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S.1 Temporal and spatial convolution 

The data of MOPITT retrieved surface CO (MOPITT-CO) are processed with the temporal and spatial convolution 

to filter noises and fill data gaps. In the first step, the temporal convolution with a 1-dimensioanl Gaussian kernel 

is employed to process the MOPITT-CO data for each grid cell: 

𝑀𝑇(𝑡0) = ∑ [𝑀(𝑡) · 𝑊𝑇(𝑡0 − 𝑡)]𝑡 ∑ 𝑊𝑇(𝑡0 − 𝑡)𝑡⁄            (1) 

where 𝑀𝑇(𝑡0)  is the output value on day 𝑡0  processed by the temporal convolution, 𝑀(𝑡)  is the original 

MOPITT-CO value on day 𝑡, and 𝑊𝑇(𝑡0 − 𝑡) is the weighting factor determined by the 1-dimensional Gaussian 

function: 

𝑊𝑇(𝑡0 − 𝑡) = 𝑒𝑥𝑝[−(𝑡0 − 𝑡)2 (2𝜎𝑇
2)⁄ ]             (2) 

where the standard deviation (σ𝑇 ) is set to 60 according to the sensitivity analysis on the completeness and 

smoothness of the processed data. 

In the second step, the spatial convolution with a 2-dimensional Gaussian kernel is employed to process the output 

from the previous step day by day: 

𝑀𝑇𝑆(𝑥0, 𝑦0) = ∑ [𝑀𝑇(𝑥, 𝑦) · 𝑊𝑆(𝑥0 − 𝑥, 𝑦0 − 𝑦)]𝑥,𝑦 ∑ 𝑊𝑆(𝑥0 − 𝑥, 𝑦0 − 𝑦)𝑥,𝑦⁄      (3)                      

where 𝑀𝑇𝑆(𝑥0, 𝑦0) is the output value for cell (x0, y0) processed by the spatial convolution, 𝑀𝑇(𝑥, 𝑦) is the 

processed MOPITT-CO value from the first step for cell (x, y), and 𝑊𝑆(𝑥0 − 𝑥, 𝑦0 − 𝑦) is the weighting factor 

determined by the 2-dimensional Gaussian function: 

𝑊𝑆(𝑥0 − 𝑥, 𝑦0 − 𝑦) = 𝑒𝑥𝑝{−[(𝑥0 − 𝑥)2 + (𝑦0 − 𝑦)2)]/2𝜎𝑆
2}        (4) 

where the standard deviation (σ𝑆) is set to 0.1 according to the sensitivity analysis on the completeness and 

smoothness of the processed data. 

S.2 Averaging kernel 

The averaging kernel (matrix A) adjusts the weights of the “true” state (vector x) and the a priori (vector xa) in 

deriving the MOPITT CO retrievals (vector 𝑥̂) (Deeter et al., 2003; Rodgers, 2000). 

𝑥̂ ≈ 𝐴𝑥 + (𝐼 − 𝐴)𝑥𝑎                 (5) 

where I is the identity matrix. Each row of A corresponds to a vertical layer of the CO profile, and the sum of a 

row shows the overall dependence of the MOPITT CO retrieval at that layer on the a priori information. A small 

row-sum value indicates strong dependence on the a priori information. 

S.3 Algorithm of random forests (Breiman, 2001) 

For tree = 1 to N (e.g., 500 trees in this study): 

◆ Randomly draw a sample from the training data with replacement through bootstrapping; 

◆ A tree is grown from a single node, and the following steps are repeated until the minimum number of 

observations is present at each terminal node: 

 Randomly select a subset of predictors to be considered at each split; 

 Find the split that reduces the squared error the most; 

Average the predictions made by all the decision trees as the output of the random forest. 
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S.4 Environmental condition data 

◆ The daily weather conditions, including atmospheric pressure, air temperature, precipitation, evaporation, 

insolation duration, and wind speed, were obtained from 839 meteorological stations (CMA, 2017).  

◆ The elevation data were retrieved from the Shuttle Radar Topography Mission (SRTM) database (Jarvis et 

al., 2016).  

◆ The data of population density, road density, and land use were extracted from the Gridded Population of 

the World, the OpenStreetMap, and the GlobeLand30 databases, respectively (CIESIN, 2016; OSP, 2016; 

Jun et al., 2014).  

◆ The daily planetary boundary height (PBLH) data were obtained from the Modern-Era Retrospective 

Analysis for Research and Application (GMAO, 2015).  

◆ The Normalized Difference Vegetation Index (NDVI) data were retrieved from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) satellite retrievals (Didan et al., 2015).  

◆ The anthropogenic emission inventories were obtained from the Multi-resolution Emission Inventory for 

China (MEIC) database (Li et al., 2017). Due to the data availability, the emissions for 2013 and 2015 were 

linearly interpolated from the available emission data for 2012, 2014, and 2016. 
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Table S1. List of variable symbols and definitions. 

Symbol Unit Variable definition Spatiala Temporala Convolutionb 

MOPITT molecule cm-2 MOPITT-retrieved CO  

surface mixing ratio 

0.25° Day Temporal and 

Spatial 

DOY - Day of year - - - 

YEAR - Year - - - 

EVP mm Evaporation Point Day - 

PRE mm Precipitation Point Day - 

PRS hPa Atmospheric pressure Point Day - 

RHU % Relative humidity Point Day - 

SSD hour Sunshine duration Point Day - 

TEM ℃ Temperature Point Day - 

WIN m s-1 Wind speed Point Day - 

PBLH Km Planetary boundary  

layer height 

0.625°×0.5° Day - 

ELV M Elevation 90 m - Spatial 

NDVI - Normalized Difference  

Vegetation Index 

250 m 8 Days Spatial 

POP people km-2 Population density 30" - Spatial 

LU10 % Cultivated land area 30 m - Spatial 

LU20 % Forest area 30 m - Spatial 

LU30 % Grassland area 30 m - Spatial 

LU40 % Shrubland area 30 m - Spatial 

LU50 % Wetland area 30 m - Spatial 

LU60 % Waterbody area 30 m - Spatial 

LU80 % Artificial surface area 30 m - Spatial 

LU90 % Bareland area 30 m - Spatial 

LU100 % Permanent frozen land area 30 m - Spatial 

LU255 % Sea area 30 m - Spatial 

ROAD Km grid-1 Road density Polyline - Spatial 

eBC Mg grid-1 Emission of black carbon 0.25° Month Spatial 

eCO Mg grid-1 Emission of CO 0.25° Month Spatial 

eCO2 Mg grid-1 Emission of CO2 0.25° Month Spatial 

eNH3 Mg grid-1 Emission of NH3 0.25° Month Spatial 

eNOx Mg grid-1 Emission of NO2 and NO 0.25° Month Spatial 

eOC Mg grid-1 Emission of organic carbon 0.25° Month Spatial 

ePM25 Mg grid-1 Emission of PM2.5 0.25° Month Spatial 

ePMcoar Mg grid-1 Emission of PM-coarse 0.25° Month Spatial 

eSO2 Mg grid-1 Emission of SO2 0.25° Month Spatial 

eVOC Mg grid-1 Emission of VOC 0.25° Month Spatial 

a Spatial or temporal resolution of raw data. 

b Temporal: MOPITT is processed with the temporal and spatial convolution. Spatial: These variables have 

accompanying variables processed with the spatial convolution. 
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Table S2. Coverage rates of MOPITT-CO retrievals across China (µ ± σ; %)a. 

Year(s) Spring Summer Fall Winter Annual 

2013 3.2 ± 2.1 3.0 ± 2.0 4.5 ± 2.6 4.1 ± 2.7 3.7 ± 0.6 

2014 3.1 ± 2.1 2.7 ± 2.0 4.3 ± 2.5 4.1 ± 2.4 3.6 ± 0.6 

2015 3.0 ± 2.0 3.0 ± 2.1 4.0 ± 2.4 3.8 ± 2.4 3.4 ± 0.6 

2016 3.0 ± 2.1 3.0 ± 2.0 4.0 ± 2.7 3.6 ± 2.3 3.4 ± 0.6 

2013-2016 3.1 ± 1.6 2.9 ± 1.5 4.2 ± 1.9 3.9 ± 2.0 3.5 ± 0.5 

a σ stands for the spatial variation. Please refer to Fig. S2 for the coverage maps.  



 

 

 

S6 

 

 

Table S3. Correlations between the daily CO observations from the monitoring network and the MOPITT surface 

retrievals for China during 2013-2016. 

Regiona Spring Summer Fall Winter 2013 2014 2015 2016 2013-2016 

Central China 0.08  0.18  0.21  0.27  0.59  0.22  0.32  0.24  0.30  

East China 0.12  0.24  0.36  0.37  0.46  0.34  0.48  0.40  0.43  

North China 0.30  0.23  0.31  0.42  0.36  0.31  0.39  0.38  0.37  

Northeast China 0.28  0.34  0.38  0.30  0.28  0.41  0.39  0.38  0.39  

Northwest China 0.31  0.12  0.27  0.31  0.52  0.39  0.35  0.31  0.38  

South China 0.49  0.53  0.59  0.52  0.65  0.56  0.55  0.57  0.58  

Southwest China 0.10  0.12  0.25  0.20  0.14  -0.02  0.17  0.22  0.17  

Nation 0.22  0.31  0.32  0.34  0.42  0.31  0.3  0.34  0.44 

Central Tibetan Plateau 0.15  0.25  0.11  0.05  -0.19  -0.09  -0.10  0.14  -0.12  

North China Plain 0.18  0.13  0.25  0.35  0.33  0.30  0.27  0.36  0.30  

a Please refer to Fig. 1 for the locations of these regions.  
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Table S4. Comparisons of the RF and RF-STK models in predicting daily ground-level CO concentrations across 

China during 2013-2016 based on the 10-fold cross-validation. 

Metrica RFr
b RFb RFrw

b RFw
b RFw-STKb RFrw-STKbc RFrw-STKb 

R2 0.56 0.53 0.54 0.53 0.49 0.49 0.51 

Slope 0.60 0.55 0.57 0.55 0.63 0.60 0.64 

RMSE 0.50 0.52 0.51 0.52 0.55 0.57 0.54 

RPE 46.1% 48.0% 47.1% 48.1% 51.0% 53.3% 50.4% 

MFB 0.0832 -0.013 -0.0076 -0.0128 -0.030 0.064 -0.022 

MFE 0.31 0.31 0.31 0.31 0.36 0.37 0.35 

MNB 0.90 0.64 0.66 0.64 0.68 0.74 0.70 

MNE 1.09 0.90 0.91 0.90 0.97 1.0 0.98 

a R2: coefficient of determination; RMSE: root mean square error (mg m-3); RPE: relative prediction error; MFB: 

mean fractional bias; MFE: mean fractional error; MNB: mean normalized bias; MNE: mean normalized error. 

b RF: random forest; STK: spatiotemporal kriging. Subscript r indicates a reduced model through variable 

selection, and subscript w means that the training samples were inversely weighted by the associated population 

densities. The CO concentrations were log-transformed to train all the models except for RFr which was trained 

with the CO concentrations at native scale. 

c This RF-STK model was developed with the a priori information rather than the MOPITT retrievals. 

 



 

 

 

S8 

 

 

Table S5. Previous studies modeling surface CO concentrations. 

Reference Modela Study Area Study Period Evaluation Metricb 

(Hooghiemstra et al., 

2012) 

4D-Var system Bahia, 

Brazil 

2007-2009 R=0.6 (daily; prior) 

R=0.8 (daily; posterior) 

(Yeganeh et al., 

2012) 

SVM;  

PLS-SVM 

Tehran, Iran 2007.01-2011.01 R2=0.56 (daily; SVM) 

R2=0.65 (daily; PLS-SVM) 

(Hu et al., 2016) CMAQ China 2013.03-2013.12 MNE=0.59~0.66 (daily) 

MFE=0.86~1.02 (daily) 

a 4D-Var system: Four-dimensional variational data assimilation system; SVM: support vector machine; PLS-

SVM: hybrid model of partial least square and support vector machine; CMAQ: Community Multiscale Air 

Quality model. 

b All these studies conducted validation at daily level. Both prior and posterior estimates of the model were 

evaluated with an independent dataset (Hooghiemstra et al., 2012). Goodness of fit was evaluated in (Yeganeh et 

al., 2012), and an independent dataset was used for validation in (Hu et al., 2016). 
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Figure S1: Average diurnal pattern in CO concentrations across 1656 monitoring sites for China during 2013-

2016. The peak and the valley appeared at 9am and 4pm (Beijing Standard Time). The shaded area represents the 

standard deviations. 
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Figure S2: Seasonal averages of the ground-level CO concentrations (mg m-3) for the whole China, the North 

China Plain (NCP), the Central Tibetan Plateau (CTP), Naqu, and Qamdo during 2013-2016 based on (a) the 

MOPITT retrieved surface CO and (b) the observations from the monitoring network. The error bars represent the 

standard deviations. Naqu and Qamdo are two main cities in CTP (Fig. 8). 
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Figure S3: Coverage rates (%) of MOPITT-CO retrievals for (a) spring, (b) summer, (c) fall, and (d) winter during 

2013-2016 across China. The coverage rate at each grid cell was calculated as the percentage of days with 

MOPITT-CO retrievals in each season. 
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Figure S4: Seasonal means of the averaging-kernel row-sum values associated with the MOPITT retrieved 

surface CO for (a) spring, (b) summer, (c) fall, and (d) winter during 2013-2016 across China. Small row-sum 

values indicate strong dependence of the MOPITT retrievals on the a priori information. Please refer to “S.2 

Averaging kernel” for more explanation.  
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Figure S5: Annual averages of the MOPITT retrieved surface CO concentrations for (a) 2013, (b) 2014, (c) 2015, 

and (d) 2016. 
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Figure S6: Annual total CO emissions (t) in (a) 2013, (b) 2014, (c) 2015, and (d) 2016 from anthropogenic sources 

across China. Due to the data availability, the CO emissions for 2013 and 2015 were linearly interpolated from 

the available data for 2012, 2014, and 2016 (Li et al., 2017).  
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Figure S7: Evolution of the cross-validation RMSE (mg m-3) and R2 for the random forest submodels through the 

stepwise backward variable selection process. 
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Figure S8: Annual average ground-level CO concentrations from 2013 to 2016 predicted by the RFr, RF, RFw 

and RFrw-STK models with the MOPITT retrievals. RF: random forest; STK: spatiotemporal kriging. Subscript r 

indicates a reduced model through variable selection, and subscript w means that the training samples were 

inversely weighted by the associated population densities. The CO concentrations were log-transformed to train 

all the models except for RFr which was trained with the CO concentrations at native scale. The predictions for 

2013-2016 by each model are presented from top to bottom rows. 
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Figure S9: Performance of the RF-STK model in predicting daily CO concentrations by regions, years, and 

seasons. The mean and standard deviation of the root mean square error (RMSE, mg m-3) over all the 10-fold 

cross-validations are presented. The numbers of monitoring sites in Central, East, North, Northeast, Northwest, 

South, and Southwest China are 267, 255, 307, 171, 159, 278, and 219, respectively. The numbers of monitoring 

sites in 2013, 2014, 2015, and 2016 are 743, 1041, 1542, and 1603, respectively. 
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Figure S10: Partial dependence plots of the random forest submodel for delineating the relationship between each 

predictor variable and the ground-level CO concentrations. Partial dependence (Y axis) is the effect of a predictor 

variable (X axis) on the CO concentrations when the values of all the other predictor variables are fixed at their 

averages (Friedman, 2001). The subplots are arranged in the order of variable importance. Please refer to Table 

S1 for the descriptions and units of the predictor variables. The rug plot indicates the data density. Note that the 

partial dependence estimations are of high uncertainty given low data densities. 
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Figure S11: Coal consumption amounts and energy conversion rates in the sector of power generation and heating 

for China during 2013-2016 (CSY, 2018).  
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Figure S12: Correlations among the predictor variables and the ground-level CO concentrations, which were 

measured by the Spearman’s rank correlation coefficients. Please refer to Table S1 for the detailed descriptions 

of the variables. 
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Figure S13: Anthropogenic emission sources of (a) CO, (b) organic carbon (OC), (c) black carbon (BC), (d) 

volatile organic compound (VOC), (e) NH3, and (f) SO2 for China during 2013-2016 (Li et al., 2017). 
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Figure S14: Total CO emissions (million t) from (a) industry, (b) power, (c) residential, and (d) transportation 

sectors in each season over China during 2013-2016 (Li et al., 2017). 
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Figure S15: Temporal trends of the population-weighted average ground-level CO concentrations (mg m-3) for 

China during 2013-2016 based on the actual MOPITT retrieved surface CO (blue solid line), the MOPITT a priori 

surface CO (purple solid line), the predictions made by the RF-STK model using the actual MOPITT retrieved 

surface CO (red solid line), and the predictions made by the RF-STK model using the MOPITT a priori surface 

CO (black solid line). The points in different colors represent the deseasonalized monthly averages for deriving 

the corresponding trend lines. The 95% confidence intervals of the trends are in parentheses followed by the P 

values. 
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Figure S16: Temporal trends of the population-weighted average ground-level CO concentrations (mg m-3) for 

China during 2013-2016 based on the actual (blue solid line) and the bias-adjusted (green solid line) MOPITT 

retrieved surface CO, as well as the predictions made by the RF-STK model using the actual MOPITT retrieved 

surface CO (red solid line). The bias correction was carried out according to the mean bias drift of -0.69% per 

year reported in the previous study (Deeter et al., 2017). The points in different colors represent the deseasonalized 

monthly averages for deriving the corresponding trend lines. The 95% confidence intervals of the trends (mg m-3 

per year) are in parentheses followed by the P values. 
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