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Abstract. Biogenic non-methane volatile organic com-
pounds (NMVOCs) emitted from vegetation are a primary
source for the chemical production of carbon monoxide (CO)
in the atmosphere, and these biogenic emissions account for
about 18 % of the global CO burden. Partitioning CO fluxes
to different source types in top-down inversion methods is
challenging; typically a simple scaling of the posterior flux to
prior flux values for fossil fuel, biogenic and biomass burn-
ing sources is used. Here we show top-down estimates of bio-
genic CO fluxes using a Bayesian inference approach, which
explicitly accounts for both posterior and a priori CO flux un-
certainties. This approach re-partitions CO fluxes following
inversion of Measurements Of Pollution In The Troposphere
(MOPITT) CO observations with the GEOS-Chem model, a
global chemical transport model driven by assimilated mete-
orology from the NASA Goddard Earth Observing System
(GEOS). We compare these results to the prior information
for CO used to represent biogenic NMVOCs from GEOS-
Chem, which uses the Model of Emissions of Gases and
Aerosols from Nature (MEGAN) for biogenic emissions. We
evaluate the a posteriori biogenic CO fluxes against top-down
estimates of isoprene fluxes using Ozone Monitoring Instru-
ment (OMI) formaldehyde observations. We find similar sea-
sonality and spatial consistency in the posterior CO and top-
down isoprene estimates globally. For the African savanna
region, both top-down CO and isoprene seasonality vary sig-
nificantly from the MEGAN a priori inventory. This method
for estimating biogenic sources of CO will provide an inde-
pendent constraint on modeled biogenic emissions and has

the potential for diagnosing decadal-scale changes in emis-
sions due to land-use change and climate variability.

1 Introduction

Carbon monoxide (CO) plays a critical role in tropospheric
chemistry and climate as a precursor to the greenhouse gases
ozone (O3) and carbon dioxide (CO2) and through its influ-
ence on methane (CH4) lifetime via its destruction by the hy-
droxyl radical (OH) (e.g., IPCC AR5: IPCC, 2014; Gaubert
et al., 2017). CO is formed in the atmosphere from direct
emission during incomplete combustion of biomass and fos-
sil fuels and from the oxidation of hydrocarbons. Biogenic
non-methane volatile organic compounds (NMVOCs) emit-
ted from vegetation represent a significant source of precur-
sors that oxidize and produce CO, accounting for around
18 % of the global CO budget (e.g., Folberth et al., 2006,
Table 8, not including anthropogenic VOCs). Duncan et
al. (2007) calculated a contribution of photochemically pro-
duced CO from biogenic NMVOC sources contributes about
15 % of total CO sources. Pfister et al. (2008) showed that
oxidation from isoprene (C5H8) alone contributes to 9 % to
16 % of the global CO burden, with a global yield of CO
from isoprene of 0.30, calculated on a per carbon basis,
where CO production is more efficient in polluted environ-
ments (i.e., high NOx). Most biogenic NMVOC emissions
have relatively short atmospheric lifetimes, typically < 1 h so
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that transport away from sources is negligible (e.g., Palmer
et al., 2003). This allows the estimation of primary NMVOC
emissions (e.g., isoprene) using secondary products such as
formaldehyde (HCHO), which can be more easily observed
with remote sensing (e.g., Palmer et al., 2003; Stavrakou et
al., 2009a, b; Marais et al., 2012; Bauwens et al., 2016). Bio-
genic CO is then produced from HCHO and other NMVOCs
through photolysis and reactions with OH, where HCHO
lifetime is on the order of hours in tropical daytime (e.g.,
Miller et al., 2008; Anderson et al., 2017). The chemical pro-
duction and transport of CO away from sources must be mod-
eled using chemical transport models (CTMs) within an in-
version framework. Previous efforts to estimate the amount
of atmospheric CO that is produced chemically from bio-
genic NMVOC emissions have used MOPITT (Measure-
ments of Pollution in The Troposphere) satellite observa-
tions as a “top-down” constraint while estimating CO fluxes
from different sectors such as fossil fuels, biomass burn-
ing and biogenic NMVOCs (Fortems-Cheiney et al., 2011;
Hooghiemstra et al., 2011, 2012; Yin et al., 2015; Jiang et
al., 2017). These estimates have updated the prior fluxes in
these sectors. However, if the prior fluxes relied on invento-
ries with inaccurate assumptions about relative partitioning
and seasonal variability, these errors are propagated into the
posterior emission estimates.

The Model of Emissions of Gases and Aerosols from Na-
ture (MEGAN; Guenther et al., 2006) and other models of
biogenic emissions such as Organizing Carbon and Hydrol-
ogy in Dynamic EcosystEms (ORCHIDEE; Krinner et al.,
2005) have made significant strides in allowing a more accu-
rate representation of these emissions in chemical transport
models (CTMs). However, evaluation and testing of these
models is challenging due to limited availability of correla-
tive measurements, especially in tropical regions where bio-
genic emissions are largest. Comparisons of CTMs using
MEGAN have been performed with surface and airborne in
situ observations of isoprene and other biogenic NMVOCs
with reasonable agreement such as in the Southeastern US
(e.g., Warneke et al., 2010), but these are only over limited
regional scales. Large-scale evaluation of biogenic emission
models has relied on satellite observations of HCHO to con-
strain top-down isoprene emission estimates globally (e.g.,
Shim et al., 2005; Stavrakou et al., 2009b; Bauwens et al.,
2016) and regionally for North America (e.g., Palmer et al.,
2003, 2006; Millet et al., 2008), Southeast Asia (Fu et al.,
2007), South America (Barkley et al., 2008), Europe (Du-
four et al., 2009; Curci et al., 2010) and Africa (Marais et al.,
2012, 2014).

The ability to accurately model and predict biogenic emis-
sions has become increasingly important as trade-offs in land
use are studied for potential climate change mitigation (e.g.,
Griscom et al., 2017; Luyssaert et al., 2018). These trade-offs
include carbon uptake, albedo changes and the emissions of
biogenic VOCs. Since biogenic emissions are precursors to
both positive (ozone and methane) and negative (secondary

organic aerosols) climate forcers, there is significant uncer-
tainty in their role (e.g., Unger et al., 2014a, b; Scott et al.,
2018; Harper et al., 2018; Luyssaert et al., 2018). The results
presented here for CO from biogenic NMVOC sources give
additional, independent information from global satellite ob-
servations that can be used to constrain biogenic emissions in
areas that are not well monitored with other measurements.

2 CO flux estimation

The basis for estimates of CO flux from biogenic sources is
a 15-year inversion analysis (Jiang et al, 2017) that used the
adjoint of the GEOS-Chem model (Henze et al., 2007) and
MOPITT Version 6J multispectral CO observations (Deeter
et al., 2014). This approach used latitude bias-corrected MO-
PITT data (total CO columns and CO vertical profiles) av-
eraged on the GEOS-Chem 5◦ longitude×4◦latitude grid to
constrain model estimates of monthly CO fluxes in each grid
cell from three primary source sectors: anthropogenic fossil
fuel and biofuel, biomass burning, and oxidation from bio-
genic NMVOCs. CO from methane oxidation, ∼ 28 % of the
global CO budget (Folberth et al., 2006), was estimated to be
877 Tg(CO)yr−1 as an aggregated global source. The Model
of Emissions of Gases and Aerosols from Nature (MEGAN)
version 2.0 (Guenther et al., 2006) was used to formulate the
prior CO emissions from biogenic NMVOCs. Biomass burn-
ing prior fluxes are from the Global Fire Emission Database
(GFED3; van der Werf et al., 2010), and global prior fluxes
for fossil fuel are from the Emission Database for Global
Atmospheric Research (EDGAR 3.2FT2000; Olivier and
Berdowski, 2001) with updated inventories for the Northern
Hemisphere described in Jiang et al. (2017).

Model errors in atmospheric transport and chemistry typ-
ically propagate into the largest sources of uncertainty when
quantifying CO fluxes with satellite observations (Jones et
al., 2003; Stavrakou et al., 2006; Kopacz et al., 2010; Jiang
et al., 2013; Müller et al., 2018). The impact of these errors is
reduced in Jiang et al. (2017) by applying an initial assimila-
tion of MOPITT CO over ocean regions to establish bound-
ary conditions that are consistent with the satellite observa-
tions before the adjoint emission estimation over land source
regions. This approach accounts for CO chemistry and trans-
port over the ocean and allows continental source regions to
be treated more independently (Jiang et al., 2015). To char-
acterize remaining errors due to transport in the CO emis-
sion estimates, three different inversions are obtained using
MOPITT CO total column, full profile and lower troposphere
profile retrievals, and their corresponding averaging kernels
(Jiang et al., 2013; Worden et al., 2013). Since CO total
column observations have no vertical information, they are
less sensitive to convection and local emission sources, but
they provide information on advection and chemistry with
better measurement precision than profile data. Vertical pro-
files of CO, especially when restricted to the lower tropo-
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sphere, contain more information about local sources. How-
ever, since these vertical distributions have worse precision,
the flux estimates are still impacted by model errors in con-
vection, advection and chemistry. An ensemble covariance
of these three inversion results provides an empirical eval-
uation of the sensitivity in CO fluxes to altitude-dependent
constraints and their corresponding corrections in the pres-
ence of model transport and chemistry errors (Worden et al.,
2017). We find the largest variation in the three emission es-
timates for CO in India and Indonesia where large sources,
strong convection and advection from other regions all con-
tribute significantly. As in the Worden et al. (2017) analy-
sis, we constrain the monthly total CO flux in each 5◦ longi-
tude×4◦ latitude grid box using the mean and variance from
the three inversion estimates described above.

One particular limitation of using the inversion results of
Jiang et al. (2017) for biogenic CO fluxes is the use of dif-
ferent meteorological data fields over the 2001–2015 period.
Due to availability at the time the inversion analysis was
conducted, different versions of the NASA Goddard Earth
Observing System (GEOS) assimilated meteorological fields
were applied: GEOS-4 (2000–2003), GEOS-5 (2004–2012)
and GEOS-FP (2013–2015). Since MEGAN uses the meteo-
rological fields as inputs, the different GEOS versions pro-
duce non-negligible discontinuities in the a priori for bio-
genic CO for these time periods. For this reason, and to over-
lap with the availability of OMI (Ozone Monitoring Instru-
ment) formaldehyde data for inferring isoprene fluxes, we
consider the period from 2005 to 2012 for the analysis pre-
sented here.

3 Bayesian CO flux attribution approach

The re-partitioned CO flux data (Bloom et al., 2019) used
for this analysis were originally computed for the Worden et
al. (2017) study to provide improved estimates of biomass
burning emissions. Monthly, gridded estimates of biogenic
(BIO), biomass burning (BB) and fossil fuel (FF) CO fluxes
– and their associated uncertainties – were calculated via
Bayesian inference, where

p(BIO,BB,FF|A)∝
p(BIO,BB,FF)p(F |A)

p(F )
(1)

p(BIO,BB,FF) and p(BIO, BB, FF|A) are the joint prior and
posterior distributions of BIO, BB and FF; A represents the
atmospheric CO measurements; p(F) (Eq. 4) and p(F |A)
(Eq. 3) are the prior and posterior probability distributions
of total CO flux F within each monthly 5◦× 4◦ grid box.
p(F |A) was empirically approximated using the mean and
standard deviation of three different CO inversion estimates
of total flux (F1,F2,F3) from Jiang et al. (2017). The re-
partitioned distribution p(BIO,BB,FF|A) (Eq. 1) was sam-
pled using an adaptive Metropolis–Hastings Markov chain
Monte Carlo (MCMC) algorithm (Bloom and Williams,

2015; Bloom et al., 2015, 2016), with probability distribu-
tions:

p(BIO,BB,FF)= exp
(
− 0.5 ·

[[
FF−FFap

σFFap

]2

+

[
BB−BBap

σBBap

]2

+

[
BIO−BIOap

σBIOap

]2])
(2)

p(F |A)= exp
(
− 0.5 ·

[(
FFap +BBap +BIOap

)
−〈F1,F2,F3〉

SD
(
F1,F2,F3

) ]2)
(3)

p(F)= exp
(
− 0.5 ·

[(
FFap+BBap+BIOap

)
−F

σF

]2)
(4)

while effectively minimizing the cost function:

J =

[[
FF−FFap

σFFap

]2

+

[
BB−BBap

σBBap

]2

+

[
BIO−BIOap

σBIOap

]2

+

[(
FFap+BBap+BIOap

)
−〈F1,F2,F3〉

SD(F1,F2,F3)

]2

−

[(
FFap+BBap+BIOap

)
−F

σF

]2]
(5)

Prior uncertainties for BB (σBBap ) were estimated us-
ing emission factor uncertainties for fire types reported for
GFED4 and prior uncertainties of ±50 % assumed for BIO
and FF. This choice of uncertainty for the BIO and FF sectors
is based on previous experience with error constraints and
allows sufficient variability in the sector emissions for test-
ing new probability distributions within each grid cell. While
Jiang et al. (2017) also estimated sector contributions by scal-
ing the a priori flux ratios, these estimates account for the
full characterization of sectoral uncertainties given both prior
and posterior uncertainty estimates. We note that chemical
production of CO from methane oxidation (877 Tg(CO) yr−1

from Jiang et al., 2017) is considered a fixed term in the
Bayesian attribution due to the longer chemical lifetime of
methane and consequent global influence.

4 Uncertainty prediction and limitations

Uncertainties are available by 5◦× 4◦ grid cell, month and
source sector (BB, FF or BIO) and represent the 1σ width of
the posterior distributions; these distributions are critically
dependent on the a priori uncertainties and therefore sub-
ject to change when different a priori distributions and co-
variances are assumed in the Bayesian attribution approach.
Table 1 lists the sources of a priori data and uncertainties
and gives average monthly values representative of the indi-
vidual grid cells used in this study. For the remote tropical
regions considered here, FF contributions to total CO fluxes
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are small and we find the most improvement over prior errors
in BIO CO posterior flux uncertainties, especially in months
with small or no BB emissions. This can be seen in Fig. 2,
where monthly grid box posterior errors were averaged spa-
tially for the region of interest and over years 2005–2012.
One of the assumptions in this study is the prior uncertainty
in BB, which only considers emission factor uncertainties
(Akagi et al., 2011) and does not explicitly account for other
factors in BB CO fluxes such as combustion completeness
and biomass (fuel) amount (e.g., Bloom et al., 2015). Future
work will examine the effects of using a wider range of prior
uncertainties that reflect multiple inventories.

We also note that there is an implicit assumption in the
re-partitioning for CO fluxes from biogenic emissions that
monthly timescales and relatively large grid box sizes will
account for the chemical production of CO from the primary
biogenic emissions within the grid box. This assumption re-
lies on the short (< 1 d) chemical lifetime of most biogenic
emissions, especially isoprene and formaldehyde, the accu-
racy of CO chemistry in GEOS-Chem, and the relatively
smaller uncertainties for BB and FF fluxes. However, the
large grid boxes could also be a source of error in GEOS-
Chem chemistry for the inversion results. Kaiser et al. (2018)
showed that finer grid scales (0.25◦× 0.3125◦) and accurate
representations of NOx emissions in GEOS-Chem produced
top-down isoprene estimates from HCHO observations that
compared better to aircraft in situ observations. Furthermore,
the GEOS-Chem inversions did not consider chemical non-
linearities due to changes in OH caused by changing CO
emissions (Gaubert et al., 2016). This has led to an overall
increase in OH over the decade 2003–2013 and thus is re-
sponsible for an overall increase in secondary CO chemical
production (Gaubert et al., 2017). Model intercomparisons
and scale sensitivity tests would help quantify the uncertain-
ties from these assumptions.

5 Top-down isoprene estimates

Since isoprene represents the dominant biogenic NMVOC
emission (e.g., Guenther et al., 2006, 2012) and accounts
for 66 % of biogenic NMVOC emissions that react to
produce CO (Folberth et al., 2006), we compare our
estimated CO fluxes from biogenic sources with global
estimates of isoprene as a way to check their spatial and
temporal variability. Here we use the biogenic isoprene
emission estimates provided by the GlobEmission project at
http://emissions.aeronomie.be/index.php/omi-based/biogenic.
Using OMI satellite observations of tropospheric formalde-
hyde as a constraint (De Smedt et al., 2015), the GlobEmis-
sion estimates of biogenic isoprene emission are produced on
a global 0.5◦×0.5◦ grid using the adjoint of the IMAGESv2
global chemistry-transport model (Stavrakou et al., 2015;
Bauwens et al., 2016) with a priori isoprene emissions from
MEGAN–MOHYCAN described in Stavrakou et al. (2014).

Model results for biogenic emissions depend on both static
and dynamic input from the CTM and the corresponding me-
teorology data or reanalysis driving the CTM. Isoprene emis-
sions using MEGAN (Guenther et al., 2006, 2012) are com-
puted as

EISOP = Eo× γPAR× γT × γAGE× γSM× γCE, (6)

where Eo is the emission flux under standard conditions, and
the γ parameters are dimensionless scaling factors that ac-
count for sensitivities to photosynthetically active radiation
(PAR), temperature (T ), leaf age distribution (AGE), soil
moisture (SM) and the canopy radiative environment (CE).
The last term includes the effects of leaf area index (LAI)
and the plant sensitivity to the above canopy radiance. Val-
ues ofEo are specified in MEGAN using a global database of
plant functional types (PFT) assuming five PFTs (broadleaf
trees, needleleaf trees, grasses, crops and shrubs). The other
parameters require dynamic input such as hourly temper-
ature, wind speed, humidity, solar radiation, soil moisture
from the meteorological fields used in the CTM, and monthly
LAI from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) on the EOS Terra and EOS Aqua satellites.
Figure 1 shows 2005–2012 average biogenic CO and iso-
prene fluxes for 40◦ S to 40◦ N as estimated with MEGAN
and meteorological data (GEOS-5 for CO and ECMWF for
isoprene) as compared to estimated fluxes using top-down
constraints from satellite observations (MOPITT for CO and
OMI HCHO for isoprene).

We find that the distributions for biogenic CO follow sim-
ilar spatial patterns as the isoprene fluxes (albeit coarser spa-
tial resolution) and that the top-down estimates are in general
lower than the emissions predicted using MEGAN, as found
in previous studies (e.g., Millet et al., 2008; Stavrakou et al.,
2009a; Marais et al., 2014).

6 Global budgets of CO and C5H8 from biogenic
emissions

Table 2 shows the annual average fluxes of CO and C5H8
for the 2005–2012 period for 80◦ S to 80◦ N, northern mid-
latitudes (20 to 40◦ N), the tropics (20◦ S to 20◦ N), and
the separated tropical regions of South America, Africa,
and the Maritime Continent. Our global estimate for BIO
CO from non-methane sources (566± 49 Tg(CO) yr−1) is in
agreement with a previous estimate (546 Tg(CO) yr−1, Fol-
berth et al., 2006) which was obtained by adding the con-
tributions to CO from isoprene (359 Tg(CO) yr−1), methanol
(110 Tg(CO) yr−1), terpenes (49 Tg(CO) yr−1) and acetone
(28 Tg(CO) yr−1). This contribution from BIO CO repre-
sents a larger percentage (∼ 41 %) of the sum of BB, FF
and BIO CO sources than expected (∼ 27 %) based on Fol-
berth et al. (2006), which has 811 Tg(CO) yr−1 for BB and
672 Tg(CO) yr−1 for FF. However, there is a wide range in re-
ported biomass burning emission estimates, with large inter-
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Table 1. Uncertainties applied in the Bayesian source attribution (Eq. 1). Values are monthly averages for single grid boxes (5◦× 4◦ longi-
tude× latitude) in the tropical study regions.

CO sector distribution A priori source A priori uncer-
tainty

Average posterior
uncertainty
(tropics grid boxes)

Total flux
top-down estimate

GEOS-Chem inversion based
on MOPITT CO data
(Jiang et al., 2017)

σF
±50 % (assumed)

±12 % average constrainta, with
11 % 1σ standard deviation for
tropical grid cellsb,c

BIO
direct+ biogenic NMVOC
oxidation

MEGAN v2.0
(Guenther et al., 2006)

σBIOap
±50 % (assumed)

±24 %

BB
biomass burning

GFED4s
(van der Werf et al., 2017)

σBBap
±24 %
(Akagi et al., 2011)

±22 %

FF
fossil fuels

EDGAR 3.2
(Olivier and Berdowski,
2001)

σFFap
±50 % (assumed)

±45 %

a The total flux posterior error is estimated from three flux inversion types (see text for description) to approximately account for model transport errors.
b Average and standard deviation are computed for the tropics (20◦ S to 20◦ N) using grid boxes with emissions > 0.1 gCO m−2 month−1. c The variance in
tropical grid cell flux errors includes both spatial and temporal variability; however, these errors have not been weighted to account for sampling effects, such
as inflated errors due to fewer MOPITT observations during rainy seasons.

Figure 1. 2005–2012 average biogenic flux for CO (a, b) and isoprene (c, d) with model estimates using MEGAN on the left and top-down
estimates using MOPITT observations for CO (b) and isoprene inferred from OMI HCHO observations (d).

annual variability. Stavrakou et al. (2006) used 467 Tg(CO)
for the year 2000 as the BB CO a priori from GFEDv1; van
der Werf et al. (2017) reported 357 Tg yr−1 mean emissions
for BB CO over 1997–2016 while Granier et al. (2011) re-
ported a range of 414 to 509 Tg yr−1 for six emission in-

ventories in the 1997–2000 period. Because our 2005–2012
study period did not include the significant El Niño–Southern
Oscillation (ENSO) episodes in 1997 and 2015, we would
expect lower average values for BB CO emissions than these
other annual averages. Furthermore, in recent decades, there
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Figure 2. A posteriori (solid lines) and a priori (dotted lines) CO
fluxes averaged for each month over 2005–2012 for the North
African savannas region for biomass burning (BB, red), biogenic
(BIO, green) and fossil fuel (FF, blue) sectors. The inset map shows
average BIO CO fluxes over Africa, with the same color scale as
shown in the top panels of Fig. 1. The North African savannas grid
boxes considered for the monthly averages are outlined in gray. Er-
rors on the 8-year average fluxes for this region are indicated for
each sector and month, with values around 2.3 % for BIO, 1.6 % for
BB and 3.4 % for FF.

is a decreasing contribution of BB CO associated with a de-
cline in tropical fires (e.g., Andela et al., 2017), as well as
declining FF CO emissions (Yin et al., 2015; Strode et al.,
2016; Jiang et al., 2017; Zheng et al., 2018).

7 Seasonality of biogenic emissions – case study for the
North African savannas

Figure 2 shows the seasonal behavior of posterior sectoral
CO flux estimates in the North African savannas (see out-
lined grid cells of Fig. 2 inset map) derived by the Bayesian
attribution approach described in Sect. 3. While biomass
burning (BB) dominates in the northern hemispheric win-
ter, and fossil fuel fluxes (FF) have little variability, biogenic
fluxes show two broad maxima: one in April and the other
in October. We note that these maxima are not likely mis-
identified BB fluxes as the BB months are relatively well de-
fined in the region for November to February.

Figure 3 shows the time series of a priori (MEGAN with
GEOS-5) vs. posterior for the North African savannas region,
with surface temperature from the Modern-Era Retrospective
analysis for Research and Applications (MERRA; Rienecker
et al., 2011) overplotted to show the correspondence of the
posterior results with temperature variability. We note that
using GEOS-FP for the 2013–2015 meteorology (not shown)
results in a ∼ 27 % increase for the peak a priori (MEGAN

Figure 3. Time series of a priori (dashed black) and posterior (solid
black) CO fluxes with monthly mean 1σ errors and MERRA surface
air temperature (magenta) for the North African savannas region
(see inset map in Fig. 2).

with GEOS-FP) biogenic CO fluxes compared to the years
using MEGAN with GEOS-5.

As shown by Marais et al. (2014), the seasonality of iso-
prene fluxes in the African savannas north of the Equator
also has a maximum in April followed by a minimum dur-
ing the rainy season, June to September (Janicot et al., 2008).
Fluxes for December to March were not estimated in Marais
et al. (2014) due to interference with biomass burning emis-
sions and secondary formation HCHO. The top-down iso-
prene estimates from Bauwens et al. (2016) and the CO flux
estimates from the Bayesian attribution approach described
here both show two minima in biogenic emissions for this re-
gion – one in the rainy season (June–August) and the other in
winter (December–January) – similar to the surface temper-
ature (Fig. 4). Marais et al. (2014) attribute the higher emis-
sions from MEGAN to the model dependence on LAI, which
has a broad maximum in August.

Other regions in South America, southern Africa and Aus-
tralia that were tested for seasonality of BIO CO fluxes (see
Supplement) did not show the same large inconsistency with
MEGAN, suggesting that the North African savannas re-
quire special treatment and a revised parametrization within
MEGAN to account for the enhanced sensitivity to surface
temperature vs. LAI during the rainy season. The tabulated
emissions under standard conditions, Eo, could also require
revision to account for human-driven changes in plant types
due to cropland expansion in the North African savannas re-
gion in recent decades (e.g., Andela et al., 2014).

8 Summary and future work

This paper has presented the first results for estimates of CO
from biogenic NMVOCs using a Bayesian re-partitioning of
top-down flux estimates. We find that the CO flux estimates
based on MOPITT CO observations are spatially consistent
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Table 2. Annual average isoprene and sector partitioned carbon monoxide fluxes for 2005–2012.

Region OMI/BIRA
Isoprene
Tg(C5H8) yr−1

GEOS-
Chem/
MOPITT
BIO CO
Tg(CO) yr−1

GEOS-
Chem/
MOPITT
BB CO
Tg(CO) yr−1

GEOS-Chem/
MOPITT
FF CO
Tg(CO) yr−1

Tropics
(20◦ S–20◦ N)

246 (A)
176

364 (A)
326± 27

277 (A)
231± 14

120 (A)
120± 14

Tropical South
America
(90–30◦W)∗

127 (A)
83

131 (A)
104± 7

62 (A)
41± 3

17 (A)
16± 2

Tropical Africa
(20◦W–50◦ E)∗

73 (A)
56

166 (A)
159± 13

159 (A)
145± 8

31 (A)
34± 5

Maritime Conti-
nent
(90–160◦ E)∗

39 (A)
32

57 (A)
52± 6

55 (A)
43± 3

46 (A)
44± 4

Northern midlat-
itudes
(20–40◦ N)

34 (A)
28

99 (A)
95± 11

16 (A)
15± 1

295 (A)
264± 18

Global
(80◦ S–80◦ N)

343 (A)
273

630 (A)
566± 49

350 (A)
290± 18

546 (A)
535± 42

A: a priori. Source is ECMWF/MEGAN v2.0 for the OMI/BIRA isoprene flux estimates. See Table 1 for CO a priori
sources and uncertainties. ∗ Latitude range is 20◦ S–20◦ N

Figure 4. Average monthly CO (black) and C5H8 (green) fluxes
and surface air temperatures (magenta) for 2005–2012 for the North
African savannas region (see inset map in Fig. 2). Solid black and
green lines show the posterior “top-down” fluxes while dashed
black and green lines show the emissions predicted by MEGAN
with associated meteorological fields.

with biogenic isoprene flux estimates based on OMI HCHO
observations. Both top-down estimates for carbon monox-
ide and isoprene suggest that biogenic emissions based on
MEGAN are too high in the tropics by 28 % for isoprene
and 10 % for carbon monoxide with the largest discrepan-
cies in South America. As a case study in tropical North
Africa, we found that the top-down estimates suggest a sig-
nificant seasonality change compared to MEGAN for both

CO and C5H8. The top-down estimates have seasonal cycles
that match well with MERRA surface temperature and that
have secondary minima during the rainy season that are not
predicted well by MEGAN. These discrepancies suggest the
potential for regional updates to the MEGAN model, a fo-
cus of future work. Sensitivity to model grid scales that af-
fect transport and chemistry uncertainties will also be inves-
tigated.

In order to examine climate variability and possible trends
in biogenic emissions, the methods described here will also
be applied to a flux inversion estimate using a consistent me-
teorological reanalysis. Since MOPITT will soon have a 20-
year data record, it will span several ENSO cycles and will
have the potential for detecting the effects of inter-annual and
long-term changes in surface temperatures on biogenic CO
flux variability.

Data availability. NASA/MOPITT data sets used for the CO
inverse modeling component (Jiang et al., 2017) are publicly
available at https://eosweb.larc.nasa.gov/datapool (Deeter et al.,
2014). The isoprene emission estimates obtained from inverse
modeling of OMI HCHO observations are available from the
GlobEmission project at http://emissions.aeronomie.be/index.php/
omi-based/biogenic (Bauwens et al., 2016). The partitioned sec-
tor CO flux estimates are available at https://dashrepo.ucar.edu/
dataset/CO_Flux_Inversion_Attribution.html, which can be cited
with https://doi.org/10.26024/r1r2-6620 (Bloom et al., 2019).
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