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1. Tar ball aerosol size distribution at downstream of the OFR  

Tar ball particles were generated via TSI atomizer, and concentration of tar ball particles was mediated in the OFR before these 

aerosols being photochemically oxidized. Polar, nonpolar, and mixture tar ball particles present similar size distributions.  50 

 

Figure S1. Size distribution of laboratory generated tar ball aerosols at downstream of the OFR. The distribution presents a 

norrow range with a single peak at ~70 nm diameter, similar to the size distribution of practical tar balls obtained from the 

wildfires and domestic biofuel burning (Pósfai et al., 2004; Chakrabarty et al., 2010).  
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2. OC-EC content of fresh polar and nonpolar tar ball aerosols 55 

Non-refractory organic carbon (OC) and refractory elemental carbon (EC) in fresh tar ball aerosols were analyzed using a DRI 

Model 2015 multi-wavelength thermal/optical carbon analyzer (Desert Research Institute, Nevada, USA) with the IMPROVE_A 

protocol (Chow et al., 2011; Li et al., 2018). In details, fresh nonpolar and polar tar balls were collected onto pretreated quartz 

filters (Whatman, Mainstone, UK, baked over 450 oC for 6 hr to eliminate any contamination), a circular punch (0.8 cm in 

diameter) of each loaded filter including operational blank filter was taken and analyzed. Four OC fractions (OC1, OC2, OC3, and 60 
OC4 correspond to gradient cutting temperature at 140, 280, 480, and 580 oC, respectively, in a helium atmosphere), three EC 

fractions (EC1, EC2, EC3 with cutting temperature of 590, 780, and 840 oC, respectively, in a 2% oxygen/98% helium 

atmosphere), and one PC fraction (pyrolyzed carbon content determined when transmitted laser returned to its original intensity 

after the sample was exposed to oxygen) were determined for each sample, and OC=OC1+OC2+OC3+OC4+PC, 

EC=EC1+EC2+EC3-PC, total carbon (TC) equals the sum of OC and EC. The blank-corrected and normalized carbon fractions 65 
for fresh tar ball aerosols were given below: 

Tar ball OC1 OC2 OC3 OC4 PC EC1 EC2 EC3 OC EC 

Polar 38.8% 32.2% 18.4% 0.0% 10.6% 10.6% 0.0% 0.0% 100.0% 0.0% 

Nonpolar 28.7% 25.8% 16.0% 7.7% 21.1% 21.7% 0.0% 0.0% 99.3% 0.7% 

It is clear EC content was almost below detection limit for both polar- and nonpolar-tar balls, the slight EC fraction in nonpolar tar 

ball is less than 0.7% of TC content and resides in EC1, which can be termed as non-refractory char-EC, empirically defined as 

EC1�PC. Char-EC is stripped from some OC under oxygen-free heating during OC/EC measurement, which has much weak 

absorption, and thus can be distinguished as brown carbon rather than black carbon (Andreae and Gelencsér, 2006; Arora et al., 70 
2015; Kim et al., 2011; Han et al., 2008, 2009). Many other studies on biomass burning emissions from wildfires and domestic 

burning have also reported negligible EC content in tar ball aerosols (Chakrabarty et al., 2010; Tivanski et al., 2007; Hand et al., 

2005; China et al., 2013).  
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3. Fresh tar ball composition from HR-Tof-AMS measurement 

 75 

Figure S2. Fresh polar and nonpolar tar balls composition from HR-Tof-AMS measurement. Color mapping: organics-green, 

nitrates-blue, ammonium-yellow, chloride-purple, sulfates-red.  
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4. Organic elemental ratios for fresh tar ball aerosols were derived from AMS measurement at W mode, and effective 

densities of tar ball aerosols were calculated from aerodynamic diameter divided by mobility diameter assuming tar ball 

with sphericity of 1.0 80 

Table S1. Summary of fresh tar ball particles chemical elemental ratios and effective densities 

BBOA 

Mass spectra 

Density (g cm-3) Reference 

O:C H:C M/z>100 fraction 

Nonpolar 0.25±0.01 1.55±0.01 0.32 1.24±0.01 

this work 

Mixture (2:1 in vol.) 0.30±0.01 1.59±0.02 0.29 1.27±0.02 

Mixture (1:1 in vol.) 0.36±0.01 1.62±0.04 0.27 1.29±0.02 

Mixture (1:2 in vol.) 0.39±0.01 1.61±0.03 0.24 1.30±0.01 

Polar 0.44±0.02 1.64±0.03 0.15 1.33±0.02 

BBOA 0.3~0.4    Aiken et al., 2008 

BBOA 0.29~0.33 1.51~1.58   Li et al., 2012 

BBOA 0.18~0.26 1.4~1.5   He et al., 2010 

BBOA 0.15~0.7 1.5~1.6 0.11~0.20 1.4 Zhou et al., 2017 

BBOA    1.5 Sedlacek III et al., 2018 

BBOA 0.33 1.90  1.18~1.19 Sumlin et al., 2017; 2018 
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5. Aerodynamic size distribution for tar ball particles measured by SP-LD-REMPI-ToF-MS 

 
Figure S3. Particle aerodynamic size distributions for fresh nonpolar (red) and polar (blue) tar ball aerosols measured via laser 85 
velocimetry by the SP-LD-REMPI-ToF-MS instrument. The major mode peaks at about 550 nm for both particle classes while a 

second mode of larger particles occurs for polar tar balls and a second mode of smaller particles appears for nonpolar tar balls. 

Note that the detection efficiency drops rapidly below 250 nm due to the descending Mie scattering efficiency for particles much 

smaller than the wavelength (532 nm).  



 8 

6. Exemplary Proper Polyaromatic Compounds indicated by the REMPI PAH Spectra in this study (Table S2) 90 
Table S2.Exemplary proper (poly)aromatic compounds indicated by the REMPI PAH Spectra in Figure 3 

m/z Name Formula Polar tar ball Nonpolar tar ball BBOA Reference 

110 Catechol C6H6O2 √  Veres et al., 2010;  Yee et al., 2013 

115 PAHs fragments √ √ Adler et al., 2011; Bruns et al., 2015 

124 Guaiacol C7H8O2 √  Li et al., 2017; Yee et al., 2013; Hoffmann et al., 2007 

128 Naphthalene C10H8 √ √ Samburova et al., 2016; Passig et al., 2017; Bruns et al., 2015 

138 4-Methylguajacol C8H10O2 √ √ Adler et al., 2011; Yee et al., 2013 

152 

Vanillin 

4-Ethylguajacol 

C8H8O3 

C9H12O2 

√ √ Li et al., 2014; Passig et al., 2017;Yee et al., 2013; Hoffmann et al., 2007 

158 

Methoxynaphthalene 

1,4-Naphthalenedione 

Methylnaphthol 

C11H10O 

C10H6O2 

C11H10O 

√  Santos et al., 2016; Yee et al., 2013; Hoffmann et al., 2007 

165 PAHs fragments √ √ Adler et al., 2011; Bruns et al., 2015 

168 

4-Methylsyringol 

Vanillic acid 

C9H12O3 

C8H8O4 

√  Santos et al., 2016; Hoffmann et al., 2007; Bruns et al., 2015 

178 

Phenanthrene 

Conifery aldehyde 

C14H10 

C10H10O3 

√ √ Samburova et al., 2016; Bente et al., 2008, 2009; Passig et al., 2017 

182 

Syringaldehyde 

4-Ethylsyringol 

C9H10O4 

C10H14O3 

√  Santos et al., 2016; Yee et al., 2013; Hoffmann et al., 2007 

189, 190, 191 Retene fragments √ √ Bente et al., 2008, 2009; Mandalakis et al., 2005 

192 Methylphenanthrene C15H12 √ √ Samburova et al., 2016; Bente et al., 2008, 2009; Passig et al., 2017 

202 

Pyrene 

Fluoranthene 

C16H10 √ √ Adler et al., 2011; Bente et al., 2008, 2009; Passig et al., 2017 

203, 204, 205 Retene fragments √ √ Passig et al., 2017; Mandalakis et al., 2005 

206 Ethylphenanthrene C16H14  √ Samburova et al., 2016 

219, 220 Retene fragments √ √ Bente et al., 2008, 2009; Passig et al., 2017 

234 Retene C18H18 √ √ Samburova et al., 2016; Bente et al., 2008, 2009; Passig et al., 2017 
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248 Methyl. Retene C19H20  √ Passig et al., 2017; Mandalakis et al., 2005 

250 Ox. Retene C18H18O √ √ Samburova et al., 2016 

Note: only some major and most proper aromatic compounds were listed in the table  
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7. Morphology of tar ball aerosols 

 

 95 
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Figure S4. Morphology of fresh tar ball particles generated from polar and nonpolar phase tarry solutions. The particles are 

perfect spherical and amorphous in internal composition.  115 

a) Nonpolar phase 

b) Polar phase 
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8. Refractive index for tar ball at mixture of 2:1 and 1:2 in volume of polar and nonpolar materials  

 

Figure S5. Wavelength-dependent refractive index (RI) for tar ball particles generated from polar and nonpolar phase solution 

mixtures 

  120 
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9. Example of absorption coefficients for some of the most absorbing PAHs identified in BBOA 

 

Figure S6. Absorption coefficients for some of the most absorbing PAHs identified in biomass burning emissions (Samburova et 

al., 2016).  

  125 
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10. Methanol extractable BrC mass absorption cross sections (MAC) for fresh tar ball aerosols from 360 to 450 nm  

 

Figure S7. BrC mass absorption cross section (MAC) for methanol extracted fresh tar ball particles. Inset chart presents example 

of Åabs_UV-Vis calculated from natural logarithm regression of MAC and wavelength.     
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11. Prediction of mixture tar ball optical properties based on different mixing rules 130 

There are many mixing rules currently in use to predict optical properties of aerosol from matrix of various substances: 1) molar 

refraction and absorption (Jacobson, 2002; Tang, 1997); 2) a volume-weighted linear average of the refractive indices (d'Almeida 

et al., 1991); 3) the Maxwell-Garnet rule (Chýlek et al., 1984); and 4) the dynamic effective medium approximation (Jacobson, 

2006). Due to the complexity of undefined chemical composition of tar ball particles, the Maxwell-Garnet and dynamic effective 

medium approximation are not feasible in this study, therefore, the simple molar fraction and volume-weighted mixing rules were 135 
discussed to fit the optical results. 

The “linear mixing rule” simplifies mixing state and interaction between matrix, assumes that total real and imaginary refractive 

indices of the mixture are result of the indices of the components weighted by their their volume fractions: 

                                                                                      [1] 

Where fi, ni, and ki are the volume fraction, real part, and imaginary part of each component 140 
The molar fraction mixing rule assumes that the total molar refraction of a mixture is given by the linear average of the molar 

refraction of each component weighted by their molar volumes, i.e., 

    

                                                                       [2]

 

Where xi, Mi, and ρi are the molar fraction, molecular weight, and material density. 

Refractive indices for tar ball generated from polar and nonpolar fraction mixture at solution mixing ratios of 1:2,1:1, and 2:1 will 145 
be calculated from RI of polar and nonpolar optical results based on above two rules. The exact volume and molar fraction for 

bulk polar and nonpolar part in particles can be estimated from particle density and chemical elemental ratios: 

                                                                                  [3] 

                                                                            [4] 

Where RO/C is oxygen to carbon ratio from AMS measurement of tar ball particles, and calculated particulate volume and molar 150 
fraction are given below: 
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Table S3. Particulate molar and volume fractions of bulk polar and nonpolar tar 

Polar:Nonpolar  

prepared solution ratio 

O/C 

 molar ratio 

O/C retrieved molar 

 mixing ratio 

Density (g 

cm-3) 

density retrieved volume 

mixing ratio 

1:0 0.44 1:0 1.329±0.021 1:0 

2:1 0.39 2.8:1 1.298±0.022 1.8:1 

1:1 0.36 1.4:1 1.285±0.019 0.98:1 

1:2 0.3 1:2.8 1.274±0.013 1:1.72 

0:1 0.25 0:1 1.242±0.005 0:1 

 

Molecular weight for polar and nonpolar fractions were simplified as Mbulk-polar and Mbulk-nonpolar, and mixture tar ball particles 155 
follow the function below: 

   

                                                        [5] 

And it was calculated as Mbulk-nonpolar ≈1.3Mbulk-polar 

For convenience and clarity, wavelength-dependent RI for tar ball were exponential or power-law fitted, the results were showed 

in Figure S8 and corresponded parameters were summarized in Table S4: 160 
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Figure S8. Regressed RI for tar ball particles of various mixing ratios: a) real part, and b) imaginary part 
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Table S4. Parameterization of the Wavelength-Dependent (365 to 425 nm) Effective Complex RI of tar ball particles 

Tar ball 

Real Imaginary 

Co C1 C2 Co C1 C2 

Nonpolar phase 

min 1.604 7.148 -1.27E-02 0.164 -8.89E-02 1.27E-03 

average 1.033 0.831 -7.08E-04 0.010 2.37E+01 -1.97E-02 

max 1.677 -1.95E-09 3.80E-02 0.010 8.75E+00 -1.65E-02 

Nonpolar:polar 2:1 

min 1.627 22.067 -1.65E-02 0.028 -1.05E-05 1.80E-02 

average 1.646 321.800 -2.43E-02 0.046 -1.81E-03 7.06E-03 

max 1.658 2819.637 -3.04E-02 0.330 -2.47E-01 5.86E-04 

Nonpolar:polar 1:1 

min 1.657 55.140 -1.98E-02 -0.291 3.52E-01 -4.01E-04 

average 1.324 0.697 -1.61E-03 0.023 -5.69E-16 5.10E+00 

max 1.754 -5.09E-18 6.145 -0.220 3.00E-01 -6.09E-04 

Nonpolar:polar 1:2 

min 1.832 -0.044 3.35E-03 0.002 6.88E+04 -4.19E-02 

average 1.306 0.683 -1.58E-03 0.006 8.43E+04 -4.27E-02 

max 1.550 0.826 -4.75E-03 0.009 1.56E+40 -1.64E+01 

Polar phase 

min 1.921 -0.133 1.97E-03 0.016 -5.83E-19 6.33E+00 

average 1.585 3.174 -1.06E-02 0.001 3.02E+06 -5.43E-02 

max 1.615 53.051 -1.95E-02 0.005 5.43E+11 -8.81E-02 

Note: Non-shaded cells were fitted with an exponent; n&k(λ)=C0+C1×e(C2×λ). Shaded cells were fitted with a power law; 165 
n&k(λ)=C0+ C1λ×C2 

The calculated RI following “volume linear mixing rules” for tar ball were presented in Figure S9 and compared with 

experimental data in Figure S10. 
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Figure S9. Estimated RI for tar ball particles of various mixing ratios based on volume linear mixing rule: a) real part, and b) 170 
imaginary part 

 

Figure S10. Deviation between experimental RI and predicted RI from volume linear mixing rule: a) real part, and b) imaginary 

part 

  175 
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The calculated RI following “molar fraction mixing rules” for tar ball were presented in Figure S11 and compared with 

experimental data in Figure S12. 

 

Figure S11. Estimated RI for tar ball particles of various mixing ratios based on molar fraction mixing rule: a) real part, and 

b) imaginary part 180 

 

Figure S12. Deviation between experimental RI and predicted RI from molar fraction mixing rule: a) real part, and b) 

imaginary part 
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12. Summary of optical parameters for tar ball aerosol upon NOx-dependent photochemical aging  

Table S5. Summary of RI and Ångström exponent changes for tar ball particles upon photochemical oxidation (mean ± standard deviation) 

Tar ball 
Complex Refractive index SSA 

(average) 
Åabs Åabs_UVVIS Åext 

Average 375nm 405nm 

Fresh (1.661±0.008)+(0.020±0.004)i (1.671±0.003)+(0.025±0.003)i (1.659±0.011)+(0.017±0.002)i 0.89 ± 0.01 5.87 ± 0.37 6.74 3.81 ± 0.18 

O_0.7 (1.641±0.010)+(0.014±0.006)i (1.652±0.001)+(0.021±0.001)i (1.635±0.001)+(0.010±0.002)i 0.92 ± 0.02 9.33 ± 3.38 6.11 4.21 ± 0.07 

O_1.7 (1.639±0.011)+(0.008±0.005)i (1.651±0.002)+(0.015±0.004)i (1.631±0.002)+(0.005±0.003)i 0.96 ± 0.03 10.96 ± 3.23 6.46 4.33 ± 0.04 

O_3.9 (1.632±0.010)+(0.007±0.004)i (1.643±0.001)+(0.011±0.002)i (1.628±0.002)+(0.004±0.001)i 0.96 ± 0.02  10.63 ± 3.17 6.31 4.11 ± 0.09 

O_6.7 (1.624±0.007)+(0.007±0.003)i (1.630±0.003)+(0.009±0.003)i (1.623±0.002)+(0.004±0.003)i 0.96 ± 0.02 9.89 ± 2.59 6.02 3.74 ± 0.06 

N_0.5 (1.635±0.011)+(0.015±0.004)i (1.646±0.001)+(0.018±0.001)i (1.629±0.001)+(0.012±0.002)i 0.91 ± 0.01 6.92 ± 1.35 6.41 4.01 ± 0.07 

N_2.0 (1.648±0.008)+(0.019±0.004)i (1.653±0.002)+(0.025±0.003)i (1.645±0.002)+(0.016±0.001)i 0.89 ± 0.01 5.60 ± 0.69 6.35 3.76 ± 0.10 
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13. Methanol extractable BrC mass absorption cross sections (MAC) for NOx-free photochemical aged tar ball aerosols 

from 360 to 450 nm 

 

Figure S13. Diminishing in tar ball BrC mass absorption cross section (MAC) upon daytime NOx-free photochemical oxidation
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14. Optical and chemical changes for tar ball aerosols due to photolysis from UV light irradiation in the OFR 

Studies have reported that BrC formation and SOA decomposition due to directly UV/near UV-short visible light irradiation of 

various precursors in both liquid and air (Bateman et al., 2011; Malecha and Nizkorodov, 2016; Wong et al., 2017). During 

photochemical aging through the OFR at residence time of 144s, tar ball particles were also exposed to high photon flux at 254 

nm. We performed several experiments to estimate the influence of UV illumination on tar ball evolution. Irradiation tests of P1 

and P2 repeated the same aging process of O_1.7 and O_3.9 without external O3, and P3 was conducted at a full power of the UV 

lamps in the OFR. We observed slight chemical composition changes in the tar ball aerosols due to photolysis, as the O/C ratio 

continuously increased while H/C decreased with extension of irradiation (Table S6 and Figure S14). The O/C ratio increased by 

0.04 for maximal irradiation exposure, which was much smaller than that from photochemical oxidation. This indicates that 

OH-initiated oxidation rather than photolysis reactions play a more dominate role in tar ball aging.  

The decrease of the H/C ratio due to photolysis exhibited a distinct different chemical pathway than by OH photooxidation. 

According to the mass spectra analysis, particularly for the P3 experiment shown in Figure S14, the fractions of signals attributed 

to CxHy+ and CxHyOz+ fragments decreased, and as a consequence, the contribution of the CxHyO+ fractions increased in 

photolyzed tar ball aerosols. Comparing to the fresh tar ball mass spectra, alkyl/alkenyl chains, carboxylic acids/peroxides (CO2+, 

CHO2+), and carbonyl/aldehyde groups (CO+, CHO+, C2H3O+) fragments depleted due to irradiation by UV light. Furthermore, 

increase of the f44/f43 ratio with photolysis shown in Figure S14, indicates decay of CO2+ to a less extent compared to the loss of 

C2H3O+. Photolysis occurs in the condensed phase as particles containing photolabile compounds that efficiently absorb light at 

actinc wavelengths. Oxygenated species such as carbonyls, carboxylic acids, and peroxides are more vulnerable to photolysis, 

especially in the UV. With cleavage of the oxygenated functional groups, molecules become more volatile and may desorb to the 

gas phase (Henry and Donahue, 2012). Considerable amount of VOCs productions, including small molecular acids, ketones, 

aldehydes (e.g., acetic acid, formic acid, acetaldehyde, acetone, etc.), and hydrocarbon species (e.g., methane, ethene, propane, 

etc.), were detected from photo-degradation of various SOA (Malecha and Nizkorodov, 2016; Mang et al., 2008), and 

photocleavage of carbonyls has been emphasized in photolysis of SOA. Bateman et al. (2011) reported that exposure to UV 

irradiation increased the O/C ratio of dissolved ambient SOA, and they attributed the chemical changes to photodissociation of 

molecules containing carbonyl groups and net production of carboxylic acids that overweigh their decomposition in pH modified 

solution. Detailed mechanisms were proposed such as n-π* Norrish type-I and -II splitting of carbonyls and n-σ* photolysis of 

peroxides to form production of carboxylic acids in the presence of dissolved oxygen (Norrish, 1934; Pitts et al., 1964).  

In the current experiments, photolysis occurred in particle phase which can be different from photolysis in liquid phase. First, 

the photolysis of particles should be less efficient as quenching is more likely and fragment caging can prevent rapid 

recombination. Second, photolysis products (volatile molecules and radicals) can more easily transfer to the gas phase rather than 

accumulate in the solution and be involved in further reactions. Epstein et al. (2014) isolated photolysis influence on α-pinene 

SOA. They reported suppression of SOA mass loading and marked decomposition of particle-bound organic peroxides from UV 

light illumination. The fraction of CxHy+ fragments slightly decreased while the oxygenated fragments increased upon irradiation. 

Wong et al. (2014) highlighted RH-dependent photolysis as a sink for SOA in the atmosphere, in particular, photolysis results in 

more oxidized SOA due to kinetic preference for degradation of less oxidized components, and they attributed the slower decay of 

f44 (CO2+) to photodissociation of peroxides and the formation of carboxylic acids in SOA upon UV irradiation. 

The optical properties of SOA can change upon photolysis of photolabile carbonyl/carboxylic organics, peroxides, and other 

chromophores. Liu et al. (2016) investigated the influences of various environmental factors on light absorption of aromatic SOA 

from ozonolysis in the presence of NOx. They suggested that photolysis, rather than hydrolysis, bleached SOA absorption due to 

degradation of nitrogen-containing chromophores. This conclusion was also confirmed by similar studies by Lee et al. (2014) and 

Aiona et al. (2018). In our study, the changes in the optical properties as a function of O/C ratio for tar balls upon photolysis are 
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shown in Figure S16. The relevant parameters are summarized in Table S7, MAC changes for tar ball upon photolysis are 

presented in Figure S17. RI of both real and imaginary parts weakly diminished during irradiation, and the average RI at 375 nm 

decreased by 0.012+0.006i for maximum photolyzed tar ball, corresponded MAC at 375 nm decreased by ~31.3%.  

Table S6. Summary of mass spectra characters and effective density changes for tar ball particles upon photolysis from UV light 

irradiation (mean ± standard deviation)  

Tar ball O:C H:C N:C m/z>100 fraction density 

Fresh 0.25±0.01 1.55±0.01 0.012±0.002 0.32 1.24±0.01 

P1 0.26±0.01 1.53±0.01 0.013±0.003 0.33 1.24±0.01 

P2 0.27±0.01 1.51±0.01 0.011±0.001 0.32 1.24±0.01 

P3 0.29±0.01 1.49±0.01 0.012±0.002 0.33 1.24±0.01 
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Figure S14. Dynamic changes for chemical characteristics of tar ball particle upon UV light irradiation: a) OM/OC, H/C ratio, 

and average carbon oxidation state ( ) changes as a function of O/C ratio; b) mass spectra evolution with photolysis extension 

in term of CxHy+, CxHyO+, CxHyOz+ , and CxHyOiNp+ fragment groups 

 

 

OSc
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Figure S15. High-resolution mass spectra changes for nonpolar tar ball particles after maximum photolysis in P3 test, four ion groups were grouped for clarity as: CxHy+, CxHyO+, CxHyOz+ 

(z>1), CxHyOiNp+(i≧0,p≧1). Ions O+, OH+, and H2O+ were included in the CxHyOz+ group. Mass fraction of the four fragment groups was pie-chart presented. a) normalized mass spectra of 

aged tar ball particles, b)~d) changes of CxHy+, CxHyO+, CxHyOz+, and CxHyOiNp+ comparing with fresh tar ball normalized mass spectra 



 26 

  



 27 

 Table S7. Summary of RI and Ångström exponent changes for tar ball particles upon photolysis (mean ± standard deviation) 

Tar ball 
Complex Refractive index SSA 

(average) 
Åabs Åabs_UVVIS Åext 

Average 375nm 405nm 

Fresh (1.661±0.008)+(0.020±0.004)i (1.671±0.003)+(0.025±0.003)i (1.659±0.011)+(0.017±0.002)i 0.89 ± 0.01 5.87 ± 0.37 6.74 3.81 ± 0.18 

P1 (1.658±0.010)+(0.022±0.006)i (1.668±0.001)+(0.027±0.001)i (1.653±0.002)+(0.018±0.001)i 0.88 ± 0.02 6.92 ± 0.60 6.59 3.94 ± 0.03 

P2 (1.649±0.008)+(0.018±0.004)i (1.656±0.002)+(0.023±0.002)i (1.647±0.002)+(0.014±0.003)i 0.90 ± 0.02 6.99 ± 1.22 6.50 3.79 ± 0.05 

P3 (1.649±0.010)+(0.015±0.004)i (1.659±0.005)+(0.019±0.004)i (1.644±0.004)+(0.013±0.003)i 0.92 ± 0.01 7.42 ± 0.53 6.56 4.01 ± 0.01 



 28 

 

Figure S16. Changes in the retrieved spectral-dependent complex RI and SSA as a function of O/C ratio for tar ball particles upon 

254 nm illumination: a) real part, b) imaginary part, and c) SSA calculated for 150 nm particles. The color scale shows the span in 

the RI for the wavelengths measured from 365 to 425 nm. For clarity, error bars for O/C ratio (±0.01), RI (±0.008 for real part, 

and ±0.003 for imaginary part on average) and SSA (±0.006) are not shown. The two dashed lines trace RI and SSA at 375nm 

(purple) and 405nm (green). P1~P3 represent photolysis studies with low to maximal photon flux exposures. 
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Figure S17. Changes of tar ball BrC mass absorption cross section (MAC) as a function of wavelength upon UV photolysis 
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15. Optical and chemical changes of tar ball aerosols due to O3 oxidation 

Prior to photochemical aging experiments, blank test of tar ball oxidation via O3 under dark was conducted in the OFR. Initial 

environmental conditions (e.g., O3 and tar balls concentrations, relative humidity, residence time, etc) were maintained the same 

with following daytime evolution simulations, while UV lamps were not turned on. Dynamic optical and chemical changes for tar 

balls were characterized and presented in Figure S18 and S19. We did not observe significant refractive index changes for tar balls 

after 28.6 ppm O3 oxidation, taking ambient O3 concentration of 50 ppb, equivalent atmospheric O3 exposure for tar balls through 

the OFR was about one day. RIs of fresh tar ball are (1.671±0.003)+(0.025±0.003)i and (1.659±0.011)+(0.017±0.002)i at 375 and 

405 nm, respectively. After O3 oxidation, RIs became (1.677±0.012)+(0.023±0.003)i and (1.668±0.011)+(0.013±0.004)i at at 375 

and 405 nm, respectively. In Figure S19, O3 oxidation weakly increased O/C and OM/OC ratios of tar balls, O/C ratio increased 

by 0.02 from initial 0.25, and OM/OC increased from 1.47 to 1.50, while H/C ratio remained during O3 oxidation of tar ball 

particles. It was found CxHy+ fractions slight decreased in compensation of more CxHyO+ and CxHyOz+ fragments formation, 

indicating oxygenated moieties produced.   

 

Figure S18. Refractive index as a function of wavelength for fresh and O3 oxidized tar balls, a) real part, b) imaginary part
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Figure S19. High-resolution mass spectral changes for nonpolar tar ball particles oxidized via O3. Four ion groups were grouped for clarity: CxHy+, CxHyO+, CxHyOz+ (z>1), 

CxHyOiNp+(i≧0,p≧1). Ions O+, OH+, and H2O+ were included in the CxHyOz+ group. Mass fraction of the four fragment groups was pie-chart presented. a) normalized mass spectra of O3 

oxidized tar ball particles, b)~d) changes of CxHy+, CxHyO+, CxHyOz+, and CxHyOiNp+ comparing with fresh tar ball normalized mass spectra
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16. Mass spectra characters and effective density changes for tar ball particles upon photochemical oxidation 

Table S8. Summary of mass spectra characters and effective density changes for tar ball particles upon photochemical oxidation (mean ± standard deviation) 

Tar ball O:C H:C N:C m/z>100 fraction density 

Fresh 0.25±0.01 1.55±0.01 0.012±0.002 0.32 1.24±0.01 

O_0.7 0.32±0.01 1.59±0.01 0.012±0.000 0.28 1.24±0.01 

O_1.7 0.35±0.01 1.60±0.01 0.009±0.002 0.24 1.24±0.01 

O_3.9 0.35±0.01 1.59±0.01 0.010±0.003 0.24 1.24±0.01 

O_6.7 0.38±0.01 1.62±0.03 0.011±0.001 0.21 1.24±0.01 

N_0.5 0.37±0.01 1.57±0.02 0.012±0.001 0.25 1.25±0.01 

N_2.0 0.41±0.01 1.58±0.01 0.015±0.004 0.25 1.26±0.01 
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17. Detailed mass spectra changes for tar ball upon 6.7 EAD photochemical aging 

 

Figure S20. High-resolution mass spectral changes for nonpolar tar ball particles upon 6.7 EAD photochemical oxidation in absence of NOx. Four ion groups were grouped for clarity: 

CxHy
+, CxHyO+, CxHyOz

+ (z>1), CxHyOiNp
+(i≧0,p≧1). Ions O+, OH+, and H2O+ were included in the CxHyOz

+ group. Mass fraction of the four fragment groups was pie-chart 

presented. a) normalized mass spectra of 6.7 EAD aged tar ball particles, b)~d) changes of CxHy
+, CxHyO+, CxHyOz

+, and CxHyOiNp
+ comparing with fresh tar ball normalized mass 

spectra  
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18. Standard AMS spectra for inorganic salt of NH4NO3 

 

Figure S21. Standard mass spectra for NH4NO3 measured using HR-Tof-AMS system: NO+ and NO2+ for nitrate, NH+, NH2+, and 

NH3+ for ammonium
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19. Detailed mass spectra changes for tar ball aerosols upon 4 EAD photochemical aging with 2.0 vol.% N2O addition 

 

Figure S22. High-resolution mass spectra changes for nonpolar tar ball particles upon photochemical oxidation in presence of NOx, five ion groups were grouped for clarity as: CxHy+, CxHyO+, 

CxHyOz+ (z>1), CxHyOiNp+(i≧0,p≧1), and NOy+ (NO+ and NO2+). Ions O+, OH+, and H2O+ were included in the CxHyOz+ group. Mass fraction of the four fragment groups was pie-chart 

presented. a) normalized mass spectra of aged tar ball particles, b)~d) changes of CxHy+, CxHyO+, CxHyOz+, CxHyOiNp+, and NOy+ comparing with photochemical oxidized tar ball in absence of 

NOx  
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20. Methanol extractable BrC mass absorption cross section (MAC) for tar ball aerosols upon various NOx-dependent 1 

photochemical aging processes 2 

 3 

Figure S23. Methanol extractable BrC mass absorption cross section (MAC) for tar ball upon NOx-dependent photochemical 4 

oxidation as a function of wavelength 5 

  6 
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21. Particle size- and light wavelength-resolved radiative forcing for tar ball aerosols oxidized via various NOx-dependent 7 

oxidation processes 8 

 9 

Figure S24. Ground based size-resolved radiative forcing spectra over solar irradiation of 365~425 nm for tar ball under various 10 

oxidation: a) fresh tar ball, b) 3.9 EAD daytime photochemical oxidized tar ball, c) photooxidized tar ball with 0.5 vol.% N2O 11 

addition, d) photooxidized tar ball with 2.0 vol.% N2O addition. 12 

  13 



 38 

 14 

Figure S25. Snow based size-resolved radiative forcing spectra over solar irradiation of 365~425 nm for tar ball under various 15 

oxidation: a) fresh tar ball, b) 3.9 EAD OH initiated photochemical oxidized tar ball, c) photooxidized tar ball with 0.5 vol.% N2O 16 

addition, d) photooxidized tar ball with 2.0 vol.% N2O addition. 17 

 18 

  19 
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