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In order to study the nature and origin of aerosols at a rural site in the upper Rhine valley, we conducted a stationary measurement

campaign (TRAMO1) in summer 2016, and applied a transport model COSMO-ART to help source apportionment and to achieve

a better understanding of the impact of complex transport pattern on the field observations. In the main manuscript, we have mainly

discussed two selected episodes, one is rich in sodium chloride and another is rich in organics. Here is the supporting information,

including figures, as well as some detailed descriptions.
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Figure S1: Emission maps of VOCs (al to a4), NOx (bl to b4), SOz (cl to c4), and primary organic particles (d1 to d4) at different
altitudes, i.e., 36, 74, 122, and 184 m (from left to right) above ground level (a.g.l.).
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Figure S2: Overview of the whole measurement campaign including meteorology parameters, trace gases, and aerosol particle mass and
composition. The first (blue) and second (green) shaded areas mark the sodium chloride rich and the organic rich episodes, respectively.
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Figure S3: Time series of temperature difference between 200 m and 2 m above ground level (a.g.l.), measured at the KIT-tower. The
bigger difference denotes the stronger temperature inversion. Temperature inversions are stronger during the organics rich episode
marked with a shaded background. The strongest temperature inversion was measured at 02:40 on August 27.
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Figure S4: Five-factor-PMF solution with FPEAK=0 for organic compounds measured by AMS during the whole measurement time. (a)
Mass spectra of the five components, i.e., HOA, SV-OOA, LV-OOAL, LV-O0A2, and LV-OOA3. Peaks are coloured with respect to
different ion families. (b) Time series of the five components mass concentrations (left Y-axis) and their tracers or related ion family
(right Y-axis). (c) Diurnal patterns of the five components. (d) Time series of the stacked components with the same data as panel (b),
but the contribution of the five components can be visualized clearly. The percentages are their contributions to OA. The insert shows
time series of SV-OOA, LV-OOA1 and LV-OOA2 during organic rich episode, and the two back arrows point out night-time and day
time sub-peaks of the first LV-OOAL peak. Note that the total OA value showed here is lower than the input OA for the PMF analysis.
This is because the components identification might be interfered by extraneous variability, arising from some causes such as
instrumental issues. Such extraneous variability will lead to disproportionate effects on the fitting outcome. Therefore, we need to
downweight the corresponding variables in a proper way or even remove them, resulting the lower output total OA value reconstructed
by the components.

The criteria for choosing factor number are given in section 2.2 of main manuscript. As shown in the Fig. S4 (a) HOA, SV-
OOA, and LV-OOA have distinguishable spectra. For three LV-OOA, in spite of some similarity, distinguishable features can still
be found, according to their time series (b) and diurnal patterns (c). In particular for the organic rich episode, LV-OOA1 and LV-
OOAZ2 show anti-correlation, the LV-OOA3 signal is much weaker than the other two LV-OOA. Therefore, a five-factor solution
was chosen rather than four or three-factor solution.

HOA is associated with POA, e.g., from urban emissions. In this study, the HOA (high H:C = 1.84 and low O:C = 0.12, herein)
has a similar trend as m/z 57 (major contribution from C4Hg) and NO- (not shown), with Pearson’s correlation coefficients y = 0.5
and 0.4, respectively. SV-OOA (O:C = 0.32) shows a very strong correlation with m/z 91 (mainly from C;Hy) (y = 0.9) and CH
family (y = 0.8). Three LV-OOA have prominent marker peaks at m/z 28 and 44, and all have high O:C ratio (> 0.7), which
indicates highly oxidized or aged OA. LV-OOAL1 shows strong correlations (y = 0.8 to 1) with CH, CHO1, CHOgt1, CHN, CHO1N,
and CHOgt1N. LV-OOA2 shows good correlations with CHOgtIN (y = 0.6). LV-OOA3 shows no good correlation with any ion

families, but a similar trend as sulfate (y = 0.5).



Similar elemental ratios for HOA, SV-OOA, and LV-OOA and their relationships with tracers such as HOA with NOx and

LV-OOA with secondary inorganics, have also been reported in previous AMS-PMF studies. Readers may refer to a review paper

by Zhang et al. (2011).
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Figure S5: Comparison of particle classes measured by LAAPTOF as a function of wind direction for weekdays (left) and weekends
(right). The data is averaged over the entire campaign. The data comprises 4842 time points of 10 min averaged data, including 3702 for
weekdays and 1140 for weekends, including Saturday and Sunday. The total particle mass concentration for each wind direction is on
average 3.8 (+ 2.3, one o) pug m3 and 5.2 (+ 3.0) ug m during weekdays and the weekends, respectively. For the dominating particle
classes the average mass concentrations are 1.3 (+ 1.2) pg m= and 0.8 ( 0.5) ug m for class 3, 0.2 (+ 0.5) pg m= and 0.1 (+ 0.2) pg m3

for class 4, 1.1 (+ 1.0) ug m2 and 2.3 (+ 1.7) ug m™ for class 5, for weekdays and weekends respectively.
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6



(a)

NOAA HYSPLIT MODEL

Backward trajectories ending at 1000 UTC 23 Aug 16

GDAS Meteorological Data

(b)

NOAA HYSPLIT MODEL
Backward trajectories ending at 0200 UTC 28 Aug 16
GDAS Meteorological Data

Source » at 49.10N 841 E

Source » at 49.10N 8.41E

Tra'jlgctoa Directi (
Vertical Motion Calculation M
Meteorolog 22

< Backward

Duration: 72 hrs
hod: _ Model Vertical Velocity

et
: 0000Z 22 Aug 2016 - GDAS1

0] 3
> < 1500
2 ¢ 1000
° k] 500
= s
00 12 00 12 00 12 00 12 00 12 00 00 12 00 12 00 12 12 00 12
08/23 08/22 08/21 08/20 08/19 08/18 08/28 08/27 08/26 08/25 08/24
Job ID: 179205 Job Start: Mon Apr 109:14:00 UTC 2019 Job ID: 180395 Job Start: Mon Apr 109:27:49 UTC 2019
Source 1 lat.: 49.102928 lon.: 8.407242 height: 5 m AGL Source 1 lat.: 49.102928 lon.: 8.407242 height: 5 m AGL

Tra.j'ectogx Direction: Backward  Duration: 72 hrs P
Vertical Motion Calculation Method:  Model Vertical Velocity
Meteorology: 0000Z 22 Aug 2016 - GDAS1

S R
8] e
k- X S
L 3 /.

Mainz l( A,

Mannher ,),_‘_;x 4 1 R
S e R

[y -

ISTEIE.

s 5798
p ties by Stamen Design. CC BY 30— Map

Figure S8: Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back-trajectory analysis for 72 hours for sodium
chloride rich (a) and organics rich (b) episodes, respectively.
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Figure S10: Time series of sodium chloride and nitrate, and organonitrate signatures in LAAPTOF mass spectra, as well as organonitrate
mass concentration derived from AMS and FIGAERO-HR-ToF-CIMS (stands for a filter inlet for gases and aerosols coupled to a high-
resolution time-of-flight chemical ionization mass spectrometer, hereafter CIMS) measurement. For LAAPTOF results, Y-axis is the
normalized ion intensity (each ion peak intensity is normalized to the sum of all ion signals; positive and negative ions were analysed
separately). The seven classes are class 1: calcium-Soil; class 2: aged soot; class3: sodium salts; class 4: secondary inorganics-amine; class
5: biomass burning-soil; class 6: biomass burning-organosulfate; and class 7: mixed/aged-dust. Obvious sodium chloride and nitrate
signatures are mainly found in class 3 labelled in blue colour. AMS and CIMS results (Pearson’s correlation coefficient y=0.52) are
adapted from our companion study by Huang et al (2019). It should be noted that during the sodium chloride rich episode (first band in
blue) the fraction of organonitrates is higher (Fig. S7), although the organonitrate mass concentration is lower than that during the
organic rich episode (second band in green).

The method to estimate organonitrates based on AMS measurement can be referred to Farmer et al. (2010) and the parameters
used here are the same as that used by Huang et al. (2019). The result in Fig. S10 is based on our AMS measurements and the
corresponding equation suggested by Farmer et al. (2010), as follows:

y=[(Robs-Ran)(1+Ron)]/[(Ron-Ran)(1+Robs)] (S1)



where y is the estimated fraction of organic nitrate in the total nitrate measured by the AMS, Robs is the observed ambient
ratio of NO,*/NO*; Ran and Ron are the NO,*/NO™ ratio for ammonium nitrate and organonitrate, respectively. In our study

Ran=0.43 based on the measurement and Ron=0.1 based on literature data. More details can be found by Huang et al. (2019).
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Figure S11: Laboratory evidence for anthropogenic organonitrate (LAAPTOF signature m/z 129 CsH7NQOz*). (a) to (f) are the averaged
spectra from several thousand single particles, respectively. Y-axis is the normalized ion intensity (each ion peak intensity is normalized
to the sum of all ion signals; positive and negative ions were analysed separately).

Regarding organonitrate, we have found some laboratory evidence for its potential origin. AIDA (aerosol interaction and
dynamics in the atmosphere) simulation chamber studies have been done with a-pinene and/or toluene OH oxidations on NaNO3
seeds in the presence/absence of NOy. The corresponding single particle spectra are shown in Fig. S11. It turns out that m/z 129+
is quite weak in a-pinene system even with NOy (panel b), but it is much stronger after toluene is added (panel c). In the toluene
system (refer to panel d to ), m/z 129+ is already present when NaNOs3 seeds are coated with toluene derived secondary organic
aerosol (SOA) (panel d), likely due to the recombined fragments from toluene and nitrate. After adding extra OH, m/z 129+ is
becoming stronger, likely due to the more aged toluene SOA (panel €). When NOX is added to toluene system, m/z 129+ becomes
much stronger (panel f), likely due to the organonitrate formation. Hence, we can conclude that m/z 129 CsH;NOs* is more related

to toluene rather than a-pinene, namely m/z 129 CsH;NOs* could be a signature peak for anthropogenic sources in LAAPTOF
spectra.
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Figure S12: Time series of the estimated mass concentration of sodium salts particles measured by the LAAPTOF (a), methanesulfonic
acid (MSA) fraction to total organics and sulfate measured by the AMS (b) and MSA mass concentration (c). The first (blue) and second
(green) shaded areas mark the sodium chloride rich and organic rich episodes, respectively.

The method used to estimate MSA fraction (fusa, signal fraction of MSA to total org and sulfate) and its mass concentration
can be referred to Huang et al. (2015). In brief, W-mode fusa is calculated and then used to multiply V-mode mass concentration

of organics and sulfate, resulting estimated MSA mass concentration. The corresponding equations are as follows:

I _ Icussoz (S2)
MSA = 9o~
> Imsa (S3)

RIEysa

f, =
MSATY lorg | Y04
RlEorg T RiEsos

Cmsa = fmsa X (Corg + Cso4) (S4)
where Y Iysa is the total signal intensity of all MSA fragments measured in W-mode, which can be estimated based on the
fragmentation patterns determined from the laboratory experiments (Huang et al., 2015). It was reported that the signal intensity
of marker peak at m/z 78.99 (CH3SO:") accounted for (9.7 + 1.6) % of the total signal intensity of all MSA fragments. ¥ 15,5 and
Y 154 are total signal intensity of organics and sulfate fragments measured in W-mode, respectively. Relative ion efficiency of
MSA (RIEysa=1.3) is the averaged value from RIE ., (=1.4) and RIEgo, (=1.2). Corg and Cgq,4 are mass concentrations calculated

from V-mode data. Cys, iS the estimated MSA mass concentration.
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Figure S13: Time series of vertical profiles for organics, ammonium, nitrate, and sulfate as calculated by COSMO-ART.
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Five supporting videos (.gif files) are available at KIT open data (https://doi.org/10.5445/1R/1000094401).
1. SI_PN_10m.gif

Particle number concentrations and wind field calculated by COSMO-ART during high SO, period (from 20160826 0:00 to 13:00
(local time) for 10 ma.g.l.

2. SI_PN_122m.gif

Particle number concentrations and wind field calculated by COSMO-ART during high SO period from 20160826 0:00 to 13:00
(local time) for 122 m a.g.l.

3. SI_Orgl 10m.gif

Particulate organic mass concentrations and wind field calculated by COSMO-ART from 20160825 17:00 to 20160826 18:00
(local time) for 10 ma.g.l.

4. SI_Org2_10m.gif

Particulate organic mass concentrations and wind field calculated by COSMO-ART from 20160826 18:00 to 20160827 12:00
(local time) for 10 ma.g.l.

5. SI_Org3_10m.gif

Particulate organic mass concentrations and wind field calculated by COSMO-ART from 20160827 12:00 to 20160828 01:00
(local time) for 10 ma.g.l.
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