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Abstract. Given its relatively long lifetime in the tropo-
sphere, carbon monoxide (CO) is commonly employed as a
tracer for characterizing airborne pollutant distributions. The
present study aims to estimate the spatiotemporal distribu-
tions of ground-level CO concentrations across China during
2013–2016. We refined the random-forest–spatiotemporal
kriging (RF–STK) model to simulate the daily CO concen-
trations on a 0.1◦ grid based on the extensive CO monitor-
ing data and the Measurements of Pollution in the Tropo-
sphere CO retrievals (MOPITT CO). The RF–STK model al-
leviated the negative effects of sampling bias and variance
heterogeneity on the model training, with cross-validation
R2 of 0.51 and 0.71 for predicting the daily and multi-
year average CO concentrations, respectively. The national
population-weighted average CO concentrations were pre-
dicted to be 0.99±0.30 mg m−3 (µ±σ ) and showed decreas-
ing trends over all regions of China at a rate of −0.021±
0.004 mg m−3 yr−1. The CO pollution was more severe in
North China (1.19±0.30 mg m−3), and the predicted patterns
were generally consistent with MOPITT CO. The hotspots
in the central Tibetan Plateau where the CO concentrations
were underestimated by MOPITT CO were apparent in the
RF–STK predictions. This comprehensive dataset of ground-
level CO concentrations is valuable for air quality manage-
ment in China.

1 Introduction

Ground-level carbon monoxide (CO) is a worldwide atmo-
spheric pollutant posing risks to human health and the envi-
ronment (White et al., 1990; Reeves et al., 2002). While CO
is formed naturally from the oxidation of methane and non-
methane volatile organic compounds, anthropogenic emis-
sions from incomplete combustion of fossil fuels and biofu-
els contribute to approximately 42 % of the total atmospheric
CO (Holloway et al., 2000; Pommier et al., 2013). In spite
of the slow decrease in CO concentrations in recent years
based on satellite retrievals (Xia et al., 2016; Zheng et al.,
2018), China is still one of the countries with the most se-
vere CO pollution in the world, and the combustion of fossil
fuels is the dominant source of anthropogenic CO emissions
(Wang et al., 2004; Duncan et al., 2007a). Due to its rela-
tively long lifetime in the troposphere (i.e., 1 to 2 months),
CO is commonly employed as a tracer for characterizing pol-
lutant transport in the atmosphere (Goldan et al., 2000; Pom-
mier et al., 2010). It is therefore essential to obtain the spa-
tiotemporal distribution of CO for air quality management.
The national air pollution monitoring network in mainland
China has been regularly observing ground-level CO con-
centrations since 2013 (MEPC, 2017) by the non-dispersive
infrared absorption method and the gas filter correlation in-
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frared absorption method (CNEMC, 2013), but these site-
based measurements are inadequate to represent the spatially
continuous distributions of CO (Xu et al., 2014).

Chemical transport models (CTMs) have been employed
to estimate ground-level CO concentrations (Arellano and
Hess, 2006; Hu et al., 2016). On the basis of meteorologi-
cal conditions generated by climate models, CTMs simulate
reactions, transport, and deposition of chemicals in the atmo-
sphere, which generally require high computational cost and
a large number of data inputs such as emission inventories.
The predictive performance of CTMs tends to be affected
by uncertainties in the simulation algorithms and the emis-
sion inventories (Li et al., 2010; Hu et al., 2017a). A CTM
comparison study found that the difference in transport sim-
ulation resulted in considerable discrepancies between inter-
model CO predictions (Arellano and Hess, 2006; Duncan et
al., 2007b). It has been reported that a certain CTM under-
predicted the monthly average CO concentrations in China
by more than 60 % (Hu et al., 2016). Although the emission
inventories for China have been refined in recent years, high
uncertainties still exist (Li et al., 2017). For instance, biomass
combustion, residential biofuel consumption, and transient
fire events tend to be underreported, consequently leading to
underestimation of CO emissions in the emission inventories
(Wang et al., 2002; Streets et al., 2003). Despite underesti-
mation by CTMs, the general patterns of CO concentrations
are captured, and they can be used as the a priori information
for deriving posterior estimates based on satellite retrievals
(Deeter et al., 2014).

Multiple satellite instruments have been operating to mea-
sure atmospheric CO for more than a decade, including the
Measurements of Pollution in the Troposphere (MOPITT)
(Deeter et al., 2003; Worden et al., 2013a; Jiang et al.,
2015; Deeter et al., 2017), the Atmospheric Infrared Sounder
(McMillan, 2005; Wang et al., 2018), the Scanning Imag-
ing Absorption Spectrometer for Atmospheric Chartography
(Kopacz et al., 2010; Ul-Haq et al., 2016), and the Infrared
Atmospheric Sounding Interferometer (Fortems-Cheiney et
al., 2009; Barret et al., 2016). Strong absorption lines of
CO occur in the thermal infrared (4.7 µm) and solar infrared
(2.3 µm) spectral regions. Among the abovementioned satel-
lite instruments, MOPITT is one of a few sensors that are
capable of measuring ground-level CO based on the instan-
taneous multispectral retrievals (Streets et al., 2013; Deeter
et al., 2014, 2017). The a priori information used in MO-
PITT is simulated by the Community Atmosphere Model
with Chemistry (CAM-Chem), which is a CTM. The MO-
PITT product plays an important role in analyzing spatiotem-
poral patterns of ground-level CO at large scales (Drum-
mond et al., 2010; Worden et al., 2013b; Strode et al., 2016).
Compared with site-based in situ monitoring, MOPITT pro-
vides repeated measures with more extensive spatial cov-
erages. Nevertheless, the sensitivity of MOPITT signals to
ground-level CO is affected by the thermal contrast between
the ground and atmosphere (Warner et al., 2007; Clerbaux

et al., 2009). High uncertainties in CO estimations retrieved
from MOPITT have been reported, and more efforts are re-
quired to improve the data quality (Zhao et al., 2006; Li and
Liu, 2011).

Machine learning models have been applied to predict spa-
tiotemporal distributions of atmospheric pollutants, such as
fine particulate matter (PM2.5) and nitrogen dioxide (NO2),
based on satellite retrievals and ground measurements (Reid
et al., 2015; Zhan et al., 2018). Complex structures are built
to capture nonlinear and high-order interactions between the
response and predictor variables. Machine learning models
generally show superior predictive performance in the pres-
ence of abundant training data (Hastie et al., 2009). In the
comparisons of models predicting PM2.5 concentrations, ran-
dom forests and gradient boosting machine, which incorpo-
rated satellite retrieved aerosol optical depth (AOD), pre-
sented a conspicuously good predictive performance (Reid et
al., 2015). In addition, the random forest and spatiotemporal
kriging (RF–STK) model was proposed to predict the daily
ground-level nitrogen dioxide (NO2) concentrations across
China based on satellite retrieved NO2 densities (Zhan et al.,
2018). To the authors’ knowledge, machine learning models
have never been employed to estimate nationwide ground-
level CO concentrations across China based on satellite re-
trievals.

The present study aims to estimate the spatiotemporal dis-
tributions of ground-level CO concentrations across China
during 2013–2016. We refined the RF–STK model to sim-
ulate the daily gridded CO concentrations (0.1◦ grid with
98 341 cells) based on the publicly available datasets, includ-
ing the ground-level CO monitoring data, the MOPITT re-
trieved surface CO (MOPITT CO), and the extensive geo-
graphic factors. The strategy of inversely weighting the train-
ing data by the local population densities was proposed to
mitigate the effect of sampling bias towards populous areas
for the monitoring network. The spatial resolution of 0.1◦ has
been commonly used for estimating the nationwide distribu-
tions of air pollutants in China (Guo et al., 2016; Zhan et al.,
2017; Hu et al., 2017b). A machine learning model (i.e., the
RF–STK model), for the first time, assimilated the MOPITT
CO with the extensive site-based in situ CO observations in
order to provide more solid information for air quality man-
agement. This data assimilation approach compensated the
shortcomings of the satellite retrievals (i.e., high uncertainty)
and the in situ measurements (i.e., low spatial coverage) with
each other’s strengths (i.e., large spatial coverage and high
accuracy, respectively), which is more effective and flexible
than CTMs in utilizing these measurements. The results of
this study are expected to be valuable for air quality manage-
ment in China.
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Figure 1. Ground-level CO monitoring network for China in 2013–2016 with 1656 sites in total. The central Tibetan Plateau (CTP) and
the North China Plain (NCP) are labeled on the map. The red dashed line represents the Heihe–Tengchong Line, which is an imagined
“geo-demographic demarcation line” reflecting the disparity in the population distribution. Around 95 % of the population live to the east of
the line, where 82 % of the monitoring sites are located.

2 Materials and methods

2.1 Ground-level CO observations

Figure 1 shows the locations of the 1656 monitoring sites
spread out over all of China, which monitored the ground-
level CO concentrations (MEPC, 2017; EPAROC, 2017;
EPDHK, 2017). Most of the sites were in the cities of east-
ern China, leading to non-negligible sampling biases. Hourly
average CO concentrations (mg m−3) were collected and
cleaned by employing the “three-sigma rule” that the values
falling outside of µ±3σ were considered outliers (Kazmier,
2003). Less than 0.01 % of the hourly data (values higher
than 20.2 mg m−3) were excluded. The days with more than
12 h observations were included as representative days, and
approximately 1.67 million records of daily average CO con-
centrations were obtained for the subsequent analyses.

2.2 MOPITT CO retrievals

The MOPITT operational gas correlation spectroscopy CO
product (MOP02J.007), containing retrievals of surface CO
mixing ratios, was obtained from the Atmospheric Science
Data Center (ASDC, 2017). The MOPITT onboard the Terra
satellite provides tropospheric CO density with global cover-
age every 3 d (Edwards et al., 2004). The CO surface mixing

ratios from the Level-2 data product have a spatial resolu-
tion of 22 km at nadir. The Level-2 product has daytime and
nighttime data fields, which are highly correlated (r = 0.99).
This study chose the daytime data over the nighttime data, as
the former exhibit higher correlations with the ground-level
CO observations than the latter (Table 1). The overall bias of
Version 7 is a few percent lower than Version 6 for the ther-
mal infrared (TIR)-only, near infrared (NIR)-only, and TIR
and NIR products at all levels (Deeter et al., 2014, 2017). The
TIR and NIR product, which features the maximum sensitiv-
ity to near-surface CO, was used throughout this study and is
hereafter referred to as MOPITT CO. Through the temporal
and spatial convolution with Gaussian kernels (Goodfellow
et al., 2016), the MOPITT noise was filtered and the data
gaps were filled, which were then resampled to the 0.1◦ grid.
Briefly, the MOPITT CO data for each grid cell were first
processed with the temporal convolution, which were then
processed with the spatial convolution day by day. Please re-
fer to Sect. S1 in the Supplement for the mathematical equa-
tions.

According to the ideal gas law, we converted the unit of
MOPITT CO data from parts per billion (ppb, the unit pre-
sented in the MOPITT product) to milligrams per cubic me-
ter (mg m−3) in order to be comparable with the CO obser-
vations from the monitoring network:
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Table 1. Correlations among the ground observations, MOPITT CO, and the RF–STK predictions (Pearson correlation coefficients).

Region or dataset Paira Daily Monthly Seasonal Annual Spatialb

Nation O–M 0.37 0.40 0.45 0.44 0.43
O–P 0.95 0.97 0.97 0.97 0.98
P–M 0.09 0.1 0.1 0.09 0.13

Central Tibetan O–M −0.03 −0.04 0.11 −0.12 −0.12
Plateau (CTP)c O–P 0.91 0.92 0.93 0.96 1

P–M −0.04 −0.04 −0.06 −0.09 −0.12

North China O–M 0.35 0.36 0.40 0.30 0.20
Plain (NCP)c O–P 0.95 0.97 0.98 0.97 0.98

P–M 0.35 0.40 0.47 0.52 0.58

X1_PRId O–M 0.30 0.32 0.38 0.34 0.34

X1_TSd O–M 0.39 0.47 0.49 0.44 0.42

X2d O–M 0.37 0.39 0.45 0.42 0.40

a O: ground-level CO observations; M: MOPITT CO; P: predictions made by the RF–STK model; and the
correlation coefficients higher than 0.90 are in bold. b Multiyear averages during 2013–2016. c Please refer to
Fig. 1 for the locations of the CTP and the NCP. d X1_PRI: nationwide a priori information for MOPITT CO;
X1_TS: nationwide MOPITT CO processed with the temporal and spatial convolution; X2: nationwide
nighttime MOPITT CO; and all the other MOPITT CO data refer to daytime retrievals.

C = B ·P ·M/(R · T ), (1)

where C is the CO concentration in the unit of milligrams
per cubic meter (mg m−3), B is the CO concentration in the
unit of parts per billion (ppb), P is the atmospheric pres-
sure (atm), M is the molecular weight of CO (mg mol−1), R
is the gas constant (0.082 L atm mol−1 K−1), and T is the at-
mospheric temperature (K). Note that the data of atmospheric
pressure and temperature for the unit conversion are available
in the MOPITT product.

In order to evaluate the dependence of the MOPITT sur-
face retrievals on the a priori information, we also extracted
the averaging kernels and the a priori information from the
MOPITT product. For each averaging kernel (a matrix), the
sum of the elements in the row associated with the surface
layer of the CO profile (hereafter referred to as the row-sum
value) measures the overall dependence of the MOPITT sur-
face CO retrievals on the a priori information (Deeter, 2017).
A small row-sum value indicates strong dependence of the
MOPITT retrieval on the a priori information, i.e., low sensi-
tivity of the actual MOPITT retrieval. Please refer to Sect. S2
in the Supplement for the explanation of the averaging ker-
nels.

2.3 RF–STK model

The RF–STK model, consisting of a random forest (RF) sub-
model and a spatiotemporal kriging model (STK), was re-
fined to predict the daily ground-level CO concentrations
across China. The RF–STK model utilizes the strengths of
both RF and STK, which showed the capability of predict-

ing NO2 concentrations (Zhan et al., 2018). The RF–STK
prediction is the sum of the RF prediction and the STK inter-
polation:

Z(s, t)= R(s, t)+K(s, t), (2)

where Z(s, t) denotes the predicted CO concentration at lo-
cation s and time t , R(s, t) is the spatiotemporal trend esti-
mated by the RF submodel, and the prediction residual of the
RF submodel, i.e., K(s, t), is then interpolated with the STK
submodel.

The RF submodel is an ensemble of regression trees. The
average predictions of all the trees are output as the RF pre-
diction. In the process of growing each tree, a random train-
ing dataset is prepared through bootstrap resampling from
the original training dataset, while a random subset of the
predictors is chosen in order to reduce the inter-correlation
among the trees. The best split is determined at each tree
node, which contributes the largest decrease in the squared
error. Please refer to Sect. S3 in the Supplement for the de-
tailed description of the RF algorithm.

As the CO concentrations approximated a lognormal dis-
tribution, they were log transformed for variance stabilization
(De’Ath and Fabricius, 2000). Leveraging variable selec-
tion was conducted based on the pre-experiments. The out-
of-bag (OOB) errors (representing the RF prediction resid-
uals) of the back-transformed RF predictions were filtered
with the “three-sigma rule” and subsequently interpolated
with the STK submodel. Finally, the CO concentrations were
predicted as the sums of the STK interpolations and back-
transformed RF predictions. It is worth mentioning that the
RF submodel was refined in the present study by inversely
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weighting each training sample with the surrounding popu-
lation density to alleviate the effects of sampling bias towards
populous areas for the monitoring network. The loss function
(L) of the RF submodel is as follows:

L(yf (x))=

N∑
n=1

wn[yn− f (xn)]
2
/ N∑

n=1
wn, (3)

where wn is the weight of observation yn (N observations in
total), and f (xn) is the model prediction.

2.4 Model input data

The predictors of environmental conditions for the RF–STK
model covered the meteorological conditions, land uses,
emission inventories, elevation, population densities, nor-
malized difference vegetation index (NDVI), and road densi-
ties. The meteorological conditions included the atmospheric
pressure, air temperature, precipitation, evaporation, rela-
tive humidity, insolation duration, wind speed, and planetary
boundary layer height (PBLH). Land uses mainly recorded
the areas of forests, grasslands, wetlands, artificial surfaces,
and waterbodies. The emission inventories comprised emis-
sion distributions of 10 major atmospheric chemical con-
stituents, such as CO, organic carbon, and black carbon. The
meteorological conditions, except for PBLH, were interpo-
lated to the 0.1◦ grid by using co-kriging with elevation.
The elevation, land uses, population densities, NDVI, PBLH,
and emission inventories were resampled to the 0.1◦ grid
by calculating area-weighted means, for which additional
predictors were generated by applying spatial convolution
with Gaussian kernels. The spatial convolution smoothed the
spatial transition and took into account neighboring effects
(Goodfellow et al., 2016). Please refer to Sect. S4 and Ta-
ble S1 in the Supplement for the detailed descriptions and
data sources of the environmental conditions.

2.5 Model evaluation

The predictive performance and the predictor effects of the
RF–STK model were investigated. We compared the predic-
tive performance of the RF–STK models with and without
the MOPITT data (either the a priori information or the MO-
PITT retrievals) by using two cross-validation strategies, in-
cluding the site- and region-based cross-validation. With the
10-fold site-based cross-validation, all the monitoring sites
were approximately evenly divided into 10 groups. In each
iteration, nine groups were used to develop a model, and the
remaining group was used for validation. The training and
prediction steps were repeated 10 times so that every ground-
level CO observation had a paired prediction. While the site-
based cross-validation is a commonly used strategy, it tends
to overestimate the predictive performance given the fact that
the monitoring sites tend to be clustered. Therefore, we also
employed the region-based cross-validation strategy by fol-
lowing the concept of cluster-based cross-validation that was

proposed to resolve the issue of clustered sites (Young et
al., 2016). Different from the site-based cross-validation, the
region-based cross-validation divided the training data by the
geographic regions (e.g., North China and East China; Fig. 1)
for the cross-validation. Various statistical metrics, such as
the coefficient of determination (R2), root mean square error
(RMSE), and mean normalized error (MNE), were used to
reflect the predictive performance. In addition, the measures
of variable importance and partial dependence plots were
employed to evaluate the predictor effects. The improvement
in the split criterion attributed to a predictor variable mea-
sured its relative importance in the model. A partial depen-
dence plot illustrated the effect of a predictor on the CO con-
centrations after accounting for the average effects of all the
other predictors (Friedman, 2001; Hastie et al., 2009).

2.6 Spatiotemporal analyses

Detailed spatiotemporal analyses were performed to investi-
gate the correlation strength between the MOPITT data (in-
cluding the a priori information and the MOPITT retrievals)
and ground-level CO observations, as well as the distribu-
tions of the ground-level CO predictions. The whole nation
was divided into seven conventional regions, including Cen-
tral, East, North, Northeast, Northwest, South, and South-
west China (Fig. 1). For each region, the effectiveness of the
MOPITT CO was evaluated by estimating its correlation with
the ground-level CO observations at daily, seasonal, and an-
nual scales. In addition, the seasonal and annual average con-
centrations maps were delineated based on the full-coverage
CO predictions. The population-weighted averages of MO-
PITT CO (MPW) and ground-level CO predictions (CPW)
were summarized for the whole nation and by regions. The
temporal trends of the national and regional MPW and CPW
were evaluated by conducting linear regression on the time
series of monthly averages that were deseasonalized by the
loess smoothers (Cleveland, 1990). More detailed analyses
were conducted for the North China Plain (NCP) and the
central Tibetan Plateau (CTP). While the air pollution in the
NCP has been well recognized, the air quality in the CTP
is usually considered to be pristine. Nevertheless, the CTP
was identified as a potentially overlooked CO hotspot in the
present study.

2.7 Computing environment

The data processing and modeling were mainly performed
using Python and R (R Core Team, 2018). The scikit-learn
Python package was used to develop random forests (Pe-
dregosa et al., 2012). The spatial operations, such as spa-
tiotemporal kriging were conducted by using the R packages
of gstat (Gräler et al., 2016), rgdal (Bivand et al., 2017), and
sp (Pebesma and Bivand, 2005).

www.atmos-chem-phys.net/19/12413/2019/ Atmos. Chem. Phys., 19, 12413–12430, 2019
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Figure 2. (a) Seasonal and (b) annual means of the population-weighted average ground-level CO concentrations (mg m−3) during 2013–
2016 for China predicted by the RF–STK model. The error bars (standard deviations) stand for the spatial variations.

3 Results and discussion

3.1 Descriptive statistics of CO measurements from
monitoring network and MOPITT

The ground-level CO observations from the monitoring net-
work show that the average CO concentration for China
was 1.07± 0.74 mg m−3 (µ± σ ) during 2013–2016. The
ground-level CO observations approximated a lognormal dis-
tribution, with a median of 0.90 mg m−3 and an interquar-
tile range (IQR) of 0.69 mg m−3. The hourly CO concen-
trations were the highest at 09:00 and the lowest at 16:00
(GMT+8) based on the average diurnal cycle (Fig. S1). High
CO concentrations (daily average > 4.0 mg m−3) were ob-
served in 704 monitoring sites, with 7.6±0.8 d yr−1 (CREAS
and CNEMC, 2012). The CO concentrations show a strong
seasonality, ranging from 0.81± 0.17 mg m−3 in summer to
1.39± 0.38 mg m−3 in winter (Fig. S2). The national annual

average of CO concentrations decreased by 6.9 % from year
2013 to 2016 (Fig. 2). Note that the scale of monitoring net-
work was not constant, and the number of monitoring sites
grew from 743 to 1603 during these 4 years (MEPC, 2017;
EPAROC, 2017; EPDHK, 2017). However, the monitoring
stations were still sparse in western China throughout the
monitoring period, and most of the stations were located in
the major cities of eastern China (Fig. 1). The spatially im-
balanced monitoring (i.e., sampling bias) therefore tends to
introduce bias to the spatiotemporal statistics of CO concen-
trations (Boria et al., 2014). For instance, the national aver-
age concentrations would be overestimated if they were sim-
ply determined as the averages of all the monitoring data, as
the CO concentrations were generally lower in remote areas.

The MOPITT CO data, with an overall coverage rate of
3.5± 0.5 %, show that the surface CO level for China was
0.23± 0.18 mg m−3 during 2013–2016 (Fig. S2). The MO-
PITT CO values also approximated a lognormal distribution,
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Figure 3. Seasonal averages of the MOPITT retrieved surface CO concentrations (mg m−3) in (a) spring, (b) summer, (c) fall, and (d) winter
during 2013–2016 across China.

with a median of 0.18 mg m−3 and an IQR of 0.19 mg m−3.
The MOPITT CO had the highest coverage in fall (4.2±
1.9 %) and lowest in summer (2.9±1.5 %) (Table S2). South-
west China, especially the Sichuan Basin, had the lowest cov-
erage rate (< 1 %) in China (Fig. S3). In addition to the re-
flectance condition and the satellite orbit, the narrower swath
width of MOPITT (640 km) compared to the Moderate Res-
olution Imaging Spectroradiometer (MODIS) with a swath
width of 2330 km was one of the main factors causing the
sparse coverage. While MOPITT and MODIS are both on-
board the Terra satellite, the measurement repeat cycle of
MOPITT is approximately 3 d compared to 1–2 d of MODIS
(Edwards et al., 2004). The sparse coverage of the MOPITT
CO limits its utility for representing time series of daily CO
concentrations across China.

3.2 MOPITT CO evaluation against ground-level CO
observations

The spatiotemporal pattern of the MOPITT CO was gen-
erally consistent with that of the ground-level CO observa-
tions in China, with r = 0.43 for the multiyear averages and
r = 0.37 for the daily values during 2013–2016 (Table 1).
The correlation between the a priori information and the
ground-level observations was weaker, with r = 0.34 for the
multiyear averages and r = 0.30 for the daily values, sug-
gesting that the MOPITT retrievals provided more informa-
tion on the ground-level CO distributions than the a priori in-
formation. The spatiotemporal distributions of the row-sum
values of the averaging kernels demonstrate that the depen-
dence of the MOPITT retrievals on the a priori information

varied widely (Fig. S4). Among the seven geographic re-
gions of China, the average row-sum values during 2013–
2016 were the highest in East China and the lowest in North-
east China. Seasonally, the national average row-sum values
were the highest in fall and the lowest in summer and winter.
The row-sum values were lower in the CTP than the NCP,
suggesting a stronger dependence of the MOPITT retrievals
on the a priori information in the CTP than the NCP. The
variations in the sensitivity of the MOPITT retrievals could
result from various sources, such as the CO amounts and the
diurnal temperature differences (Deeter et al., 2003; Deeter,
2007; Worden et al., 2013b).

The MOPITT CO satisfactorily reflected the west–east
spatial gradient and the seasonality (i.e., low in warm sea-
sons and high in cold seasons) of ground-level CO concen-
trations (Figs. 3 and S5). Severe CO pollution in eastern
China resulted from the intensive anthropogenic emissions
(Fig. S6). At both national and regional scales, the correla-
tion coefficients between ground-level CO observations and
MOPITT CO were generally higher in winter than the other
three seasons. The stronger correlation in winter was mainly
attributed to the higher signal-to-noise ratios accompanied
with the higher CO concentrations, reflecting that the MO-
PITT CO was more sensitive in measuring high CO concen-
trations. In addition, the correlation strength of daily values
exhibited considerable spatial heterogeneity, with r ranging
from 0.58 for South China to 0.17 for Southwest China (Ta-
ble S3). As expected, it was difficult to capture the CO varia-
tions under highly complex geographic conditions in South-
west China, and the high uncertainty in the emission inven-
tories undermined the representativeness of MOPITT CO for
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Figure 4. Temporal variations of the average ground-level CO concentrations for (a) the whole nation, (b) the North China Plain (NCP), and
(c) the central Tibetan Plateau (CTP) during 2013–2016 based on the observations from the monitoring network (gray points), the RF–STK
predictions (black and red solid lines), and the MOPITT retrievals (blue solid lines). The black lines show the RF–STK predictions for the
grid cells with monitoring sites (prediction-1), and the red lines show the RF–STK predictions for all the grid cells (prediction-2). Weekly
averages rather than daily concentrations are presented for clarity. Please refer to the right y axis for the MOPITT retrievals and the left y
axis for all the other time series.

that region. Especially for the CTP, we found that the MO-
PITT CO was almost completely insensitive to the variations
of ground-level CO, with r =−0.03 in contrast to r = 0.35
for the NCP (Table 1). The CO hotspots observed in the main
cities of the CTP (e.g., Nagqu and Qamdo) were not recog-
nized by MOPITT CO, which even falsely showed the oppo-
site seasonality of ground-level CO (Figs. 4 and S2).

The discrepancies between the MOPITT CO and the
ground-level CO observations could be mainly attributed to
the low sensitivity of the satellite instrument to the ground-
level CO variations and the high uncertainty associated with
the a priori information for deriving the MOPITT retrievals.
The low sensitivity caused high uncertainties in the measured
radiances (associated with the instrumental noises) and hence
led to large measurement errors (ASDC, 2017). In addition,
the accuracy of the a priori information was influenced by
the data quality of the emission inventory and the sophisti-

cation of the CTM (i.e., the CAM-Chem model), which sub-
sequently affected the accuracy of the posterior estimation
(Dekker et al., 2017). The CO emission amounts for China
were reported to be largely underestimated (Streets et al.,
2003; Wang et al., 2004), which might explain the fact that
the MOPITT CO was approximately half of the ground-level
CO observations. Especially for the CTP, the inadequate in-
formation about the CO emissions could be the main reason
why MOPITT CO largely underestimated the ground-level
CO concentrations, whereas some relatively densely popu-
lated cities (such as Naqu and Qamdo; Fig. 1) had high CO
concentrations (Chen et al., 2019). The populations in Naqu
and Qamdo are over 1 million, reflecting intensive anthro-
pogenic activities (NBS, 2010). Biomass (e.g., yak dung)
combustion, which is of low utilization efficiency, is widely
used in the CTP for energy, resulting in considerable CO
emissions (Cai and Zhang, 2006; Wen and Tu, 2011; Xiao
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Figure 5. Performance of the RF–STK model in predicting (a) daily, (b) seasonal, (c) annual, and (d) spatial (i.e., multiyear average)
ground-level CO concentrations across China during 2013–2016. The dashed lines represent the 1 : 1 relationship.

et al., 2015). Naqu is sandwiched between the Tanggula and
the Nyenchen Tanglha Mountains (Fig. 1), which is unfavor-
able for CO dispersion and causes CO accumulation.

3.2.1 Predictive performance of the RF–STK model

On the basis of the site-based cross-validation results, the
RF–STK model showed reasonable performance in pre-
dicting the daily ground-level CO concentrations, with
R2
= 0.51, RMSE= 0.54 mg m−3, and slope= 0.64 (Fig. 5).

Through the variable selection, a concise structure of the
RF submodel was achieved, and the spurious prediction de-
tails (e.g., the sharp boundaries) were mitigated (Fig. S7).
For instance, the RF submodel with all the predictors gen-
erated sharp boundaries circling the desert areas in North-
west China, which became blurred in the predictions made
by the reduced RF submodel with the selected predictors
(Fig. S8). Note that the coordinate variables (i.e., latitude and
longitude) were not considered as candidate variables for the
RF submodel, as artificial strips emerged in the prediction
maps after including them as was illustrated in a previous
study (Zhan et al., 2017). For the STK submodel, the pre-
dictions were further fine-tuned based on the spatiotemporal
patterns of the RF submodel prediction residuals. As a re-
sult, the cross-validation slope increased from 0.55 to 0.64
(Table S4), suggesting an improvement in capturing the high
and low concentrations.

Compared to the original RF–STK model proposed in
the previous study (Zhan et al., 2018), this refined RF–

STK model had two major modifications, including sample
weighting and logarithm transformation of the response vari-
able (i.e., ground-level CO observations in the present study).
Inversely weighting the training samples by their surround-
ing population densities alleviated the effects of sampling
bias towards populous areas for the monitoring network. As
a result, the CO monitoring data from the sparsely popu-
lated areas (e.g., the Tibetan Plateau) gained higher weights
in the model training process for compensating the scarcity
of the training samples, leading to more realistic predictions
for those areas. In addition, observations with higher varia-
tions would naturally gain higher weights during model train-
ing given the loss function of squared errors, for which it
was suggested to transform the response variable to achieve
homogeneity of variance (De’Ath and Fabricius, 2000). The
ground-level CO observations were heavy-tailed distributed,
and hence logarithm transformation was conducted prior to
training the RF submodel. Compared with the original RF
submodel, the refined RF submodel showed similar perfor-
mance in the cross-validation but predicted more realistic
spatial distributions of ground-level CO across China (Ta-
ble S4 and Fig. S8). The spatial distributions predicted by the
original RF submodel showed the prevalence of higher con-
centrations than those predicted by the refined RF submodel,
resulting from overweighting of the training data from the
areas with more serve CO pollution, e.g., the NCP.

It is noteworthy that the RF–STK model with MOPITT
CO (R2

= 0.51, RMSE= 0.54 mg m−3, and slope= 0.64;
Table 2) was superior to the model without MOPITT CO
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Table 2. Performance comparisons of the RF–STK models with and without MOPITT data in predicting daily ground-level CO concentra-
tions across China during 2013–2016.

Site-based cross-validationb Region-based cross-validationb

Metrica With MOPITT Without MOPITT With MOPITT Without MOPITT

R2 0.51 0.49 0.32
Slope 0.64 0.60 0.52 0.46
RMSE 0.54 0.58 0.61 0.69
RPE 50.4 % 54.0 % 56.7 % 64.2 %
MFB −0.022 −0.025 −0.027 0.036
MFE 0.35 0.35 0.39 0.43
MNB 0.70 0.75 0.78 0.89
MNE 0.98 1.02 1.08 1.19

a R2: coefficient of determination; RMSE: root mean square error (mg m−3); RPE: relative prediction error; MFB:
mean fractional bias; MFE: mean fractional error; MNB: mean normalized bias; and MNE: mean normalized error.
Bold: the best performance of each evaluation metric. Lower values are better for each metric except R2 and slope.
b Site-based cross-validation: the training data are randomly divided into 10 groups stratified by the monitoring sites
for the cross-validation. Region-based cross-validation: the training data are divided by the geographic regions (e.g.,
North China and East China; Fig. 1) for the cross-validation.

Figure 6. Relative importance of the predictor variables in the RF–STK model. Please refer to Table S1 for the detailed descriptions of these
variables.

(R2
= 0.49, RMSE= 0.58 mg m−3, and slope= 0.60; Ta-

ble 2) and the model with the a priori information (R2
=

0.49, RMSE= 0.57 mg m−3, and slope= 0.60; Table S4)
based on the site-based cross-validation results (Tables 2
and S4). The performance difference became more appar-
ent in the region-based cross-validation, where the model
with MOPITT CO (R2

= 0.45, RMSE= 0.61 mg m−3, and
slope= 0.52) clearly outperformed the model without MO-
PITT (R2

= 0.32, RMSE= 0.69 mg m−3, and slope= 0.46).
We therefore reasoned that the MOPITT CO data were essen-
tial for the RF–STK model to achieve better predictive per-

formance, especially for the areas without monitoring sites
nearby.

As a machine learning approach, the RF–STK model
exhibited stable performance across regions and seasons
(Fig. S9), which was comparable or superior to the pre-
vious CTMs or statistical methods simulating ground-level
CO concentrations (Table S5). As the simulation areas and
episodes were considerably different among these studies,
their predictive performance was not strictly comparable.
A hybrid statistical model (partial least square and support
vector machine) exhibited decent goodness of fit in simu-

Atmos. Chem. Phys., 19, 12413–12430, 2019 www.atmos-chem-phys.net/19/12413/2019/



D. Liu et al.: Estimating ground-level CO concentrations 12423

Figure 7. Annual average ground-level CO concentrations predicted by the RF–STK model for (a) 2013, (b) 2014, (c) 2015, and (d) 2016
across China.

lating daily CO concentrations in Tehran, Iran, with fitting
R2
= 0.65 (Yeganeh et al., 2012). For the CTM study in

Bahia, Brazil, the accuracy of the posterior estimation im-
proved largely after incorporating the surface observations
into the priori state (Hooghiemstra et al., 2012). In the ab-
sence of nationwide statistical modeling work, only CTM
studies were found for modeling CO at large scale in China.
A previous CTM work for China underestimated the ground-
level CO concentrations by 67.2 % on average (Hu et al.,
2016), which might be due to the underestimation of CO
emissions.

3.3 Important predictors

On the basis of the variable importance evaluation, MO-
PITT CO was the most important predictor in the RF–STK
model with relative importance of 9.4 %, and the emission-
related predictors together accounted for 30.0 % of the total
importance (Fig. 6). The partial dependence plots delineated
the complicated relationships between the predictors and the
ground-level CO concentrations, which could be difficult to
be specified in parametric models (Fig. S10). While MOPITT
CO contained essential information for the RF–STK model
to make accurate predictions, the high uncertainties pertain-
ing to the MOPITT retrievals prevented the MOPITT CO
from playing a dominant role in the model, and the other pre-
dictors were also indispensable. Among the emission-related
predictors, the spatial-convolution-processed emission of or-
ganic carbon was the most important predictor (importance:
8.5 %), which reflected the spatiotemporal patterns of an-
thropogenic emissions from industrial and residential sec-

tors (Fig. S11). Given the high intercorrelations among the
predictors associated with anthropogenic emissions, only the
most informative predictors were retained in the model after
the variable selection (Figs. S6 and S12).

As the most important group of predictors, the meteoro-
logical conditions together accounted for 35.6 % of the total
importance (Fig. 6). The relative importance of temperature,
evaporation, wind speed, atmospheric pressure, PBLH, rela-
tive humidity, and insolation duration ranged from 2.8 % to
8.6 %. In general, stagnant weather conditions occurred more
frequently in winter, which was characterized by shallow
mixed layers, less precipitation, and slow wind speed. These
weather conditions caused accumulation of atmospheric pol-
lutants discharged by local emissions or transported from
outside, which aggravated local air pollution (Wang et al.,
2014). Similar to other atmospheric pollutants, the CO con-
centrations were also sensitive to meteorological conditions
(Xu et al., 2011). For instance, the apparently negative as-
sociations of the CO concentrations with the PBLH and the
wind speed were delineated by the corresponding partial de-
pendence plots (Fig. S10). Nevertheless, it should be noted
that the partial dependence plot illustrated the overall rela-
tionship and could be distorted by spatial and/or temporal
confounders. For instance, the partial dependence plot for
temperature, with a peak around 20 ◦C, was contrary to the
fact that the CO concentrations were the highest in winter.
This “false” relationship was due to the phenomenon that
most of the CO-polluted areas distributed in the warm zones
of China, i.e., the spatial factor confounded the relationship
between temperature and CO concentrations.
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Figure 8. Seasonal average ground-level CO concentrations (mg m−3) during 2013–2016 in the central Tibetan Plateau based on (a–d) the
RF–STK predictions (P) and (e–h) the MOPITT retrievals (M). Main cities within this area (e.g., Lhasa, Naqu, and Qamdo) are annotated
with triangles.

3.4 Spatiotemporal distributions of ground-level CO
predicted by the RF–STK model

The RF–STK predictions showed similarly spatiotemporal
patterns to MOPITT CO while presented more fine-scale de-
tails (Figs. 3 and 7). The predictions of the RF–STK ade-
quately assimilated the information of ground-level CO ob-
servations, with r = 0.95 for the daily concentrations (Ta-
ble 1). The nationwide multiyear (i.e., 2013–2016) CPW
were predicted to be 0.99± 0.30 mg m−3, with the highest
seasonal averages (1.32± 0.49 mg m−3) for winter and the
lowest (0.77± 0.22 mg m−3) for summer (Fig. 2). The re-
gional CPW were predicted to be the highest in North China
and the lowest in South China, with the concentrations of
1.19±0.30 and 0.77±0.18 mg m−3, respectively. It is worth
noting that the RF–STK predictions showed the CO hotspots
in the CTP, where the ground-level CO concentrations were
underestimated by MOPITT CO (Fig. 8). The “abnormal”
CO seasonality (i.e., low in winter and high in summer)
for the CTP characterized by the MOPITT CO was cor-
rected in the RF–STK predictions even though the data qual-
ity of ground-level CO observations for 2013 were in doubt
(Fig. 4). The high CO concentrations in the CTP might result
from the low combustion efficiency of residential stoves and
the large amount of biomass combustion for energy (Chen et
al., 2015). For example, combustion of yak dung accounted
for more than 50 % of the energy consumption in Nagqu
(Yang and Zheng, 2015).

During 2013–2016, the nationwide CPW decreased from
1.02± 0.34 to 0.95± 0.30 mg m−3 at a rate of −0.021±

0.004 mg m−3 yr−1 (P < 0.01; Figs. 2 and 9). The relative
decrease rate of 4.4 % was similar to the 3.8 % drop of coal
consumption for China during 2013–2016, suggesting the
potentially important contribution of decrease in coal con-
sumption (partially due to improved energy conversion ef-
ficiency; Fig. S11) to the mitigation of CO pollution (CSY,
2018). Coal consumption accounted for approximately 70 %
of the total energy use in China. As the major energy con-
sumers, the industrial and residential sectors contributed
41 % and 39 % of the total anthropogenic CO emissions,
respectively (Fig. S13). More coal was consumed for resi-
dential heating in winter, causing higher CO emissions and
more severe air pollution (Fig. S14). The relatively decreas-
ing rate of CO was similar to that of NO2 but much slower
than the decreasing trend of PM2.5 (Ma et al., 2016; Zhan et
al., 2018). Spatially, the CPW significantly decreased for all
regions (P < 0.05) except for Southwest China (P = 0.16).
The decreasing trend was most prominent for North China
where CO pollution was the most severe, with a decreasing
rate of −0.028± 0.008 mg m−3 yr−1.

In comparison to the RF–STK predictions (which were
very similar to ground-level CO observations given the good
model fitness), the MOPITT CO tended to underestimate the
decreasing trends of ground-level CO concentrations (Fig. 9).
The absolute decreasing rate of MPW for the whole China
during 2013–2016 was approximately 60 % lower than that
of the RF–STK predictions (i.e., CPW). The relative change
rate of MPW was −1.99 % compared to −2.25 % of CPW
per year. Spatially, the MPW showed no significant trends
for East, Northeast, Northwest, South, and Southwest China
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Figure 9. Temporal trends of the population-weighted average ground-level CO concentrations (mg m−3) for (a) Central China, (b) East
China, (c) North China, (d) Northeast China, (e) Northwest China, (f) South China, (g) Southwest China, (h) the whole nation, (i) the
central Tibetan Plateau (CTP), and (j) the North China Plain (NCP) during 2013–2016 based on the RF–STK predictions (red solid lines)
and the MOPITT retrievals (blue solid lines). The points in different colors represent the deseasonalized monthly averages for deriving the
corresponding trend lines. The 95 % confidence intervals of the trends are in parentheses (mg m−3 yr−1) followed by the P values.
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(P > 0.05). We found that the trend underestimation tended
to be more severe for the regions with weaker averaging ker-
nels, indicating higher dependence on the a priori informa-
tion (Figs. 9 and S5). In addition, the decreasing trend pre-
dicted by the RF–STK model with the a priori information
(−2.06 % yr−1) was slower than that predicted by the RF–
STK model with the MOPITT CO (−2.25 % yr−1; Fig. S15).
We thus deduced that the a priori information, which was the
same across the years (Dekker et al., 2017), might greatly
contribute to the trend underestimation by the MOPITT CO.

The issue of bias drift for the MOPITT retrievals, which
could result from long-term instrumental degradation (Deeter
et al., 2017), should also be considered in the trend analy-
ses. The bias drift for MOPITT CO was found to be approx-
imately −0.69 % yr−1 based on the flask measurements per-
formed by the National Oceanic and Atmospheric Adminis-
tration (Deeter et al., 2017). It is noteworthy that the extents
of bias drift were of considerable spatial variation (Buchholz
et al., 2017). For the present study, if the MOPITT CO data
were “corrected” by the bias drift of −0.69 %, the relative
change rate of MPW would become lower (−1.31 % yr−1),
and the trend underestimation by the MOPITT would be
more severe (Fig. S16). Accurate information on the tempo-
ral trends of CO is essential for air quality management, and
more efforts are thus required to improve the data quality of
CO measurements.

In order to advance the knowledge of ground-level CO dis-
tributions, the study period would be extended, and the spa-
tiotemporal resolution would be improved for future work.
We chose the period of 2013–2016 due to the data availabil-
ity in the beginning of 2018 when we started to conduct this
study. While the air pollution in China was severer in earlier
years (Krotkov et al., 2016), no large-scale monitoring data
were available before 2013 for training the RF–STK model.
Back extrapolation, such as that in a previous study (Gulliver
et al., 2016), may be conducted based on MOPITT CO since
2000, whereas the issue of bias drift is currently difficult to
deal with. In addition, measurements or model predictions
with high spatial (e.g., 1 km) and temporal resolutions (e.g.,
1 h) are important to studies focusing on small regions, such
as the CTP in this study. In spite of its relative coarse res-
olution (22 km at nadir), the MOPITT product provided the
best publicly available satellite-based measurements of sur-
face CO for China during 2013–2016. Since July of 2018, the
TROPOspheric Monitoring Instrument onboard the Sentinel-
5P satellite has been providing the CO product at a higher
resolution of 7 km× 3.5 km (Borsdorff et al., 2018), which
could replace MOPITT CO in the RF–STK model in order
to make predictions for years after 2018 at a higher resolu-
tion.

4 Conclusions

The spatiotemporal distributions of ground-level CO concen-
trations for China during 2013–2016 were derived by using
the RF–STK model to assimilate the satellite and ground-
based measurements. The RF–STK model showed feasible
performance in predicting the daily CO concentrations on
the 0.1◦ grid. As most of the monitoring sites were in ur-
ban areas, we refined the RF–STK model through inversely
weighting the training samples with the surrounding popu-
lation densities. As the monitoring sites clustered in cities,
it is critical to take into account the effects of sampling bias
on modeling the spatiotemporal distributions of atmospheric
pollutants. While the general patterns were well depicted
by the MOPITT retrievals, the fine-scale distributions were
sharpened and corrected with the observations from the mon-
itoring network. By using this data-fusion approach, we ob-
tained the comprehensive dataset of ground-level CO con-
centrations for China.

On the basis of the spatiotemporal predictions, the
population-weighted average of ground-level CO concen-
trations was 0.99± 0.30 mg m−3 for China during 2013–
2016, with a decreasing rate of−0.021±0.004 mg m−3 yr−1.
The CO concentrations were predicted to be the highest in
North China (1.19± 0.30 mg m−3) and the lowest in South
China (0.77± 0.18 mg m−3). The seasonal averages of the
whole of China ranged from 0.77± 0.22 in summer to
1.32±0.49 mg m−3 in winter, attributing to the seasonality of
weather conditions and emission intensities as indicated by
the variable importance of the RF–STK model. The present
study provides important information for improving the ac-
curacy of MOPITT retrievals, such as refining the a priori
information assigned to the CO hotspots in the CTP con-
strained by the RF–STK predictions. The predicted results
of ground-level CO distributions are valuable for air quality
management and human exposure assessment in China.

Code availability. The code for random forest is available
from scikit-learn (https://scikit-learn.org/stable/ (last access:
10 April 2019), Pedregosa et al., 2011). The code for spatiotem-
poral kriging is available from the Comprehensive R Archive
Network (https://cran.r-project.org/web/packages/gstat/index.html
(last access: 5 May 2019), Pebesma et al., 2004).

Data availability. The hourly CO concentration data are from the
Ministry of Ecology and Environment of the People’s Republic
of China (MEPC, 2017) (http://datacenter.mep.gov.cn/, last access:
30 January 2017). The MOPITT data are from the Atmospheric Sci-
ence Data Center (ASDC, 2017). (https://eosweb.larc.nasa.gov/, last
access: 18 March 2018). The estimated ground-level CO concentra-
tions are available upon request.
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