellite aerosol
optical depth retrieval, J. Geophys. Res., 108, 4764,
https://doi.org/10.1029/2003JD004044, 2003.

Colarco, P. R., Kahn, R. A., Remer, L. A., and Levy, R. C.: Impact
of satellite viewing-swath width on global and regional aerosol
optical thickness statistics and trends, Atmos. Meas. Tech., 7,
2313–2335, https://doi.org/10.5194/amt-7-2313-2014, 2014.

d’Almeida, G., Koepke, P., and Shettle, E.: Atmospheric aerosols:
global climatology and radiative characteristics, A. Deepak Pub-
lishing, 561 pp., 1991.

Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kauf-
man, Y. J., King, M. D., Tanré, D., and Slutsker, I.:
Variability of Absorption and Optical Properties of Key
Aerosol Types Observed in Worldwide Locations, J.
Atmos. Sci., 59, 590–608, https://doi.org/10.1175/1520-
0469(2002)059<0590:VOAAOP>2.0.CO;2, 2002.

Dubovik, O., Li, Z., Mishchenko, M. I., Tanré, D., Karol, Y., Bo-
jkov, B., Cairns, B., Diner, D. J., Espinosa, W. R., Goloub, P.,
Gu, X., Hasekamp, O., Hong, J., Hou, W., Knobelspiesse, K. D.,
Landgraf, J., Li, L., Litvinov, P., Liu, Y., Lopatin, A., Mar-
bach, T., Maring, H., Martins, V., Meijer, Y., Milinevsky, G.,
Mukai, S., Parol, F., Qiao, Y., Remer, L., Rietjens, J., Sano, I.,
Stammes, P., Stamnes, S., Sun, X., Tabary, P., Travis, L. D.,
Waquet, F., Xu, F., Yan, C., and Yin, D.: Polarimetric remote
sensing of atmospheric aerosols: Instruments, methodologies, re-

sults, and perspectives, J. Quant. Spectrosc. Ra., 224, 474–511,
https://doi.org/10.1016/j.jqsrt.2018.11.024, 2019.

Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov,
A., O’Neill, N. T., Slutsker, I., and Kinne, S.: Wavelength
dependence of the optical depth of biomass burning, urban,
and desert dust aerosols, J. Geophys. Res., 104, 31333–31349,
https://doi.org/10.1029/1999JD900923, 1999.

Eck, T. F., Holben, B. N., Reid, J. S., Mukelabai, M. M., Piketh,
S. J., Torres, O., Jethva, H. T., Hyer, E. J., Ward, D. E., Dubovik,
O., Sinyuk, A., Schafer, J. S., Giles, D. M., Sorokin, M., Smirnov,
A., and Slutsker, I.: A seasonal trend of single scattering albedo
in southern African biomass-burning particles: Implications for
satellite products and estimates of emissions for the world’s
largest biomass-burning source, J. Geophys. Res., 118, 6414–
6432, https://doi.org/10.1002/jgrd.50500, 2013.

Eck, T. F., Holben, B. N., Reid, J. S., Arola, A., Ferrare, R. A.,
Hostetler, C. A., Crumeyrolle, S. N., Berkoff, T. A., Welton, E.
J., Lolli, S., Lyapustin, A., Wang, Y., Schafer, J. S., Giles, D. M.,
Anderson, B. E., Thornhill, K. L., Minnis, P., Pickering, K. E.,
Loughner, C. P., Smirnov, A., and Sinyuk, A.: Observations of
rapid aerosol optical depth enhancements in the vicinity of pol-
luted cumulus clouds, Atmos. Chem. Phys., 14, 11633–11656,
https://doi.org/10.5194/acp-14-11633-2014, 2014.

Eck, T. F., Holben, B. N., Giles, D. M., Slutsker, I., Sinyuk, A.,
Schafer, J. A., Smirnov, A., Sorokin, M., Reid, J. S., Sayer,
A. M., Hsu, N. C., Shi, Y. R., Levy, R. C., Lyapustin, A., Rah-
man, M. A., Liew, S.-C., Salinas Cortijo, S. V., Li, T., Kalber-
matter, D., Keong, K. L., Yuggotomo, M. E., Aditya, F., Mo-
hamad, M., Mahmud, M., Chong, T. K., Lim, H.-S., Choon,
Y. E., Deranadyan, G., Kusumaningtyas, S. D. A., and Aldrian,
E.: AERONET remotely sensed measurements and retrievals of
biomass burning aerosol optical properties during the 2015 In-
donesian burning season, J. Geophys. Res.-Atmos., 124, 4722–
4740, https://doi.org/10.1029/10.1029/2018JD030182, 2019.

Flowers, E. C., McCormick, R. A., and Kurfis, K. R.: At-
mospheric Turbidity over the United States, 1961–1966,
J. Appl. Meteor., 8, 955–962, https://doi.org/10.1175/1520-
0450(1969)008<0955:ATOTUS>2.0.CO;2, 1969.

Forgan, B. W., DeLuisi, J. J., Hicks, B. B., and Rusina, E. N.:
Report on the measurements of atmospheric turbidity in BAP-
MoN, Tech. Rep., World Meteorol. Organ., Geneva, Switzerland,
WMO Rep., 94, 1993.

Garay, M. J., Kalashnikova, O. V., and Bull, M. A.: Develop-
ment and assessment of a higher-spatial-resolution (4.4 km)
MISR aerosol optical depth product using AERONET-
DRAGON data, Atmos. Chem. Phys., 17, 5095–5106,
https://doi.org/10.5194/acp-17-5095-2017, 2017.

GCOS: Systematic observation requirements for satellite-based
data products for climate, 2011 update, Tech. Rep., World Me-
teorological Organization, https://library.wmo.int/doc_num.php?
explnum_id=3710 (last access: 14 November 2019), climate Ob-
serving System report GCOS-154, 2011.

Geogdzhayev, I., Cairns, B., Mishchenko, M. I., Tsigaridis,
K., and van Noije, T.: Model-based estimation of sampling-
caused uncertainty in aerosol remote sensing for climate re-
search applications, Q. J. Roy. Meteor. Soc., 140, 2353–2363,
https://doi.org/10.1002/qj.2305, 2014.

Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov,
A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell,

Atmos. Chem. Phys., 19, 15023–15048, 2019 www.atmos-chem-phys.net/19/15023/2019/

https://doi.org/10.1038/nature12674
https://doi.org/10.3390/atmos10010002
https://doi.org/10.1016/j.atmosres.2018.11.007
https://doi.org/10.5194/acp-14-3657-2014
https://doi.org/10.5194/acp-14-3657-2014
https://doi.org/10.1175/JAM2165.1
https://doi.org/10.5194/amt-5-557-2012
https://doi.org/10.5194/amt-5-557-2012
https://doi.org/10.1029/2003JD004044
https://doi.org/10.5194/amt-7-2313-2014
https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2
https://doi.org/10.1016/j.jqsrt.2018.11.024
https://doi.org/10.1029/1999JD900923
https://doi.org/10.1002/jgrd.50500
https://doi.org/10.5194/acp-14-11633-2014
https://doi.org/10.1029/10.1029/2018JD030182
https://doi.org/10.1175/1520-0450(1969)008<0955:ATOTUS>2.0.CO;2
https://doi.org/10.1175/1520-0450(1969)008<0955:ATOTUS>2.0.CO;2
https://doi.org/10.5194/acp-17-5095-2017
https://library.wmo.int/doc_num.php?explnum_id=3710
https://library.wmo.int/doc_num.php?explnum_id=3710
https://doi.org/10.1002/qj.2305


A. M. Sayer and K. D. Knobelspiesse: AOD frequency distributions 15045

J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advance-
ments in the Aerosol Robotic Network (AERONET) Version 3
database – automated near-real-time quality control algorithm
with improved cloud screening for Sun photometer aerosol op-
tical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–
209, https://doi.org/10.5194/amt-12-169-2019, 2019.

Grandey, B. S. and Wang, C.: Background conditions influence the
estimated cloud radiative effects of anthropogenic aerosol emis-
sions from different source regions, J. Geophys. Res.-Atmos.,
124, 2276–2295, https://doi.org/10.1029/2018JD029644, 2019.

Gupta, P., Levy, R. C., Mattoo, S., Remer, L. A., and Mun-
chak, L. A.: A surface reflectance scheme for retrieving
aerosol optical depth over urban surfaces in MODIS Dark Tar-
get retrieval algorithm, Atmos. Meas. Tech., 9, 3293–3308,
https://doi.org/10.5194/amt-9-3293-2016, 2016.

Hinds, W. C.: Aerosol technology: properties, behavior, and mea-
surement of airborne particles, Wiley Interscience, New York,
Chichester, Weinheim, Brisbane, Singapore, and Toronto, 2 Edn.,
504 pp., 1999.

Holben, B. N., Tanré, D., Smirnov, A., Eck, T. F., Slutsker, I.,
Abuhassan, N., Newcomb, W. W., Schafer, J. S., Chatenet,
B., Lavenu, F., Kaufman, Y. J., Vande Castle, J., Setzer, A.,
Markham, B., Clark, D., Frouin, R., Halthore, R., Karneli, A.,
O’Neill, N. T., Pietras, C., Pinker, R. T., Voss, K., and Zibordi,
G.: An emerging ground-based aerosol climatology: Aerosol op-
tical depth from AERONET, J. Geophys. Res., 106, 12067–
12097, https://doi.org/10.1029/2001JD900014, 2001.

Holben, B. N. et al.: An overview of mesoscale aerosol processes,
comparisons, and validation studies from DRAGON networks,
Atmos. Chem. Phys., 18, 655–671, https://doi.org/10.5194/acp-
18-655-2018, 2018.

Hsu, N. C., Gautam, R., Sayer, A. M., Bettenhausen, C., Li, C.,
Jeong, M. J., Tsay, S.-C., and Holben, B. N.: Global and regional
trends of aerosol optical depth over land and ocean using SeaW-
iFS measurements from 1997 to 2010, Atmos. Chem. Phys., 12,
8037–8053, https://doi.org/10.5194/acp-12-8037-2012, 2012.

Hsu, N. C., Lee, J., Sayer, A. M., Kim, W., Bettenhausen,
C., and Tsay, S.-C.: VIIRS Deep Blue aerosol prod-
ucts over land: Extending the EOS long-term aerosol
data record, J. Geophys. Res.-Atmos., 124, 4026–4053,
https://doi.org/10.1029/2018JD029688, 2019.

Ignatov, A. and Stowe, L.: Physical Basis, Premises, and Self-
Consistency Checks of Aerosol Retrievals from TRMM VIRS,
J. Appl. Meteor., 39, 2259–2277, https://doi.org/10.1175/1520-
0450(2001)040<2259:PBPASC>2.0.CO;2, 2000.

Junge, C. E.: The size distribution and aging of natural aerosols as
determined from electrical and optical data on the atmosphere,
Am. Meteor. Soc. J., 12, 13–25, https://doi.org/10.1175/1520-
0469(1955)012<0013:TSDAAO>2.0.CO;2, 1955.

Junge, C. E.: Air chemistry and radioactivity, Vol. 4 of International
Geophysics Series, Academic Press, New York, 382 pp., 1963.

Kahn, R. A., Gaitley, B. J., Garay, M. J., Diner, D. J., Eck, T. F.,
Smirnov, A., and Holben, B. N.: Multiangle Imaging SpectroRa-
diometer global aerosol product assessment by comparison with
the Aerosol Robotic Network, J. Geophys. Res., 115, D23209,
https://doi.org/10.1029/2010JD014601, 2010.

Kaku, K. C., Reid, J. S., Hand, J. L., Edgerton, E. S., Hol-
ben, B. N., Zhang, J., and Holz, R. E.: Assessing the chal-
lenges of surface-level aerosol mass estimates from remote

sensing during the SEAC4RS and SEARCH campaigns: Base-
line surface observations and remote sensing in the southeast-
ern United States, J. Geophys. Res.-Atmos., 123, 7530–7562,
https://doi.org/10.1029/2017JD028074, 2018.

Kang, I., Ho, C., Lim, Y., and Lau, K.: Principal Modes
of Climatological Seasonal and Intraseasonal Varia-
tions of the Asian Summer Monsoon, Mon. Weather
Rev., 127, 322–340, https://doi.org/10.1175/1520-
0493(1999)127<0322:PMOCSA>2.0.CO;2, 1999.

Kennedy, J. J.: A review of uncertainty in in situ measurements and
data sets of sea surface temperature, Rev. Geophys., 52, 1–32,
https://doi.org/10.1002/2013RG000434, 2014.

King, M. D., Byrne, D. M., Reagan, J. A., and Her-
man, B. M.: Spectral Variation of Optical Depth at Tuc-
son, Arizona between August 1975 and December 1977,
J. Appl. Meteor., 19, 723–732, https://doi.org/10.1175/1520-
0450(1980)019<0723:SVOODA>2.0.CO;2, 1980.

King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A.,
and Hubanks, P. A.: Spatial and Temporal Distribution
of Clouds Observed by MODIS Onboard the Terra and
Aqua Satellites, IEEE T. Geosci. Remote, 51, 3826–3852,
https://doi.org/10.1109/TGRS.2012.2227333, 2013.

Kinne, S., Schulz, M., Textor, C., Balkanski, Y., Bauer, S., Berntsen,
T., Berglen, T., Boucher, O., Chin, M., Collins, W. Dentener, F.,
Diehl, T., Eater, R., Feichter, J., Filmore, D., Ghan, S., Ginoux,
P., Gong, S., Grini, A., Hendricks, J. E., Herzog, M., Horowitz,
L., Isaksen, I. S. A., Iversen, T., Kirkavåg, A., Kloster, S., Koch,
D., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F.,
Lesins, G., Liu, X., Lohmann, U. Montanaro, V., Myhre, G., Pen-
ner, J. E., Pitari, G., Reddy, S., Seland, O., Stier, P., and Take-
mura, T.: An AeroCom initial assessment – optical properties
in aerosol component modules of global models, Atmos. Chem.
Phys., 6, 1815–1834, https://doi.org/10.5194/acp-6-1815-2006,
2006.

Kirkwood, T. B. L.: Geometric means and measures of dispersion,
Biometrics, 35, 908–909, 1979.

Klingmüller, K., Pozzer, A., Metzger, S., Stenchikov, G.
L., and Lelieveld, J.: Aerosol optical depth trend over
the Middle East, Atmos. Chem. Phys., 16, 5063–5073,
https://doi.org/10.5194/acp-16-5063-2016, 2016.

Kok, J. F.: A scaling theory for the size distribution of emitted dust
aerosols suggests climate models underestimate the size of the
global dust cycle, P. Natl. Acad. Sci. USA, 108, 1016–1021,
https://doi.org/10.1073/pnas.1014798108, 2011a.

Kok, J. F.: Does the size distribution of mineral dust aerosols depend
on the wind speed at emission?, Atmos. Chem. Phys., 11, 10149–
10156, https://doi.org/10.5194/acp-11-10149-2011, 2011b.

Kokhanovsky, A. A. and de Leeuw, G. (Eds.): Satellite
Aerosol Remote Sensing Over Land, Springer, Berlin,
https://doi.org/10.1007/978-3-540-69397-0, 2009.

Kovacs, T.: Comparing MODIS and AERONET aerosol optical
depth at varying separation distances to assess ground-based val-
idation strategies for spaceborne lidar, J. Geophys. Res., 111,
D24203, https://doi.org/10.1029/2006JD007349, 2006.

Lee, H., Garay, M. J., Kalashnikova, O. V., Yu, Y., and Gibson, P. R.:
How Long should the MISR Record Be when Evaluating Aerosol
Optical Depth Climatology in Climate Models?, Remote Sens.,
10, 1326, https://doi.org/10.3390/rs10091326, 2018.

www.atmos-chem-phys.net/19/15023/2019/ Atmos. Chem. Phys., 19, 15023–15048, 2019

https://doi.org/10.5194/amt-12-169-2019
https://doi.org/10.1029/2018JD029644
https://doi.org/10.5194/amt-9-3293-2016
https://doi.org/10.1029/2001JD900014
https://doi.org/10.5194/acp-18-655-2018
https://doi.org/10.5194/acp-18-655-2018
https://doi.org/10.5194/acp-12-8037-2012
https://doi.org/10.1029/2018JD029688
https://doi.org/10.1175/1520-0450(2001)040<2259:PBPASC>2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<2259:PBPASC>2.0.CO;2
https://doi.org/10.1175/1520-0469(1955)012<0013:TSDAAO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1955)012<0013:TSDAAO>2.0.CO;2
https://doi.org/10.1029/2010JD014601
https://doi.org/10.1029/2017JD028074
https://doi.org/10.1175/1520-0493(1999)127<0322:PMOCSA>2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127<0322:PMOCSA>2.0.CO;2
https://doi.org/10.1002/2013RG000434
https://doi.org/10.1175/1520-0450(1980)019<0723:SVOODA>2.0.CO;2
https://doi.org/10.1175/1520-0450(1980)019<0723:SVOODA>2.0.CO;2
https://doi.org/10.1109/TGRS.2012.2227333
https://doi.org/10.5194/acp-6-1815-2006
https://doi.org/10.5194/acp-16-5063-2016
https://doi.org/10.1073/pnas.1014798108
https://doi.org/10.5194/acp-11-10149-2011
https://doi.org/10.1007/978-3-540-69397-0
https://doi.org/10.1029/2006JD007349
https://doi.org/10.3390/rs10091326


15046 A. M. Sayer and K. D. Knobelspiesse: AOD frequency distributions

Lee, M., Kloog, I., Chudnovsky, A., Lyapustin, A., Wang, Y., Melly,
S., Coull, B., Poutrakis, P., and Schwartz, J.: Spatiotemporal pre-
diction of fine particulate matter using high-resolution satellite
images in the Southeastern US 2003–2011, J. Expo. Sci. Environ.
Epidemiol., 26, 377–384, https://doi.org/10.1038/jes.2015.41,
2016.

Lenoble, J., Remer, L. A., and Tanré, D. (Eds.): Aerosol Remote
Sensing, Springer (Berlin), https://doi.org/10.1007/978-3-642-
17725-5, 2013.

Levy, R. C., Leptoukh, G. G., Kahn, R., Zubko, V., Gopalan, A.,
and Remer, L. A.: A Critical Look at Deriving Monthly Aerosol
Optical Depth From Satellite Data, IEEE T. Geosci. Remote, 47,
2942–2956, https://doi.org/10.1109/TGRS.2009.2013842, 2009.

Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A.
M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol
products over land and ocean, Atmos. Meas. Tech., 6, 2989–
3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.

Li, J., Carlson, B. E., and Lacis, A. A.: Revisiting AVHRR
tropospheric aerosol trends using principal component
analysis, J. Geophys. Res.-Atmos., 119, 3309–3320,
https://doi.org/10.1002/2013JD020789, 2014a.

Li, J., Carlson, B. E., and Lacis, A. A.: Application of spec-
tral analysis techniques in the intercomparison of aerosol
data: Part III, Using combined PCA to compare spa-
tiotemporal variability of MODIS, MISR, and OMI aerosol
optical depth, J. Geophys. Res.-Atmos., 119, 4017–4042,
https://doi.org/10.1002/2013JD020538, 2014b.

Li, J., Li, X., Carlson, B. E., Kahn, R. A., Lacis, A. A., Dubovik,
O., and Nakajima, T.: Reducing multisensor satellite monthly
mean aerosol optical depth uncertainty: 1. Objective assessment
of current AERONET locations, J. Geophys. Res.-Atmos., 121,
13609–13627, https://doi.org/10.1002/2016JD025469, 2016.

Limpert, E., Stahel, W. A., and Abbt, M.: Log-normal
Distributions across the Sciences: Keys and Clues,
BioScience, 51, 341-352, https://doi.org/10.1641/0006-
3568(2001)051[0341:LNDATS]2.0.CO;2, 2001.

Loría-Salazar, S. M., Holmes, H. A., Arnott, W. P., Barnard, J. C.,
and Moosmüllet, H.: Evaluation of MODIS columnar aerosol re-
trievals using AERONET in semi-arid Nevada and California,
U.S.A., during the summer of 2012, Atmos. Environ., 144, 345–
360, https://doi.org/10.1016/j.atmosenv.2016.08.070, 2016.

Lyapustin, A., Wang, Y., Xiong, X., Meister, G., Platnick, S., Levy,
R., Franz, B., Korkin, S., Hilker, T., Tucker, J., Hall, F., Sell-
ers, P., Wu, A., and Angal, A.: Scientific impact of MODIS C5
calibration degradation and C6+ improvements, Atmos. Meas.
Tech., 7, 4353–4365, https://doi.org/10.5194/amt-7-4353-2014,
2014.

Malm, W. C., Walther, E. G., and Cudney, R. A.: The Effects
of Water Vapor, Ozone and Aerosol on Atmospheric Turbid-
ity, J. Appl. Meteor., 16, 268–274, https://doi.org/10.1175/1520-
0450(1977)016<0268:TEOWVO>2.0.CO;2, 1977.

Merchant, C. J., Paul, F., Popp, T., Ablain, M., Bontemps, S., De-
fourny, P., Hollmann, R., Lavergne, T., Laeng, A., de Leeuw, G.,
Mittaz, J., Poulsen, C., Povey, A. C., Reuter, M., Sathyendranath,
S., Sandven, S., Sofieva, V. F., and Wagner, W.: Uncertainty in-
formation in climate data records from Earth observation, Earth
Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-
2017, 2017.

Mishchenko, M. I. and Geogdzhayev, I. V.: Satellite remote sensing
reveals regional tropospheric aerosol trends, Opt. Express, 15,
7423–7438, https://doi.org/10.1364/OE.15.007423, 2007.

NASA AERONET team: AERONET data portal, available at: https:
//aeronet.gsfc.nasa.gov, last access: 14 November 2019.

NASA EarthData portal team: EarthData data portal, available at:
https://earthdata.nasa.gov, last access 14 November 2019.

NASA GMAO: Nature Run data portal, available at: https://g5nr.
nccs.nasa.gov/data, last access: 14 November 2019.

O’Neill, N. T., Ignatov, A., Holben, B. N., and Eck, T. F.: The
lognormal distribution as a reference for reporting aerosol op-
tical depth statistics; Empirical tests using multi-year, multi-site
AERONET Sunphotometer data, Geophys. Res. Lett., 27, 3333–
3336, https://doi.org/10.1029/2000GL011581, 2000.

Penner, J. E., Xu, L., and Wang, M.: Satellite meth-
ods underestimate indirect climate forcing by
aerosols, P. Natl. Acad. Sci. USA, 108, 13404–13408,
https://doi.org/10.1073/pnas.1018526108, 2011.

Platnick, S., Meyer, K. G., King, M. D., Wind, G., Ama-
rasinghe, N., Marchant, B., Arnold, G. T., Zhang, Z.,
Hubanks, P. A., Holz, R. E., Yang, P. Y., Ridgway, W. L.,
and Riedi, J.: The MODIS Cloud Optical and Microphys-
ical Products: Collection 6 Updates and Examples From
Terra and Aqua, IEEE T. Geosci. Remote, 55, 502–525,
https://doi.org/10.1109/TGRS.2016.2610522, 2017.

Povey, A. C. and Grainger, R. G.: Known and unknown unknowns:
uncertainty estimation in satellite remote sensing, Atmos. Meas.
Tech., 8, 4699–4718, https://doi.org/10.5194/amt-8-4699-2015,
2015.

Povey, A. C. and Grainger, R. G.: Toward More Representative
Gridded Satellite Products, IEEE T. Geosci. Remote, 16, 672–
676, https://doi.org/10.1109/LGRS.2018.2881762, 2019.

Pozzer, A., de Meij, A., Yoon, J., Tost, H., Georgoulias, A. K., and
Astitha, M.: AOD trends during 2001–2010 from observations
and model simulations, Atmos. Chem. Phys., 15, 5521–5535,
https://doi.org/10.5194/acp-15-5521-2015, 2015.

Putman, W., da Silva, A., Ott, L. E., and Darmenov, A.: Model Con-
figuration for the 7-km GEOS-5 Nature Run, Ganymed Release,
Tech. Rep., Goddard Space Flight Center, National Aeronautics
and Space Administration, technical Report GMAO Office Note
No 5 (Version 1.0), 2014.

Rangarajan, S.: Wavelength exponent for haze scattering in the trop-
ics as determined by photoelectric photometers, Tellus, 24, 56–
64, https://doi.org/10.1111/j.2153-3490.1972.tb01533.x, 1972.

Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J.,
Tanré, D., Mattoo, S., Martins, J. V., Ichoku, C., Koren, I.,
Yu, H., and Holben, B. N.: Global aerosol climatology from
the MODIS satellite sensors, J. Geophys. Res., 113, D14S07,
https://doi.org/10.1029/2007JD009661, 2008.

Roosen, R. G., Angione, R. J., and Klemcke, C. H.: World-
wide variations in atmospheric transmission: 1. base-
line results from Smithsonian observations, B. Am. Me-
teorol. Soc., 54, 307–316, https://doi.org/10.1175/1520-
0477(1973)054<0307:WVIATB>2.0.CO;2, 1973.

Rossow, W. B. and Schiffer, R. A.: Advances in un-
derstanding clouds from ISCCP, B. Am. Meteorol.
Soc., 80, 2261–2288, https://doi.org/10.1175/1520-
0477(1999)080<2261:AIUCFI>2.0.CO;2, 1999.

Atmos. Chem. Phys., 19, 15023–15048, 2019 www.atmos-chem-phys.net/19/15023/2019/

https://doi.org/10.1038/jes.2015.41
https://doi.org/10.1007/978-3-642-17725-5
https://doi.org/10.1007/978-3-642-17725-5
https://doi.org/10.1109/TGRS.2009.2013842
https://doi.org/10.5194/amt-6-2989-2013
https://doi.org/10.1002/2013JD020789
https://doi.org/10.1002/2013JD020538
https://doi.org/10.1002/2016JD025469
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.1016/j.atmosenv.2016.08.070
https://doi.org/10.1175/1520-0450(1977)016<0268:TEOWVO>2.0.CO;2
https://doi.org/10.1175/1520-0450(1977)016<0268:TEOWVO>2.0.CO;2
https://doi.org/10.5194/essd-9-511-2017
https://doi.org/10.5194/essd-9-511-2017
https://doi.org/10.1364/OE.15.007423
https://aeronet.gsfc.nasa.gov
https://aeronet.gsfc.nasa.gov
https://earthdata.nasa.gov
https://g5nr.nccs.nasa.gov/data
https://g5nr.nccs.nasa.gov/data
https://doi.org/10.1029/2000GL011581
https://doi.org/10.1073/pnas.1018526108
https://doi.org/10.1109/TGRS.2016.2610522
https://doi.org/10.5194/amt-8-4699-2015
https://doi.org/10.1109/LGRS.2018.2881762
https://doi.org/10.5194/acp-15-5521-2015
https://doi.org/10.1111/j.2153-3490.1972.tb01533.x
https://doi.org/10.1029/2007JD009661
https://doi.org/10.1175/1520-0477(1973)054<0307:WVIATB>2.0.CO;2
https://doi.org/10.1175/1520-0477(1973)054<0307:WVIATB>2.0.CO;2
https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2
https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2


A. M. Sayer and K. D. Knobelspiesse: AOD frequency distributions 15047

Royston, P.: An Extension of Shapiro and Wilk’s W Test for Nor-
mality to Large Samples, J. Roy. Stat. Soc. C-App., 31, 115–124,
https://doi.org/10.2307/2347973, 1982.

Royston, P.: Approximating the Shapiro-Wilk W
Test for non-normality, Stat. Comput., 2, 117–119,
https://doi.org/10.1007/BF01891203, 1992.

Sarhan, A. E. and Greenberg, B. G.: Estimation of Location and
Scale Parameters by Order Statistics from Singly and Dou-
bly Censored Samples: Part I. The Normal Distribution up
to Samples of Size 10, Ann. Math. Statist., 27, 427–451,
https://doi.org/10.1214/aoms/1177728267, 1956.

Sarhan, A. E. and Greenberg, B. G.: Correction Note: Correction to
Estimation of Location and Scale Parameters by Order Statistics
from Singly and Doubly Censored Samples: Part I. The Normal
Distribution up to Samples of Size 10, Ann. Math. Statist., 40,
325, https://doi.org/10.1214/aoms/1177697832, 1969.

Sayer, A. M., Thomas, G. E., Palmer, P. I., and Grainger, R. G.:
Some implications of sampling choices on comparisons between
satellite and model aerosol optical depth fields, Atmos. Chem.
Phys., 10, 10705–10716, https://doi.org/10.5194/acp-10-10705-
2010, 2010.

Sayer, A. M., Hsu, N. C., Bettenhausen, C., Ahmad, Z., Holben,
B. N., Smirnov, A., Thomas, G. E., and Zhang, J.: SeaWiFS
Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and
comparison with other data sets, J. Geophys. Res., 117, D03206,
https://doi.org/10.1029/2011JD016599, 2012.

Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Betten-
hausen, C., and Jeong, M.-J.: MODIS Collection 6 aerosol prod-
ucts: Comparison between Aqua’s e-Deep Blue, Dark Target, and
merged data sets, and usage recommendations, J. Geophys. Res.,
119, 13965–13989, https://doi.org/10.1002/2014JD022453,
2014.

Sayer, A. M., Hsu, N. C., and Bettenhausen, C.: Implications of
MODIS bow-tie distortion on aerosol optical depth retrievals,
and techniques for mitigation, Atmos. Meas. Tech., 8, 5277–
5288, https://doi.org/10.5194/amt-8-5277-2015, 2015.

Sayer, A. M., Hsu, N. C., Lee, J., Kim, W., and Dutcher,
S.: Validation, stability, and consistency of MODIS Col-
lection 6.1 and VIIRS Version 1 Deep Blue aerosol data
over land, J. Geophys. Res.-Atmos., 124, 4658–4688,
https://doi.org/10.1029/2018JD029598, 2019.

Schuster, G. L., Dubovik, O., and Holben, B. N.: Angstrom expo-
nent and bimodal aerosol size distributions, J. Geophys. Res.,
111, D07207, https://doi.org/10.1029/2005JD006328, 2006.

Schutgens, N., Tsyro, S., Gryspeerdt, E., Goto, D., Weigum, N.,
Schulz, M., and Stier, P.: On the spatio-temporal representa-
tiveness of observations, Atmos. Chem. Phys., 17, 9761–9780,
https://doi.org/10.5194/acp-17-9761-2017, 2017.

Schutgens, N. A. J., Gryspeerdt, E., Weigum, N., Tsyro, S., Goto,
D., Schulz, M., and Stier, P.: Will a perfect model agree with
perfect observations? The impact of spatial sampling, Atmos.
Chem. Phys., 16, 6335–6353, https://doi.org/10.5194/acp-16-
6335-2016, 2016a.

Schutgens, N. A. J., Partridge, D. G., and Stier, P.: The impor-
tance of temporal collocation for the evaluation of aerosol mod-
els with observations, Atmos. Chem. Phys., 16, 1065–1079,
https://doi.org/10.5194/acp-16-1065-2016, 2016b.

Seegers, B. N., Stumpf, R. P., Schaeffer, B. A., Loftin, K. A., and
Werdell, P. J.: Performance metrics for the assessment of satellite

data products: an ocean color case study, Opt. Express, 26, 7404–
7422, https://doi.org/10.1364/OE.26.007404, 2018.

Shapiro, S. S. and Wilk, B. M.: An analysis of variance test
for normality (complete samples), Biometrika, 52, 591–611,
https://doi.org/10.1093/biomet/52.3-4.591, 1965.

Smirnov, A., Holben, B. N., Eck, T. F., Dubovik, O., and
Slutsker, I.: Effect of wind speed on columnar aerosol opti-
cal properties at Midway Island, J. Geophys. Res., 108, 4802,
https://doi.org/10.1029/2003JD003879, 2003.

Smirnov, A., Holben, B. N., Giles, D. M., Slutsker, I., O’Neill, N.
T., Eck, T. F., Macke, A., Croot, P., Courcoux, Y., Sakerin, S. M.,
Smyth, T. J., Zielinski, T., Zibordi, G., Goes, J. I., Harvey, M.
J., Quinn, P. K., Nelson, N. B., Radionov, V. F., Duarte, C. M.,
Losno, R., Sciare, J., Voss, K. J., Kinne, S., Nalli, N. R., Joseph,
E., Krishna Moorthy, K., Covert, D. S., Gulev, S. K., Milinevsky,
G., Larouche, P., Belanger, S., Horne, E., Chin, M., Remer, L.
A., Kahn, R. A., Reid, J. S., Schulz, M., Heald, C. L., Zhang, J.,
Lapina, K., Kleidman, R. G., Griesfeller, J., Gaitley, B. J., Tan,
Q., and Diehl, T. L.: Maritime aerosol network as a component
of AERONET – first results and comparison with global aerosol
models and satellite retrievals, Atmos. Meas. Tech., 4, 583–597,
https://doi.org/10.5194/amt-4-583-2011, 2011.

Sotos, A. E. C., Vanhoof, S., Van den Noortgate, W., and
Onghena, P.: Students’ misconceptions of statistical in-
ference: A review of the empirical evidence from re-
search on statistics education, Educ. Res., 2, 98–113,
https://doi.org/10.1016/j.edurev.2007.04.001, 2007.

Stier, P.: Limitations of passive remote sensing to constrain global
cloud condensation nuclei, Atmos. Chem. Phys., 16, 6595–6607,
https://doi.org/10.5194/acp-16-6595-2016, 2016.

Thomas, G. E., Poulsen, C. A., Siddans, R., Sayer, A. M., Car-
boni, E., Marsh, S. H., Dean, S. M., Grainger, R. G., and
Lawrence, B. N.: Validation of the GRAPE single view aerosol
retrieval for ATSR-2 and insights into the long term global
AOD trend over the ocean, Atmos. Chem. Phys., 10, 4849–4866,
https://doi.org/10.5194/acp-10-4849-2010, 2010.

Toth, T. D., Zhang, J., Campbell, J. R., Reid, J. S., Shi, Y.,
Johnson, R. S., Smirnov, A., Vaughan, M. A., and Winker,
D. M.: Investigating enhanced Aqua MODIS aerosol optical
depth retrievals over the mid-to-high latitude Southern Oceans
through intercomparison with co-located CALIOP, MAN, and
AERONET data sets, J. Geophys. Res.-Atmos., 118, 4700–4714,
https://doi.org/10.1002/jgrd.50311, 2013.

van Donkelaar, A., Martin, R. V., Brauer, M., Hsu, N. C., Kahn,
R. A., Levy, R. C., Lyapustin, A., Sayer, A. M., and Winker,
D. M.: Global Estimates of Fine Particulate Matter using a Com-
bined Geophysical-Statistical Method with Information from
Satellites, Models, and Monitors, Environ. Sci. Technol., 50,
3762–3772, https://doi.org/10.1021/acs.est.5b05833, 2016.

Vlc̆ek, O. and Huth, R.: Is daily precipitation Gamma-
distributed?: Adverse effects of an incorrect use of the
Kolmogorov–Smirnov test, Atmos. Res., 93, 759–766,
https://doi.org/10.1016/j.atmosres.2009.03.005, 2009.

Volz, F. and Sheehan, L.: Skylight and Aerosol in Thailand
During the Dry Winter Season, Appl. Opt., 10, 363–366,
https://doi.org/10.1364/AO.10.000363, 1971.

Volz, F. E.: Photometer mit Selen-Photoelement zur spektralen
Messung der Sonnenstrahlung und zur Bestimmung der Wellen-
längenabhängigkeit der Dunsttrübung, Arch. Meteor., Geophys.

www.atmos-chem-phys.net/19/15023/2019/ Atmos. Chem. Phys., 19, 15023–15048, 2019

https://doi.org/10.2307/2347973
https://doi.org/10.1007/BF01891203
https://doi.org/10.1214/aoms/1177728267
https://doi.org/10.1214/aoms/1177697832
https://doi.org/10.5194/acp-10-10705-2010
https://doi.org/10.5194/acp-10-10705-2010
https://doi.org/10.1029/2011JD016599
https://doi.org/10.1002/2014JD022453
https://doi.org/10.5194/amt-8-5277-2015
https://doi.org/10.1029/2018JD029598
https://doi.org/10.1029/2005JD006328
https://doi.org/10.5194/acp-17-9761-2017
https://doi.org/10.5194/acp-16-6335-2016
https://doi.org/10.5194/acp-16-6335-2016
https://doi.org/10.5194/acp-16-1065-2016
https://doi.org/10.1364/OE.26.007404
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1029/2003JD003879
https://doi.org/10.5194/amt-4-583-2011
https://doi.org/10.1016/j.edurev.2007.04.001
https://doi.org/10.5194/acp-16-6595-2016
https://doi.org/10.5194/acp-10-4849-2010
https://doi.org/10.1002/jgrd.50311
https://doi.org/10.1021/acs.est.5b05833
https://doi.org/10.1016/j.atmosres.2009.03.005
https://doi.org/10.1364/AO.10.000363


15048 A. M. Sayer and K. D. Knobelspiesse: AOD frequency distributions

Bioklim., 10, 100–131, https://doi.org/10.1007/BF02243122,
1959.

Volz, F. E.: Spectral Skylight and Solar Radiance Measure-
ments in the Caribbean: Maritime Aerosols and Sahara Dust,
J. Atmos. Sci., 27, 1041–1047, https://doi.org/10.1175/1520-
0469(1970)027<1041:SSASRM>2.0.CO;2, 1970.

Wagner, F. and Silva, A. M.: Some considerations about Ångström
exponent distributions, Atmos. Chem. Phys., 8, 481–489,
https://doi.org/10.5194/acp-8-481-2008, 2008.

Weatherhead, E. C., Reinsel, G. C., Tiao, G. C., Meng, X.-L., Choi,
D., Cheang, W.-K., Keller, T., DeLuisi, J., Wuebbles, D. J., Kerr,
J. B., Miller, A. J., Oltmans, S. J., and Frederick, J. E.: Factors af-
fecting the detection of trends: Statistical considerations and ap-
plications to environmental data, J. Geophys. Res., 103, 17149–
17161, https://doi.org/10.1029/98JD00995, 1998.

Witek, M. L., Garay, M. J., Diner, D. J., Bull, M. A., and Seidel,
F. C.: New approach to the retrieval of AOD and its uncertainty
from MISR observations over dark water, Atmos. Meas. Tech.,
11, 429–439, https://doi.org/10.5194/amt-11-429-2018, 2018.

Xiong, X., Che, N., Barnes, W., Xie, X., Wang, L., and
Qu, J.: Status of Aqua MODIS spatial characterization
and performance, P. Soc. Photo-Opt. Ins., 6361, 1–9,
https://doi.org/10.1117/12.687162, 2006.

Yap, B. W. and Sim, C. H.: Comparisons of various types
of normality tests, J. Stat. Comp. Sim., 81, 2141–2155,
https://doi.org/10.1080/00949655.2010.520163, 2011.

Yoon, J., Burrows, J. P., Vountas, M., von Hoyningen-Huene, W.,
Chang, D. Y., Richter, A., and Hilboll, A.: Changes in atmo-
spheric aerosol loading retrieved from space-based measure-
ments during the past decade, Atmos. Chem. Phys., 14, 6881–
6902, https://doi.org/10.5194/acp-14-6881-2014, 2014.

Zelazowski, P., Sayer, A. M., Thomas, G. E., and Grainger,
R. G.: Reconciling satellite-derived atmospheric proper-
ties with fine-resolution land imagery: Insights for at-
mospheric correction, J. Geophys. Res., 116, D18308,
https://doi.org/10.1029/2010JD015488, 2011.

Zhang, J. and Reid, J. S.: A decadal regional and global trend anal-
ysis of the aerosol optical depth using a data-assimilation grade
over-water MODIS and Level 2 MISR aerosol products, Atmos.
Chem. Phys., 10, 10949–10963, https://doi.org/10.5194/acp-10-
10949-2010, 2010.

Zhao, T. X.-P., Laszlo, I., Guo, W., Heidinger, A., Cao,
C., Jelenak, A., and Sullivan, J.: Study of long-term
trend in aerosol optical thickness observed from operational
AVHRR satellite instrument, J. Geophys. Res., 113, D07201,
https://doi.org/10.1029/2007JD009061, 2008.

Atmos. Chem. Phys., 19, 15023–15048, 2019 www.atmos-chem-phys.net/19/15023/2019/

https://doi.org/10.1007/BF02243122
https://doi.org/10.1175/1520-0469(1970)027<1041:SSASRM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1970)027<1041:SSASRM>2.0.CO;2
https://doi.org/10.5194/acp-8-481-2008
https://doi.org/10.1029/98JD00995
https://doi.org/10.5194/amt-11-429-2018
https://doi.org/10.1117/12.687162
https://doi.org/10.1080/00949655.2010.520163
https://doi.org/10.5194/acp-14-6881-2014
https://doi.org/10.1029/2010JD015488
https://doi.org/10.5194/acp-10-10949-2010
https://doi.org/10.5194/acp-10-10949-2010
https://doi.org/10.1029/2007JD009061

	Abstract
	Introduction
	Definitions, methodology, and data
	Data and model simulations used
	AERONET
	MISR
	MODIS
	GEOS-5 Nature Run

	The Shapiro–Wilk test and its application

	SW test categorisation results
	Spatial and temporal variation within a day
	Temporal variation on monthly and seasonal scales

	Implications and recommendations
	Magnitude differences between arithmetic-mean and geometric-mean AOD
	Implications for AOD trend analyses
	Summary and recommendations for data use

	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

