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S1. Configuration of the chemical ionization mass spectrometer during the KORUS-AQ campaign

During the KORUS-AQ 2016 field campaign a chemical ionization mass spectrometer (CIMS) was deployed to measure5

Cl2 and ClNO2. These systems were deployed at the Taehwa Research Forest (TRF), Olympic Park (OP), and on-board the

NASA DC-8. The configuration of the inlet at the two ground sites is shown in Figure S1. The CIMS on the DC-8 had a similar

configuration but without the heating inlet.
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Figure S1. Configuration of the CIMS inlet at the TRF and OP during KORUS-AQ 2016.
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S2. Description of the Extended Aerosol Inorganics Model

To calculate aerosol liquid water mass concentration and the acidity (pH) of the aerosol, the Extended Aerosol Inorganic10

Model (E-AIM) was used (Clegg et al., 1998; Friese and Ebel, 2010). Prior studies have shown that either E-AIM and the

ISORROPIA-II model can be used to calculate aerosol liquid water concentration and pH, as both thermodynamic models

predict similar values (Hennigan et al., 2015; Song et al., 2018). The E-AIM model was run in the reverse mode. This has

been found to be the optimal mode (Hennigan et al., 2015; Song et al., 2018), as it minimizes the errors in the measurements,

leading more stable results that better represents the observations. Reverse mode means that total nitrate (aerosol plus gas-15

phase), sulfate, ammonium, relative humidity, and temperature were the inputs of the model. Gas-phase HNO3 was measured

by California Institute of Technology chemical ionization mass spectrometer (CIT-CIMS) (Crounse et al., 2006), and the

aerosol-phase nitrate, sulfate, and ammonium were measured by the University of Colorado AMS (Nault et al., 2018). Total

NHx was not an input, as there was not a gas-phase measurement of NH3. Guo et al. (2016) showed that ISORROPIA was

still able to properly partition total nitrate between the gas- and particle-phase without NH3 as an input when the model was20

ran iteratively to estimate NH3. The E-AIM model was run similarly here, and it took approximately 20 iterative runs for

convergence on the NH3 concentration that explained the observed partitioning of nitrate between gas- and particle-phase. To

validate E-AIM modeled predictions, the modeled predicted vs observed partitioning of nitrate between gas- and particle-phase

were compared (Figure S2). Since the partitioning of nitrate between gas- and particle-phase is a function of the amount of

water, temperature, and pH of the aerosol (Guo et al., 2016, 2017), a high correlation and a slope near unity indicates that25

E-AIM is closely representing the pH and liquid water concentrations for sub-micron aerosol. The slopes for HNO3 and NO−
3

are 1.07 and 0.89, respectively, and the R2 for HNO3 and NO−
3 are 0.96 and 0.99, respectively; therefore, E-AIM predicted

the observed nitrate partitioning between gas- and particle-phase, providing confidence in the pH and aerosol liquid water

concentration.
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Figure S2. (Left) Comparison of E-AIM modeled and measured (CIT-CIMS) gas-phase HNO3. (Right) Comparison of E-AIM modeled and

measured (CU AMS) particle-phase NO−
3
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Figure S3. Aerosol pH calculated with E-AIM constrained with airborne measurements.
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S3. Description on the setup of the box model30

The Framework for 0-D Atmospheric Modeling (F0AM v3.1) was used for box model simulations in this study. For hetero-

geneous reactions of gas-phase N2O5 (i.e., N2O5(g) + Cl−(aq) → ClNO2(g)), ClONO2 (i.e., ClONO2(g) + Cl−(aq) + H+
(aq)

→ Cl2(g) + HNO3), and HOCl (i.e., HOCl(g) + Cl−(aq) + H+
(aq)→ Cl2(g) + H2O), a simple first-order reaction was assumed

by accounting for γ, φ, molecular speed of the gases, and surface area of aerosols. Hygroscopic growth factor was not con-

sidered in the model. γN2O5 was calculated from the Bertram and Thornton (2009) study using measured inorganic aerosol35

composition, temperature, and relative humidity and water content derived from the thermodynamic model Extended Aerosol

Inorganics Model (E-AIMS, (Clegg et al., 1998; Friese and Ebel, 2010)). The average and median γN2O5 values during the

whole campaign were both 0.017. This is in the lower range of what has been derived from previous field observations in

Asia that ranges from a campaign average of 0.004 to 0.072 (Yun et al., 2018; Brown et al., 2016; Tham et al., 2016; Wang

et al., 2017a, c, b). γ values of ClONO2 and HOCl were set to 0.06 (Deiber et al., 2004; Hanson et al., 1994; Hanson and40

Ravishankara, 1994). The yields (φ) of the three heterogeneous reactions were assumed to be 1, therefore the steady state

simulations would be an upper-limit of Cl2 or ClNO2 production. Since we did not have any aerosol size distribution data

collected at the ground sites, aerosol surface area was taken from airborne measurements. An averaged value was used from

data retrieved below 1 km over the SMA. The airborne data did not show a significant vertical dependence within the daytime

boundary layer. Based on this, an average of 78 ±41µm2 cm−3 were estimated for particle sizes between 10 nm and 5 µm.45

Impact of measured ClNO2 on O3 production (Figure 10) was explored by constraining the box model with diurnal variation

of observations throughout each step. Constraining the model with the diurnal variation of measured ClNO2, allowed the box

model to capture its trend throughout the course of the day. Since our purpose of the simulations were to explore the possible

impact of ClNO2 on O3 production, NO2 and O3 were only constrained initially at the first step with observations and then

calculated based on the chemistry embedded in the model. More specifically, the initial concentration of each following step50

was taken from the value in the previous step. The results were compared to the base scenario, in which ClNO2 was not con-

strained. Net O3 production rate was calculated in the box model as below, where f is the stoichiometric coefficient of O3 and

k is the rate constant corresponding to each reaction i. More details can be found in the supplements of Wolfe et al. (2016) :

d[O3]/dt=O3productionrate−O3lossrate=

]ofreactions∑
i=1

fi× (productofreactions)i× ki (1)
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Figure S4. Correlation between measured Cl2 and modeled Cl2 at (a) OP and (b) TRF. Sensitivity tests of HCl were carried out (c and d) by

switching off HCl production from chlorine radicals reacting with VOCs.
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Figure S5. Diurnal variation of measured ClNO2 (black line) and simulated ClNO2 from photolytic loss (dashed line). For the red and green

dashed lines, the model was constrained with measured ClNO2 at sunrise and at the time when ClNO2 started decreasing, respectively.

JClNO2 used for the photolysis was scaled with airborne measurements. The insert in (b) is the ClNO2 measured on May 5th.
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Figure S6. Simulated ClNO2 and ClONO produced from gas phase reaction of Cl· + NO2 (i.e., Cl·(g) + NO2(g) + M→ ClNO2(g) + M, k =

3.6× 10−12; Cl·(g) + NO2(g) + M→ ClONO(g) + M, k= 1.63× 10−12, (Burkholder et al., 2015)) The model was constrained with Cl2 and

NO2 observations with J values from the aircraft.
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S4. Additional figures of observations during the KORUS-AQ campaign.55
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Figure S7. Trace gas measurements at the OP site on May 20th and 22nd.
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Figure S8. Correlation between Cl2 and ClNO2 measured at 7:00 - 9:00 am local time. Each data point is a 5 min averaged value and is color

coded with the calculated production rate of the nitrate radical.
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Figure S9. Airborne ClNO2 data collected at 8:00 - 8:30 am local time during the whole campaign above 600 m. The black dashed box is

the grid used for plotting vertical distribution of ClNO2 in Figure 7. Markers size is proportional to the concentration of ClNO2 and color

coded with altitude.
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Figure S10. FLEXPART backtrajectories of the selected days when a second ClNO2 peak was observed at TRF. Each run was initialized at

9:00 local time and each marker is an hour backward of its previous. The red line represents the center of the mass-weighted particles and

the clusters are fractional contributions of airmasses in percentage.
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