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Abstract. Surface ozone (O3) pollution levels are strongly
correlated with daytime surface temperatures, especially in
highly polluted regions. This correlation is nonlinear and
occurs through a variety of temperature-dependent mecha-
nisms related to O3 precursor emissions, lifetimes, and reac-
tion rates, making the reproduction of temperature sensitivi-
ties – and the projection of associated human health risks –
a complex problem. Here we explore the summertime O3–
temperature relationship in the United States and Europe us-
ing the chemical transport model GEOS-Chem. We remove
the temperature dependence of several mechanisms most
frequently cited as causes of the O3–temperature “climate
penalty”, including PAN decomposition, soil NOx emissions,
biogenic volatile organic compound (VOC) emissions, and
dry deposition. We quantify the contribution of each mech-
anism to the overall correlation between O3 and tempera-
ture both individually and collectively. Through this analysis
we find that the thermal decomposition of PAN can explain,
on average, 20 % of the overall O3–temperature correlation
in the United States. The effect is weaker in Europe, ex-
plaining 9 % of the overall O3–temperature relationship. The
temperature dependence of biogenic emissions contributes
3 % and 9 % of the total O3–temperature correlation in the
United States and Europe on average, while temperature-
dependent deposition (6 % and 1 %) and soil NOx emissions
(10 % and 7 %) also contribute. Even considered collectively
these mechanisms explain less than 46 % of the modeled O3–
temperature correlation in the United States and 36 % in Eu-
rope. We use commonality analysis to demonstrate that co-
variance with other meteorological phenomena such as stag-
nancy and humidity can explain the bulk of the remainder of
the O3–temperature correlation. Thus, we demonstrate that

the statistical correlation between O3 and temperature alone
may greatly overestimate the direct impacts of temperature
on O3, with implications for the interpretation of policy-
relevant metrics such as climate penalty.

1 Introduction

Tropospheric ozone (O3) negatively influences human
health, agricultural crop yields, and ecosystem integrity
(Monks et al., 2015; World Health Organization, 2006; Tai et
al., 2014; Fuhrer et al., 2016). As a secondary pollutant, O3
is not directly emitted from natural or anthropogenic sources,
but rather forms as a result of photochemistry in the pres-
ence of precursors including nitrogen oxides (NOx), carbon
monoxide (CO), and volatile organic compounds (VOCs).
While the chemical processes leading to the formation of
tropospheric O3 are well understood, the sensitivity of O3
production to changes in ambient conditions and precursor
concentrations is complex and nonlinear. Local NOx and
VOC emissions are two of the most important contributors
to daytime tropospheric O3 production, but the ratio between
the two can be as important as the overall emission magni-
tudes themselves (Sillman, 1999). NOx/VOC emission ra-
tios of roughly 1 : 8 produce the highest O3 production rates
in simplified box models (Sillman and He, 2002). Therefore,
increases in precursor emissions might increase, maintain,
or even reduce O3 concentrations, depending on the initial
NOx/VOC ratio.

Further contributing to this complexity, O3 formation and
transport are highly sensitive to local meteorological con-
ditions (Elminir, 2005). Precursor emissions and concentra-
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tions themselves can depend on the weather, for example
in the case of temperature-dependent emission of biogenic
VOCs from vegetation (Guenther et al., 1995). As a prod-
uct of photochemical reactions, tropospheric O3 formation
also requires sunlight, and can be sensitive to atmospheric
stability, transport, and mixing conditions. Hot, sunny, stag-
nant conditions are often associated with the greatest risk of
extreme O3 events, as these days typically provide the ideal
combination of precursor concentrations, photochemical re-
actions, and stable conditions for the pollutant to form and
persist over an extended period of time (Jacob et al., 1993;
Lin et al., 2001).

Because of this sensitivity to climate, increases in conti-
nental surface O3 has been identified as a possible negative
side effect of a warming climate, a relationship commonly re-
ferred to as the “ozone climate penalty”. First coined in 2008
by Wu et al., the climate penalty quantifies the additional
ozone present in a warmer environment, as well as the addi-
tional anthropogenic emissions reductions necessary to com-
pensate for this enhanced O3 production. Given a 2–5 ppbv
increase in O3 expected with 2050 climate projections, Wu
et al. (2008) concluded that an additional 10 % reduction in
NOx emissions would be necessary to mitigate these climate-
driven ozone increases, above and beyond the ongoing reduc-
tion in NOx emissions observed across much of the industri-
alized northern midlatitudes. This climate penalty is highly
region-specific, depending on both current local conditions
as well as the nature of future changes. In related work,
Bloomer et al. (2009) defined the slope of the observed daily
O3–temperature correlation as the “climate penalty factor”,
and found a decreasing trend in this factor over time as a re-
sult of NOx emission reduction efforts.

While not synonymous, the long-term climate penalty de-
fined by Wu et al. (2018) and the daily climate penalty fac-
tor calculated by Bloomer et al. (2009) can be understood to
be driven by a similar set of temperature-dependent mech-
anisms. Previous work has examined this temperature–O3
relationship and identified several mechanisms most likely
to be responsible, in particular temperature-dependent bio-
genic VOC emissions and PAN dissociation rates (Jacob et
al., 1993; Sillman and Samson, 1995; Jacob and Winner,
2009). Additionally, the temperature dependence of natural
soil NOx emissions (Yienger and Levy, 1995) and O3 dry
deposition (Wesely, 1989) have been recognized in previous
studies, and could contribute to the overall O3–temperature
correlation. Each of these four mechanisms is included in
typical chemical transport models (CTMs) used to study at-
mospheric chemistry, making these models useful tools for
estimating the relative contributions of each mechanism to
the overall O3–temperature relationship.

2 Model description

To investigate the relative importance of each temperature-
dependent mechanism in governing the overall O3–
temperature relationship we explore multiple regional sen-
sitivity cases with the chemical transport model GEOS-
Chem v9-02 (http://www.geos-chem.org, last access: 7 Au-
gust 2018). GEOS-Chem is driven by assimilated mete-
orology from the NASA Global Modeling and Assimila-
tion Office (GMAO); here we use the GEOS-5 product for
2010–2011. Our simulations over North America and Eu-
rope are performed at the native grid horizontal resolution of
0.5◦×0.667◦ with 47 vertical levels. Boundary conditions are
provided from a global GEOS-Chem simulation at 2◦× 2.5◦

horizontal resolution.
The default tropospheric chemical mechanism in GEOS-

Chem v9-02 includes a description of NOx–hydrocarbon–
O3–aerosol chemistry with over 120 species which partici-
pate in over 400 kinetic and photolytic reactions (Mao et al.,
2013). To better capture the temperature dependence of O3
formation as a result of biogenic emissions, we add monoter-
pene chemistry to the standard GEOS-Chem v9-02 gas-phase
mechanism following Fisher et al. (2016), as in Porter et
al. (2017). We use the EPA’s NEI2005 emissions inventory
for anthropogenic emissions over the United States after scal-
ing them up to match NEI2011 national totals for the years
2010 and 2011, then reducing NOx emissions following the
recommendations of Travis et al. (2016). European anthro-
pogenic emissions are taken from EMEP inventories (Auvray
and Bey, 2005). To represent global biomass burning we use
the GFED3 inventory (Mu et al., 2011). NOx emissions from
lightning are treated using a modified parameterization first
developed by Price and Rind (1992) and further constrained
by satellite data (Murray et al., 2012). Soil NOx emissions
and biogenic hydrocarbon emissions are calculated online
following the Hudman et al. (2012) and MEGAN2.1 (Guen-
ther et al., 2012) schemes. Dry deposition is modeled us-
ing the Wesely “resistor in series” approach (1989). Wet re-
moval includes contributions from scavenging in convective
updrafts, in-cloud rainout, and below-cloud washout and is
described by Amos et al. (2012).

GEOS-Chem has been shown to reproduce key spatiotem-
poral features of surface and column ozone observations,
though biases and uncertainties are also known (Zhang et al.,
2011; Hu et al., 2017). In particular, uncertainties in anthro-
pogenic emission inventories (Travis et al., 2016), various
drivers of biogenic emissions (Arneth et al., 2011; Vinken
et al., 2014), and lightning NOx (Murray, 2016) have been
found to play important roles in the variability of tropo-
spheric ozone and its precursors. Uncertainties in spatial in-
puts, including the datasets used to drive biogenic emissions
such as plant functional type and leaf area index distribu-
tions, can also influence the resulting biogenic emissions and
ozone impacts, and changes or updates to these inputs would
influence the magnitude and distribution of the resulting tem-
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perature sensitivities (Guenther et al., 2006; Arneth et al.,
2011). Ongoing advances in the development of chemical
mechanisms relevant to ozone formation and loss (Mao et al.,
2013; Sherwen et al., 2016) have also underscored the impor-
tance of chemistry. While a full analysis of the sensitivity of
the O3–T relationship to each of these factors is beyond the
scope of this work, uncertainties in these and other modeled
parameters and inputs can all influence both overall ozone
production and the temperature sensitivities examined here.

2.1 Ozone–temperature mechanisms in the
GEOS-Chem model

The temperature dependence of biogenic VOC emissions
(especially those of isoprene) has been frequently cited as
an important mechanism contributing to the observed O3–
temperature correlation (Wu et al., 2008; Jacob and Winner,
2009; Doherty et al., 2013; Rasmussen et al., 2013), but the
magnitude of this biogenic contribution to O3–temperature
sensitivity remains uncertain. Additional VOC emissions on
hot days would be expected to increase O3 production in
areas high in NOx , but other areas – especially those with
a particularly low NOx/VOC ratio – might show constant
or even reduced O3 levels due to ozone quenching (Loreto
and Velikova, 2001), leading to an inverse relationship. Bio-
genic emissions also do not necessarily vary linearly with
temperature. Isoprene emissions, for example, are observed
to plateau and eventually shut down completely at very
high temperatures (Harley et al., 1999). Representative iso-
prene and monoterpene emissions response curves are shown
in Fig. 1a, based on the GEOS-Chem implementation of
MEGAN2.1. In the United States, isoprene and monoter-
pene emissions are highest in the southeast region, where
high temperatures and foliage density provide ideal condi-
tions in summer months (Fig. 2a and b). Europe is charac-
terized by much lower emissions of isoprene overall, though
monoterpene emitters are relatively common across the re-
gion (Fig. 2a and b).

While NOx levels in the lower troposphere are dominated
by anthropogenic sources throughout the year, natural pro-
cesses can also play an important role (Zhang et al., 2003).
Of the commonly recognized biogenic sources of NOx , emis-
sions of NO as a result of microbial activity in the soil have
the clearest and most widely observed temperature relation-
ship (Williams et al., 1992). Building upon the work of Hud-
man et al. (2012) and others, GEOS-Chem includes an ex-
ponential temperature-dependent factor for soil NOx emis-
sions, with plateaus at 30 ◦C (Fig. 1b), along with additional
factors to account for vegetation type, soil moisture, fertilizer
treatment, and canopy losses. This scheme has been shown to
produce NO2 levels in broad agreement with satellite obser-
vations in terms of spatial and temporal variability, though
a systematic underprediction in model results suggests that
modeled soil emissions may need to be further increased
overall (Vinken et al., 2014). Modeled summer NOx emis-

sions vary greatly by location, peaking in the American Mid-
west and southern European countries (Fig. 2c).

As a so-called NOx reservoir species, PAN
(CH3COO2NO2) serves as an important means of nitrogen
transport and is one of the primary chemical links between
O3 and daytime temperature. A product of reactions between
non-methane VOCs and NOx , PAN has an atmospheric
lifetime that is typically longer than its ozone-producing
precursors. However, due to the temperature dependence
of its primary sink – thermal decomposition – this lifetime
varies significantly based on meteorological conditions, with
warmer temperatures favoring PAN decomposition and thus
local NOx production (Fig. 1c and Fischer et al., 2014). This
temperature sensitivity has been identified as a dominant
reason for the O3–temperature relationship in past measure-
ment and modeling studies (Beine et al., 1997; Dawson et
al., 2007; Jacob and Winner, 2009). PAN concentrations
tend to correlate with NOx emissions, and therefore modeled
concentrations peak in the eastern United States as well as
central Europe (Fig. 2d), where anthropogenic emissions are
highest.

Depositional loss to vegetation and other surfaces is a key
sink of O3 and other pollutants. Traditional models of dry
deposition processes use a “resistor-in-series” approach, in
which barriers to O3 deposition through various pathways are
parameterized and represented as an electrical circuit (We-
sely, 1989). This model has had some success in reproduc-
ing observed patterns of O3 deposition velocities, though
large uncertainties remain due to the scarcity of long-term
measurements (Silva and Heald, 2018). In the Wesely re-
sistance scheme, surface temperature influences deposition
rates in two ways: through a stomatal resistance term that
is very high at two extremes (typically freezing tempera-
tures and around 40 ◦C) and reaches a minimum at some
ideal temperature (Fig. 1d), and an exponentially decreasing
nonstomatal term designed to reduce deposition over frozen
(or nearly frozen) surfaces. In typical summer environments
across the United States and Europe, only the stomatal term
is relevant in practice, linking extremely high temperatures
with increased stomatal resistance, thereby increasing local
O3 levels on very hot days. While observations of O3 dry
deposition velocities relative to meteorological drivers show
mixed results (Clifton et al., 2017), in principle large-scale
increases in stomatal resistance as a result of changes in tem-
perature could lead to increases in O3 concentrations. Sum-
mer O3 deposition velocities across the United States and Eu-
rope as simulated by GEOS-Chem tend to range from 0.2 to
0.5 cm s−1, depending on local surface type and climatology
(Fig. 2e).

3 Methodology

To represent our control case we use a 2-year base scenario
(BASE) for 2010–2011 in which temperature-dependent pro-
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Figure 1. Representative temperature-dependent mechanism responses within GEOS-Chem for biogenic emissions (a), soil NOx emis-
sions (b), PAN lifetime (c), and stomatal resistance (d).

cesses within GEOS-Chem are unchanged. We then sequen-
tially remove the temperature dependence from the four key
O3–T mechanisms discussed in Sect. 2.1 to explore the im-
pact that each has on the overall O3–T relationship over a
3-month summertime period (JJA), with an additional month
for spinup (Table 1). Finally, we run nested regional simula-
tions for each year over the United States and Europe, again
discarding the first month of each run to focus on the three
summer months (JJA). To isolate the impact of temperature
dependence on biogenic emissions (BIO case), dry deposi-
tion (DEP case), and soil NOx emissions (SOIL case), we
generate a set of hourly temperatures representing the mean
summer (JJA) value at each nested grid cell. To do so, we
generate mean hourly temperatures for each modeled grid
cell by averaging each hour (0 through 23) across the 3 mod-
eled months. This averaged diurnal cycle is then substituted
into each examined mechanism in turn, resulting in a repeat-
ing temperature profile being applied to calculations related
to the modified mechanism. Through this procedure, diur-
nal patterns are preserved while day-to-day temperature vari-
ability for that mechanism is removed, preventing it from
directly influencing the overall daily O3–temperature corre-
lation. In the PAN case, the default GEOS-Chem chemical
mechanism is modified to remove temperature dependence
from PAN dissociation by assuming a local constant temper-
ature of 15 ◦C everywhere for that particular reaction.

To confirm that our four chosen mechanisms (biogenic
VOC emissions, soil NOx emissions, PAN dissociation, and
dry deposition) are in fact collectively responsible for most
of the direct connection between temperature and O3 within
GEOS-Chem, we perform an additional set of sensitivity

tests over each of our regional domains. In one modified case
we uniformly increase all temperatures by 1 ◦C, resulting in
widespread increases in average surface O3 levels (Fig. 3a).
In a second modified case we again increase temperature by
1 ◦C, but decouple temperature from the four chosen mecha-
nisms using original mean hourly temperatures as described
above. In the decoupled case, surface O3 shows negligible
differences in mean surface O3 (Fig. 3b and c), indicating that
the four decoupled mechanisms dominate the directly mod-
eled O3–T relationship, with the residual O3 changes likely
resulting from temperature-dependent chemical kinetics for
species other than PAN.

For observational comparison, we use data from the EPA’s
Air Quality System (AQS) network of monitoring sites (US
Environmental Protection Agency, 2016), as well as the Air-
Base air quality database maintained by the European Envi-
ronment Agency (EEA).

4 Results and discussion

The simulated O3–temperature relationship in GEOS-Chem
for the two modeled summers, as represented by the slope
of a gridded O3–T ordinary least-squares (OLS) regres-
sion, is fairly consistent with AQS and AirBase observa-
tions, lending confidence to the use of modeled sensitiv-
ity comparisons to examine the significance of underlying
mechanisms (Fig. 4a). In both the United States and Eu-
rope, spatial patterns and overall mean values of the O3–T
correlation are fairly well represented, though the full range
of sensitivities is not reproduced in the model output (root-
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Table 1. Summary of GEOS-Chem cases.

Case Modifications from default GEOS-Chem

BASE Reduced United States NOx , added monoterpene chemistry
BIO BASE, plus normalized temperature for biogenic VOC emissions
SOIL BASE, plus normalized temperature for soil NOx emissions
DEP BASE, plus normalized temperature for dry deposition
PAN BASE, plus removed temperature dependence for PAN thermal decomposition
ALL BASE, plus all changes from BIO, SOIL, DEP, and PAN cases

mean-square error of 0.84 and 0.79, mean bias of 0.02 and
−0.13 ppbv O3

◦C−1 for the United States and Europe re-
spectively). In spite of the relatively strong agreement be-
tween modeled and observed O3–T correlations, we high-
light a number of shortcomings in the modeled represen-
tation of this relationship which may explain the remain-
ing discrepancies between the model and observations. For
one, the anthropogenic emission inventories used in GEOS-
Chem are independent of daily temperatures, while in reality
there are connections between meteorological variability and
emissions from human activities such as transportation and
energy production. In addition, the grid cell size in GEOS-
Chem is incapable of capturing the full diversity of subgrid
meteorological phenomena, many of which may be impor-
tant at the surface station level. Local temperature and O3
fluctuations may vary significantly from those of the grid-
ded average. These issues, among others, may contribute to
some of the differences seen in the comparison between ob-
served and modeled sensitivities. In particular, the magnitude
of both high and low extremes tends to be underestimated
in gridded output from GEOS-Chem, resulting in a tighter
distribution of modeled output and skewed slope of modeled
vs. observed values, especially in Europe (Fig. 4c). However,
in spite of the notable differences between modeled and ob-
served O3–T relationships at the tails of the distributions, a
relatively small overall bias is apparent across station types
in both urban and remote regions (Fig. 4b). Here, the more
remote stations associated with the National Park Service
(NPS) are separated from the rest of the AQS dataset for
comparison over the United States, while AirBase stations
in Europe are split by station area category (urban/suburban
and rural). In each category, nearest-neighbor grid cells ef-
fectively capture the center of the observed distribution, even
though extremes are not fully represented, particularly at ru-
ral European stations.

Given that the mean values and spatial distribution of re-
gional O3–T sensitivities are generally consistent with obser-
vations, we analyze the mechanisms contributing to modeled
sensitivities by decoupling them from temperature variability
individually and simultaneously. Removing temperature de-
pendence from the four chosen mechanisms has noticeable
impacts on correlations between temperature and O3 in the
simulated cases, with regional differences apparent in each

case. For each of the four cases examined, the strength of the
O3–temperature dependence (measured via the coefficient of
determination R2) was examined through linear regression
and compared to that seen in the BASE case. When sub-
tracted from the BASE values, the resulting difference in R2

can be understood as the contribution of that particular mech-
anism to the overall modeled sensitivity (Fig. 5).

Temperature-dependent biogenic VOC emissions have a
positive impact on O3–temperature correlation through most
of the United States, especially around urban centers, but
have a negative impact across much of the southeast. This
is consistent with expectations based on NOx/VOC ratios
(Fig. 2f), in which NOx-rich regions experience a boost in
O3 production when rising temperatures lead to additional
VOC emissions. Much of the southeast region of the United
States, however, is already saturated in VOCs (primarily iso-
prene), and thus additional emissions on hot days reduce O3
production efficiency, or even act as an O3 sink. The heav-
ily forested northern regions of Europe are likewise less in-
fluenced (or even negatively influenced) by the temperature
dependence of biogenic emissions, while the high-NOx re-
gions of central and southern Europe show strong positive
contributions. Changes in R2 reach up to 0.14 and 0.21 in
the United States and Europe, respectively, representing on
average 3 % and 9 % of the overall regional O3–T correla-
tion (Fig. 5).

The impact of temperature dependence in dry deposition
is distributed roughly congruently with leaf area index (LAI)
coverage across the United States, contributing up to 0.14
to the O3–T R2 but only 0.02 on average. Little effect is
seen in the heavily forested regions of Northern California
and the Pacific Northwest, but since deposition is a removal
effect and O3 levels are relatively low in those regions to
begin with, changes in deposition rates could be expected
to have minimal impact on the overall O3–temperature rela-
tionship there. Relative contributions of deposition on a local
basis, however, can represent over one-quarter of the overall
O3–T correlation in some US locations. The overall impact
of temperature-dependent dry deposition is even less pro-
nounced in Europe, reaching up to 0.08, but averaging less
than 0.01 across the region.

Temperature-dependent soil NOx emissions contribute
around 0.04 to the coefficient of determination in both re-
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Figure 2. Summer mean values (JJA 2010–2011) for modeled iso-
prene and monoterpene emissions (a, b), soil NOx emissions (c),
surface PAN mixing ratios (d), O3 deposition velocity (e), and
NOx/VOC sensitivity as represented by the surface H2O2/HNO3
ratio (f).

gions, representing 10 % of the total R2 value in the United
States and 7 % in Europe. Notably, the impact of temper-
ature dependence in soil emissions does not match up di-
rectly with the overall magnitude of those emissions them-
selves (Fig. 2c), indicating that this fluctuation represents a

Figure 3. Increase in O3 with a 1 ◦C increase in temperature in the
BASE case (a) and with fixed temperature mechanisms in the ALL
case (b). Distribution of changes for each shown in boxplots (c).

relatively minor and diffuse effect. Areas characterized by
lower NOx/VOC ratios due in part to low NOx emissions
(Fig. 2f) are also more likely to exhibit stronger sensitivity to
temperature-driven soil NOx variability.

The temperature dependence of PAN decomposition is a
strong contributor to the O3–temperature relationship in both
the United States and Europe, particularly in the Ameri-
can Midwest, where the positive impact of this mechanism
reaches 0.32. Impacts are also visible across most of the
eastern United States, as well as the Southern California
and Central Valley regions, and the O3–T R2 increases by
0.07 on average in the US (almost 20 % of the total mean).
PAN temperature sensitivity is also a strong contributor to
the O3–T relationship in Europe by up to 0.14 (9 % of total
mean R2). Of the examined model mechanisms in the United
States, PAN lifetime is the strongest overall contributor to the
correlation between O3 and temperature, though it places a
close second to biogenic emissions in Europe.

While each modeled mechanism contributes to the over-
all O3–T relationship in the United States and Europe, none
of them come close to completely explaining the BASE case
correlation between O3 and T . Even when all temperature-
dependent mechanisms are removed from the model (the
ALL case), most regions still show O3–temperature sensi-
tivities of 50 % or more of their original BASE values as
measured by R2. While there are uncertainties associated
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Figure 4. Regression slopes of summer (JJA) daily maximum 8 h average O3 vs. daily maximum temperature for GEOS-Chem and station
observations in the United States and Europe. Station data points are overlaid on gridded model output in panel (a). Distributions for observed
(black) and modeled (red) O3–T slopes are shown in panel (b), further separated by station category: US stations are separated between the
more remote NPS stations and the remaining stations of the AQS network, while European stations are split by AirBase area category into
urban/suburban and rural station types. Scatterplots in panel (c) show modeled values vs. observed, with green points used to mark NPS
stations in the US and rural area stations in Europe. The remaining AQS stations, as well as those AirBase stations categorized as urban or
suburban, are shown as black points.

with comparing statistical sensitivities across these simulated
cases, it seems clear that the O3–temperature relationship
cannot be fully (or even mostly) explained by these four
mechanisms within GEOS-Chem (Fig. 5).

Beyond the directly temperature-dependent emission and
loss mechanisms examined within GEOS-Chem, many other
meteorological effects can influence surface O3 levels, and
correlations between these phenomena and temperature
could show up as part of the observed O3–temperature corre-
lation. For example, strong winds can act as a removal mech-
anism for locally produced O3. If strong winds are also cor-
related to cooler temperatures, this would show up as a posi-
tive correlation between O3 and temperature, despite the lack
of any explicit temperature-dependent mechanism. While de-
coupling other meteorological processes from temperature in
the manner demonstrated above can be highly problematic,
even within a model, statistical methodologies such as com-
monality analysis allow for some degree of attribution of ob-
served predictive power between temperature and the other
meteorological drivers (Seibold and McPhee, 1979). Derived

from the analysis of linear regression output, commonality
analysis involves the calculation of R2 values for all possi-
ble permutations of predictor variables included in the anal-
ysis. These R2 values are then compared, allowing for the
calculation of explained variability that is uniquely provided
by one variable or another, along with explained variability
that is shared between two or more of the covariates. For the
purposes of this study, “unique” refers to that portion of a
variable’s correlation with the response variable (ozone) that
is not shared with any other predictor, while “shared” refers
to the portion of the correlation that could be attributed to
multiple predictors. A more detailed explanation of the equa-
tions involved, as well as examples of their application, can
be found in Seibold and McPhee (1979).

To quantify the contributions of meteorological variables
to the modeled O3–temperature correlation, we apply com-
monality analysis to all gridded output. Through this method-
ology we are able to decompose all gridded surface O3–
temperature R2 values into unique and shared contributions
among each of the five variables examined, which are sum-
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Figure 5. Impact of temperature dependence of biogenic emissions,
O3 dry deposition, soil NOx emissions, PAN lifetime, and all mech-
anisms at once. Plotted values show the difference between O3–
temperature correlation in the BASE case and that of the modified
case in which dependence on daily temperature variability is re-
moved.

marized in Table 2: maximum daily temperature (T ), hu-
midity (HUM, represented by dew point temperature), mean
wind speed (WSPD), wind direction (WDIR), change in
mean surface pressure (1P ), and planetary boundary layer
(PBL) height. The unique correlations for each of these vari-
ables are shown in Fig. 6, along with the portion of their cor-
relation shared with any other variables (in the case of T ) or
shared with daily maximum temperature (in the case of the
other five meteorological variables).

Each unique component represents the portion of ex-
plained variability that could be explained solely by one me-
teorological variable among the six, meaning that the R2

Table 2. Meteorological variables examined.

Variable Description

T Maximum daily temperature
HUM Mean daily vapor pressure (humidity)
WDIR Normalized U and V wind vectors
WSPD Mean daily wind speed
1P Change in daily mean surface pressure
PBL Maximum daily planetary boundary layer height

value would be expected to drop by that amount if the pre-
dictor were removed from the linear fitting equation. Shared
components can be understood as overlap between predictor
variable contributions, meaning that the actual mechanism
responsible for the correlation might reasonably be attributed
to any of the involved predictors. While this methodology
is imperfect, especially given the assumption that not all
relevant meteorological processes are represented by these
six predictors, it does provide additional insight into how
and where the O3–temperature correlation might be at least
partially explained by correlation with other meteorological
phenomena.

As shown, temperature has the strongest and most
widespread unique correlation with O3 variability of any of
the six meteorological variables included in both the United
States and Europe. However, even this strong unique contri-
bution is significantly less than the magnitude of the shared
component, meaning that collectively the remaining five pre-
dictors could potentially explain the majority of the predic-
tive power that temperature offers alone. The overall pre-
dictive power for each meteorological variable, along with
the respective shared and unique components, can be further
visualized through their mean values across all grid cells.
Figure 7 shows region-averaged attribution of shared and
unique correlation through stacked columns: each individ-
ual column height shows the total correlation (in the form
of R2) between ozone and a single meteorological variable,
while individually shaded sections differentiate unique and
shared components. In each meteorological column that par-
ticular variable’s unique contribution is at the bottom, and
shared contributions are grouped where possible into clus-
ters of two or three total variables for clarity. To best rep-
resent the unique contribution of temperature, commonality
analysis presented here is performed on the ALL case, with
all four chosen temperature-dependent mechanisms decou-
pled. The difference in total correlation between ALL and
BASE cases (which are driven by identical meteorology) is
then added into the unique temperature contribution, as this
gap can be fully attributed to temperature dependence. There-
fore, performing commonality analysis on the BASE case
alone would underpredict the unique temperature contribu-
tion since some percentage of variability driven specifically
by temperature-dependent mechanisms could also correlate
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Figure 6. Unique and shared O3 correlation among meteorological variables in the BASE case. Unique contributions represent predictive
power provided by one meteorological covariate alone, while shared correlation could be attributed to one or more other covariates.

with other meteorological variables. Combining commonal-
ity analysis along with the results of the BASE-ALL com-
parison makes full use of the attribution information con-
tained in each since any lost correlation with temperature-
dependent mechanisms turned off can be attributed directly
to temperature alone, better constraining the commonality
analysis itself. Through this analysis it is apparent that over
half of the O3–temperature relationship in the United States
and Europe (shown by the leftmost bar in each panel) can be
explained through correlation with one or more meteorologi-
cal covariates, especially wind direction, humidity, and plan-
etary boundary layer height. Europe shows an even stronger
overall correlation between temperature and O3, and much
of that increase appears to be related to a stronger influence
from wind and humidity.

We note that these unique and shared designations are
heavily dependent on predictor variable choice and would
certainly vary when calculated using a different set of me-

teorological predictor variables. Uniqueness in these figures
should, therefore, be taken as an upper limit estimate, as
the inclusion of additional meteorological covariates could
demonstrate commonality with temperature where this six-
variable set does not. Furthermore, commonality shared be-
tween meteorological variables does not imply causation by
any one of the members – it only indicates shared statisti-
cal predictive power and the possibility of alternative O3-
producing mechanisms. However, there are a number of pos-
sible mechanisms that could explain some of the predic-
tive power demonstrated by non-temperature variables. Wind
speed and direction have perhaps the most straightforward
meteorological relationship to O3, and they represent trans-
port of the pollutant either to or away from its source lo-
cation. Wind speed is generally inversely correlated to high
temperatures, and stable conditions are also favorable for the
buildup and retention of high O3 concentrations. Depending
on local topography and pressure patterns, wind direction can
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Figure 7. Unique and shared contributions to O3 correlation for
each of six different meteorological variables in the BASE case.
Column heights represent overall predictive power for each vari-
able, while individual colors indicate predictive power unique to
that variable (bottom color in each column) or shared by one or
more other meteorological variables.

also correlate strongly with changes in temperature, shifting
the final destination of polluted air masses from one location
to another. Previous work described a relatively small role
for these advective mechanisms (Camalier et al., 2007), but
the results here suggest that, after temperature-specific mech-
anisms have been accounted for, wind speed and direction
together account for a larger fraction of explained O3 vari-
ance than previously suggested. Humidity can influence O3
formation in a number of ways, both directly and indirectly.
Water vapor itself participates in competing O3-related ef-
fects: water molecules act as O3 sinks by reacting with O(1D)
atoms to produce OH, preventing the excited oxygen from re-
generating O3. However, in polluted conditions the OH can
then act as an O3 precursor itself, potentially increasing pro-
duction through reactions with CO and VOCs. These com-
peting effects may explain the relatively weak unique contri-
bution of humidity on average, though the high shared frac-
tion (especially in Europe) suggests that other indirect im-
pacts may be involved, such as correlation with cloud cover
or fog. Mixing depth has shown mixed results as a predictor
for ozone in past studies as well (Jacob and Winner, 2009),
as the impact of PBL variability depends strongly on loca-
tion and local conditions. Areas with low surface O3 can
show positive correlations with mixing layer height due to
the entrainment of higher concentrations from aloft, while
polluted regimes can show strongly negative correlations due
to the higher concentrations of trapped precursors on low-
PBL days.

Although the specific mechanisms through which the
non-temperature meteorological variables impact O3 are not
identified through this statistical methodology, it is appar-
ent that the majority of modeled O3–temperature correla-
tion left unexplained with the decoupling of temperature-
dependent mechanisms (T –O3 R

2 in the ALL case, Fig. 5)

Figure 8. Total contribution of modeled mechanisms to the O3–
temperature correlation in GEOS-Chem (a, b), possible contribu-
tion of the other included meteorological variables (c, d), and mean
value for each category by region as a fraction of the total O3–
temperature correlation (e, f).

can itself be explained in principle through covariance
with other meteorological variables, indicating that this co-
variance could explain the residual correlation left over
when temperature-dependent mechanisms are turned off
within GEOS-Chem. While the difference in O3–T corre-
lation between the BASE and ALL cases shows that these
temperature-dependent mechanisms do indeed strongly in-
fluence the O3–temperature correlation across a large portion
of the northern United States and southern Europe (Fig. 8a,
b), the remaining correlation makes up the larger overall frac-
tion. Shared explanatory power, as indicated by the shared
contribution of temperature in the ALL case (Fig. 8c, d), in-
dicates that covariance with one or more additional meteo-
rological variables could explain most of the remaining O3–
T correlation (Fig. 8e). In this panel, red areas of each col-
umn represent the fraction of BASE O3–T correlation that is
lost through the decoupling of temperature-dependent mech-
anisms, blue areas show the shared fraction of remaining
temperature dependence in the ALL case, and the gray re-
gion represents remaining O3 variability that is uniquely ex-
plained by temperature but unaffected by the four described
mechanisms. This remaining correlation could be the re-
sult of imperfectly chosen meteorological variables, residual
temperature dependence within the model from chemistry or
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Figure 9. Distribution of O3–T sensitivities as measured by the slope of OLS regression (above) and mean surface O3 differences from a
flat 1 ◦C temperature perturbation (below). Regression values are shown for all modeled drivers (BASE case, black) and the portion of those
slopes attributable to temperature-dependent mechanisms (BASE−ALL, blue).

other mechanisms, or other fluctuations in emissions or other
inputs that happen to covary with temperature.

While day-to-day O3–temperature variability is a use-
ful and commonly examined metric for estimating future
changes in air quality under a warming climate, it presents
challenges with respect to the extrapolation of daily variabil-
ity into long-term trends. For example, areas that exhibit little
day-to-day variability in summer temperature over the study
period may appear to be insensitive to climate change, even
though the low O3–temperature correlation is simply a result
of short-term climatological stability. The temperature per-
turbation cases described previously and shown in Fig. 3a
provide some additional information on how the daily sen-
sitivities examined here compare to larger, long-term shifts.
Figure 9a, b show the distribution of O3–T sensitivities, both
as a whole (black fill) and considering only the four key
mechanisms previously examined (blue fill). These distribu-
tions can then be compared to the distribution of O3 changes
apparent with a simple temperature perturbation (panels c
and d), which intrinsically includes no other meteorologi-
cal covariance. While the day-to-day correlation between O3
and temperature from all modeled drivers (Fig. 9a, b, black
fill) predicts increases in O3 of around 1.4 ppb for a 1 ◦C in-
crease in temperature, roughly half of that is attributable to
the examined mechanisms alone. This portion attributed to
mechanisms alone is consistent with the mean change in O3
observed from a 1 ◦C increase in temperature (0.58 ppb in
the US and 0.47 ppb in Europe). Together, the consistency of
these two outcomes indicates that projections of O3 concen-
trations under future climate scenarios will be dependent on
an accurate representation of temperature-dependent meteo-
rology and dynamics and that models relying on temperature-

Figure 10. Differences in model skill compared to surface station
observations as a function of overall O3–temperature correlation (a,
b) and the relative importance of modeled temperature-dependent
mechanisms (c, d).

dependent emissions and chemical mechanisms alone may
underpredict the strength of O3–T sensitivities by over 60 %.

Model behavior can be further analyzed through compar-
ison to surface station observations, which reveals a signifi-
cant difference (P < 0.001) in model skill (as measured by
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modeled vs. observed daily mean O3) when grouping sta-
tions by overall O3–T correlation as well as by the relative
importance of modeled mechanisms (Fig. 10). Matching ob-
servations from the EPA’s AQS network in the United States
and the EEA’s AirBase dataset for Europe with nearest-
neighbor grid cells from GEOS-Chem output shows that
model skill tends to be higher in regions characterized with
above-average O3–temperature correlation (BASE case O3–
temperature R2 > 0.42). While this does not imply that
temperature-dependent processes are all modeled correctly,
it does at least suggest that temperature-based drivers tend to
be better captured by the model than other influences on O3
variability. However, splitting observed stations based on the
relative importance of internally modeled mechanisms shows
that more work may need to be done on these implementa-
tions. Grid cells in which the modeled O3–temperature re-
lationship was dominated by temperature-dependent mecha-
nisms (greater than 50 % of the O3–temperature correlation
lost when temperature dependence was removed in the ALL
case) showed much less overall predictive power when com-
pared to the corresponding surface observations (Fig. 10c, d).

5 Conclusions

A changing climate implies changes in the physical and
chemical regimes governing the emission, formation, and
transport of pollutants such as tropospheric O3. Previous
work has identified increasing temperatures in particular as
a driver of elevated surface O3 concentrations, mitigating the
effectiveness of ongoing emissions reductions in the United
States and Europe. This means that, under a warming cli-
mate, polluted regions would need to cut emissions even fur-
ther to achieve the same improvement in air quality, adding
economic and human health costs to the bottom line of
climate change adaptation. Understanding the mechanisms
driving the observed relationship between O3 and temper-
ature is important for guiding improvements in model per-
formance, as well as for better understanding the effects of
future changes.

We show here that while temperature-dependent mech-
anisms such as biogenic emissions and PAN dissociation
are often cited as key contributors to the observed O3–
temperature relationship, model simulations maintain strong
O3–temperature correlations even when these mechanisms
are completely decoupled from temperature variability. Anal-
ysis of other meteorological variables suggests that meteo-
rological covariance with temperature may explain a large
proportion of O3–temperature correlation – over 40 % in the
United States and nearly 60 % in Europe. The relative impor-
tance of covarying atmospheric dynamics indicates that sim-
ulations investigating temperature perturbations alone will
underestimate overall O3 impacts by a factor of 2 or more,
unless temperature-driven changes in other meteorological
patterns are also included and accurately represented. Fur-

thermore, comparison with station observations shows that
modeled daily O3 values are less skillful in areas where
the O3–temperature correlation is dominated by modeled
temperature-dependent mechanisms rather than meteorol-
ogy, indicating that improved representation of these mech-
anisms in particular may improve overall model skill with
respect to O3 modeling and forecasting.

These results highlight the complexity of pollution pro-
jections under changing emissions and climatological con-
ditions, as well as with the attribution of those changes to
any individual driver or metric. While surface temperatures
can be easily linked to O3 variability statistically, it is ap-
parent that the robustness of this relationship depends on
how consistently coupled those temperature changes con-
tinue to be, not only with temperature-dependent physical
and chemical drivers of O3 formation, but also with the co-
varying meteorological patterns that appear to be just as in-
fluential. These relationships are further confounded by on-
going changes in anthropogenic emissions, making it espe-
cially important to understand the ways in which policy-
driven emissions reductions may improve – or fail to improve
– air quality within a changing climate. Ongoing investiga-
tions into the importance of these mechanisms, emissions,
and atmospheric dynamics will guide future model develop-
ment, improving forecast skill and better informing policy
decision-making.
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