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Abstract. In this study, both the Greenhouse Gases Observ-
ing Satellite (GOSAT) and the Orbiting Carbon Observatory
2 (OCO-2) XCO2 retrievals produced by the NASA Atmo-
spheric CO2 Observations from Space (ACOS) project (ver-
sion b7.3) are assimilated within the GEOS-Chem 4D-Var
assimilation framework to constrain the terrestrial ecosystem
carbon flux during 1 October 2014 to 31 December 2015.
One inversion for the comparison, using in situ CO2 ob-
servations, and another inversion as a benchmark for the
simulated atmospheric CO2 distributions of the real inver-
sions, using global atmospheric CO2 trends and referred to
as the poor-man inversion, are also conducted. The estimated
global and regional carbon fluxes for 2015 are shown and dis-
cussed. CO2 observations from surface flask sites and XCO2
retrievals from Total Carbon Column Observing Network
(TCCON) sites are used to evaluate the simulated concen-
trations with the posterior carbon fluxes. Globally, the ter-
restrial ecosystem carbon sink (excluding biomass burning
emissions) estimated from GOSAT data is stronger than that
inferred from OCO-2 data, weaker than the in situ inver-
sion and matches the poor-man inversion the best. Region-
ally, in most regions, the land sinks inferred from GOSAT
data are also stronger than those from OCO-2 data, and in
North America, Asia and Europe, the carbon sinks inferred
from GOSAT inversion are comparable to those from in situ
inversion. For the latitudinal distribution of land sinks, the
satellite-based inversions suggest a smaller boreal and tropi-
cal sink but larger temperate sinks in both the Northern and
Southern Hemisphere than the in situ inversion. However,

OCO-2 and GOSAT generally do not agree on which conti-
nent contains the smaller or larger sinks. Evaluations using
flask and TCCON observations and the comparisons with
in situ and poor-man inversions suggest that only GOSAT
and the in situ inversions perform better than a poor-man
solution. GOSAT data can effectively improve the carbon
flux estimates in the Northern Hemisphere, while OCO-2
data, with the specific version used in this study, show only
slight improvement. The differences of inferred land fluxes
between GOSAT and OCO-2 inversions in different regions
are mainly related to the spatial coverage, the data amount
and the biases of these two satellite XCO2 retrievals.

1 Introduction

Atmospheric inverse modeling is an effective method for
quantifying surface carbon fluxes at global and regional
scales using the gradient of CO2 measurements. Inversion
studies based on in situ CO2 observations agree well on
global carbon budget estimates but differ greatly on regional
carbon flux estimates and the partitioning of land and ocean
fluxes as well, mainly due to the sparseness of observations in
the tropics, Southern Hemisphere oceans and the majority of
continental interiors such as those in South America, Africa
and boreal Asia (Peylin el al., 2013). Satellite observations
offer an attractive means to constrain atmospheric inversions
with their extensive spatial coverage over remote regions.
Studies have shown that, theoretically, satellite observations,
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though with lower precision than in situ measurements, can
improve carbon flux estimates (Rayner and O’Brien, 2001;
Park and Prather, 2001; Houweling et al., 2004; Baker et al.,
2010; Chevallier et al., 2007; Miller et al., 2007; Kadygrov
et al., 2009; Hungershoefer et al., 2010).

Satellite sensors designed specifically to retrieve atmo-
spheric CO2 concentrations have been in operation in recent
years. The Greenhouse Gases Observing Satellite (GOSAT)
(Kuze et al., 2009), being the first satellite mission dedicated
to observing CO2 from space, was launched in 2009. The
National Aeronautics and Space Administration (NASA)
launched the Orbiting Carbon Observatory 2 (OCO-2) satel-
lite in 2014 (Crisp et al., 2017; Eldering et al., 2012, 2017a).
China’s first CO2 monitoring satellite (TanSat) was launched
in 2016 (Wang et al., 2017; Yang et al., 2018). These satel-
lites measure near-infrared sunlight reflected from the sur-
face in CO2 spectral bands and the O2 A band to retrieve
column-averaged dry-air mole fractions of CO2 (XCO2),
aiming to improving the estimation of the spatial and tem-
poral distributions of carbon sinks and sources. A number
of inversions have utilized GOSAT XCO2 retrievals to infer
surface carbon fluxes (Basu et al., 2013; Maksyutov et al.,
2013; Saeki et al., 2013; Chevallier et al., 2014; Deng et al.,
2014, 2016; Houweling et al., 2015). Although large uncer-
tainty reductions were achieved for regions that are under-
sampled by in situ observations, these studies did not give
robust regional carbon flux estimates. There are large spreads
in regional flux estimates in some regions among these inver-
sions. Furthermore, regional flux distributions inferred from
GOSAT XCO2 data are significantly different from those in-
ferred from in situ observations. For instance, several stud-
ies using GOSAT retrievals reported a larger than expected
carbon sink in Europe (Basu et al., 2013; Chevallier et al.,
2014; Deng et al., 2014; Houweling et al., 2015). The valid-
ity of this large European carbon sink derived from GOSAT
retrievals is in intense debate, and efforts to improve the ac-
curacy of European carbon sink estimates are still ongoing
(Reuter et al., 2014; Feng et al., 2016; Reuter et al., 2017).

Compared with GOSAT, OCO-2 has a higher sensitivity to
column CO2, much finer footprints and more extended spa-
tial coverage, and it thus has the potential to better constrain
surface carbon fluxes (Eldering et al., 2017b). Studies have
used OCO-2 XCO2 data to estimate carbon flux anomalies
during recent El Niño events (Chatterjee et al., 2017; Patra
et al., 2017; Heymann et al., 2017; Liu et al., 2017). Nas-
sar et al. (2017) applied OCO-2 XCO2 data to infer emis-
sions from large power plants. Miller et al. (2018) evaluated
the potential of OCO-2 XCO2 data in constraining regional
biospheric CO2 fluxes and found that in the current state of
development, OCO-2 observations can only provide a reli-
able constraint on the CO2 budget at continental and hemi-
spheric scales. At present, it is still not clear whether, with
improved monitoring capabilities and better spatial cover-
age, current OCO-2 observations have greater potential than
GOSAT observations for estimating CO2 flux at a regional or

finer scale, since the biases also affect the usefulness of satel-
lite retrievals greatly. It is therefore important to investigate
how current OCO-2 XCO2 data differ from GOSAT XCO2
data in constraining the carbon budget.

In this study, we evaluate the performance of GOSAT and
OCO-2 XCO2 data in constraining the terrestrial ecosystem
carbon flux. GOSAT and OCO-2 XCO2 retrievals produced
by the NASA Atmospheric CO2 Observations from Space
(ACOS) team are applied to infer monthly terrestrial ecosys-
tem carbon sinks and sources from October 2014 through
December 2015 using a 4D-Var scheme based on the GEOS-
Chem Adjoint model (Henze et al., 2007). For comparisons,
one inversion based on in situ measurements is conducted,
and another simple one, which uses the global CO2 trend
as a benchmark for the simulated atmospheric CO2 distribu-
tions of the real inversion, is also implemented. For simplic-
ity, the four inversions are referred to as the OCO-2 inver-
sion, GOSAT inversion, in situ inversion and poor-man in-
version. Inversion results are evaluated against surface flask
CO2 observations and Total Carbon Column Observing Net-
work (TCCON) XCO2 retrievals. This paper is organized
as follows. Section 2 briefly introduces GOSAT and OCO-
2 XCO2 retrievals, surface observations, and the inversion
methodology. Inversion settings are described in Sect. 3. Re-
sults and a discussion are presented in Sect. 4, and conclu-
sions are given in Sect. 5.

2 Data and methods

2.1 GOSAT and OCO-2 XCO2 retrievals

Developed jointly by the National Institute for Environmen-
tal Studies (NIES), the Japanese Space Agency (JAXA) and
the Ministry of the Environment (MOE) of Japan, GOSAT
was designed to retrieve total-column abundances of CO2
and CH4. The satellite flies at a 666 km altitude in a sun-
synchronous orbit with 98◦ inclination that crosses the Equa-
tor at 12:49 local time. It covers the whole globe in 3 d and
has a footprint of 10.5 km2 at nadir. OCO-2 is NASA’s first
mission dedicated to retrieving atmospheric CO2 concentra-
tion. It flies at 705 km of altitude in a sun-synchronous or-
bit with an overpass time at approximately 13:30 local time
and a repeat cycle of 16 d. Its grating spectrometer measures
reflected sunlight in three near-infrared regions (0.765, 1.61
and 2.06 µm) to retrieve XCO2. OCO-2 has a footprint of
1.29× 2.25 km2 at nadir and acquires eight cross-track foot-
prints, creating a swath width of 10.3 km.

Both GOSAT and OCO-2 XCO2 products were cre-
ated using the same retrieval algorithm, which is based on
a Bayesian optimal estimation approach (Rodgers, 2000;
O’Dell et al., 2012). The GOSAT and OCO-2 XCO2 data
used in this study are version 7.3 Level 2 Lite products at
the pixel level. The XCO2 data from Lite products are bias-
corrected (Wunch et al., 2011). Before being used in our in-
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version system, the data are processed in three steps. First,
the retrievals for the glint soundings over oceans have rela-
tively larger uncertainty, and thus the data over oceans are not
used in our inversions (Wunch et al., 2017). Second, in order
to achieve the most extensive spatial coverage with the as-
surance of using the best-quality data available, the XCO2
data are filtered with two parameters, namely warn_levels
and xco2_ quality_flag, which are provided along with the
XCO2 data. All data with the xco2_quality_flag not equal-
ing 0 are removed, and the rest are divided into three groups
according to the value of warn_levels: group 1, group 2 and
group 3. In group 1, the warn_levels are less than 8; in group
2, the warn_levels are greater than 9 and less than 12, and in
group 3, they are greater than 13. Group 1 has the best data
quality, followed by group 2, and group 3 is the worst. Third,
the pixel data are averaged within the grid cell of 2◦× 2.5◦,
which is the resolution of the global atmospheric transport
model used in this study. In each grid of 2◦× 2.5◦, only the
groups of best data quality are selected and then averaged.
The other variables, like column averaging kernel, retrieval
error and so on, which are provided along with the XCO2
product, are also handled with the same method. Figure 1a
and b show the coverages and data amount of GOSAT and
OCO-2 XCO2 data during the study period after processing.
The filtered GOSAT and OCO-2 retrievals are not evenly dis-
tributed spatially. Due to cloud contamination, there are few
retrievals in a large portion of tropical land. In the northern
high-latitude area, especially in boreal regions, due to the low
soar zenith angle, available satellite retrievals are very sparse.

2.2 Surface observations and TCCON XCO2 retrievals

Surface CO2 observations are from the
obspack_co2_1_CARBONTRACKER_CT2016_2017-
02-06 product (ObsPackCT2016) (CarbonTracker Team,
2017), which made up the observation data used in
CarbonTracker 2016 (Peters et al., 2007, with updates
documented at http://carbontracker.noaa.gov, last access:
10 August 2017). It is a subset of the Observation Package
(ObsPack) data product (ObsPack, 2016) and contains a
collection of discrete and quasi-continuous measurements
at surface, tower and ship sites contributed by national
universities and laboratories around the world. In this study,
in situ measurements from 78 sites provided by this product
are used for inversion. Among these 78 sites, there are
56 flask sites, of which 52 sites are selected to evaluate
the posterior CO2 concentrations (selection criteria given
in Sect. 4.1.1).

TCCON is a network of ground-based Fourier transform
spectrometers that measure direct near-infrared solar absorp-
tion spectra. Column-averaged abundances of atmospheric
constituents including CO2, CH4, N2O, HF, CO, H2O and
HDO are retrieved through these spectra. We use XCO2 re-
trievals from 13 stations from the TCCON GGG2014 dataset
(Blumenstock et al., 2017; Deutscher et al., 2017; Griffith et

Figure 1. Data amount in each grid cell (2◦× 2.5◦) of ACOS XCO2
used in this study (a, GOSAT; b, OCO-2).

Figure 2. Distributions of the observation sites used in this study.
Gray solid circles are surface sites used in the in situ inversion,
red points and red cross marks are surface flask and TCCON sites
used for evaluations, respectively, and the shaded area shows the 11
TRANSCOM regions.

al., 2017a, b; Kivi et al., 2017; Morino et al., 2017; Notholt
et al., 2017a, b; Sherlock et al., 2017; Sussmann and Ret-
tinger, 2017; Warneke et al., 2017; Wennberg et al., 2017a,
b). The 13 stations are Białystok (Bial), Bremen (Brem), Or-
leans (Orle), Garmisch (Garm), Darwin (Darw), Izana (Izan),
Ny-Ålesund (Ny_A), Lamont (Lamo), Lauder (Laud), Park
Falls (Park), Sodankylä (Soda), Tsukuba (Tsuk) and Wollon-
gong (Woll). The locations of in situ sites and the 13 TCCON
stations are shown in Fig. 2.
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2.3 GEOS-Chem 4DVAR assimilation framework

2.3.1 GEOS-Chem model

The GEOS-Chem model (http://geos-chem.org, last access:
15 May 2017) is a global three-dimensional chemistry trans-
port model (CTM), which is driven by assimilated meteo-
rological data from the Goddard Earth Observing System
(GEOS) of the NASA Global Modeling and Assimilation Of-
fice (GMAO) (Rienecker et al., 2008). The original CO2 sim-
ulation in the GEOS-Chem model was developed by Sunthar-
alingam et al. (2004) and accounts for CO2 fluxes from fos-
sil fuel combustion and cement production, biomass burning,
terrestrial ecosystem exchange, ocean exchange, and bio-
fuel burning. Nassar et al. (2010) updated the CO2 simula-
tion with improved inventories. In addition to the invento-
ries in the earlier version, the new CO2 fluxes includes CO2
emissions from international shipping, aviation (3-D) and the
chemical production of CO2 from CO oxidation throughout
the troposphere. In most other models, the oxidation of CO
was treated as direct surface CO2 emissions. The details of
the CO2 simulation and the CO2 sink–source inventories can
be found in Nassar et al. (2010). The version of the GEOS-
Chem model used in this study is v8-02-01.

2.3.2 GEOS-Chem adjoint model

An adjoint model is used to calculate the gradient of a
response function of one model scalar (or cost function)
with respect to a set of model parameters. The adjoint of
the GEOS-Chem model was first developed for the inverse
modeling of aerosol (or their precursors) and gas emissions
(Henze et al., 2007). It has been implemented to constrain
sources of species such as CO, CH4 and O3 with satellite
observations (Kopacz et al., 2009, 2010; Jiang et al., 2011;
Wecht et al., 2012; Parrington et al., 2012). Several studies
have successfully used this adjoint model to constraint car-
bon sources and sinks with surface flask measurements of
CO2 mixing ratio and space-based XCO2 retrievals (Deng et
al., 2014, 2016; Liu et al., 2014; Liu et al., 2017).

2.3.3 Inversion method

In the GEOS-Chem inverse modeling framework, the 4D-Var
data assimilation technique is employed for combining ob-
servations and simulations to seek a best optimal estimation
of the state of a system. The scaling factors are applied to
the carbon flux components to be optimized monthly in each
model grid point. This approach seeks the scaling factors of
the carbon flux that minimize the cost function, J , given by

J (c)=
1
2

N∑
i=1

(
XCOm

2,i −XCOobs
2,i

)
S−1

obs,i

(
XCOm

2,i −XCOobs
2,i

)
+

(
1
2
(c− ca)S

−1
c (c− ca)

)
, (1)

where N is the total number of satellite XCO2 observations;
XCOm

2 and XCOobs
2 are the modeled and observed total-

column averaged dry-air mole faction of CO2, respectively;
ca is the prior scaling factor of the carbon flux, which is typ-
ically set as unity; Sobs is the model–data mismatch error
covariance matrix; and Sc is the scaling factor error covari-
ance matrix. The gradients of the cost function with respect
to scaling factors calculated with the adjoint model are sup-
plied to an optimization routine (the L-BFGS-B optimization
routine; Byrd et al., 1994; Zhu et al., 1997), and the minimum
of the cost function is sought iteratively.

For the modeled CO2 column to be comparable with the
satellite XCO2 retrievals, the modeled CO2 concentration
profile should first be mapped into the satellite retrieval lev-
els and then convoluted with retrieval averaging kernels. The
modeled XCO2 is computed by

XCOm
2 = XCOa

2+
∑
j

hjaj (A(x)− ya,j ), (2)

where j denotes the retrieval level, x is the modeled CO2
profile, A(x) is a mapping matrix, XCOa

2 is prior XCO2, hj
is a pressure weighting function, aj is the satellite column
averaging kernel and ya is the prior CO2 profile for retrieval.
These last four quantities are provided from ACOS version
7.3 Level 2 Lite products.

3 Inversion settings

In this study, the GEOS-Chem model was run at a horizon-
tal resolution of 2◦× 2.5◦ for 47 vertical layers. Three in-
versions, using GOSAT data, OCO-2 data and in situ mea-
surements, are conducted from 1 October 2014 to 31 De-
cember 2015. Poor-man inversion, based on the global atmo-
spheric CO2 trend and using the poor-man method (Cheval-
lier et al., 2009, 2010), is also conducted. The posterior
dry-air mole fraction of CO2 on 1 October 2014 from the
CT2016 product is taken as the initial concentration. The first
3 months are taken as the spin-up period. The prior carbon
fluxes used in this study include fossil fuel CO2 emissions,
biomass burning CO2 emissions, terrestrial ecosystem car-
bon exchange and CO2 flux exchange over the sea surface.
Fossil fuel emissions are obtained from CT2016, which is an
average of the Carbon Dioxide Information Analysis Center
(CDIAC) product (Andres et al., 2011) and the Open-source
Data Inventory of Anthropogenic CO2 (ODIAC) emission
product (Oda and Maksyutov, 2011). The biomass burning
CO2 emissions are also taken from CT2016, which are the
average of the Global Fire Emissions Database version 4.1
(GFEDv4) (van der Werf et al., 2010; Giglio et al., 2013)
and the Global Fire Emission Database from NASA Carbon
Monitoring System (GFED_CMS). The 3-hourly terrestrial
ecosystem carbon exchanges are from the Carnegie–Ames–
Stanford approach (CASA) model GFED4.1 simulation (Pot-
ter el al., 1993; van der Werf et al., 2010). CO2 exchanges
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over the ocean surface are from the posterior air–sea CO2
flux of CT2016. It is noted that the fossil fuel emissions and
the biomass burning emissions in our inversions are kept in-
tact. Both terrestrial ecosystem CO2 exchanges and ocean
flux are optimized in our inversions.

An efficient computational procedure for constructing a
non-diagonal scaling factor error covariance matrix that ac-
counts for the spatial correlation of errors is implemented
(Singh et al., 2011). The construction is based on the as-
sumption of the exponential decay of error correlations.
Other than forming the covariance matrix explicitly, multi-
dimensional correlations are represented by tensor prod-
ucts of one-dimensional correlation matrices along longitude
and latitudinal directions. For the two inversions, the scale
lengths assigned along longitudinal and latitudinal directions
are 500 and 400 km for terrestrial ecosystem exchange and
1000 and 800 km for ocean exchange, respectively. No cor-
relations between different types of fluxes are assumed. The
temporal correlations are also neglected. A global annual un-
certainty of 100 % and 40 % is assigned for terrestrial ecosys-
tem and ocean CO2 exchanges, respectively (Deng and Chen,
2011). Accordingly, the uncertainty of the scaling factor for
the prior land and ocean fluxes in each month at the grid cell
level are assigned as 3 and 5, respectively.

3.1 Inversions using satellite XCO2 retrievals

The observation error covariance matrix is constructed using
the retrieval errors, which are provided along with the ACOS
XCO2 data. Observation errors are assumed to be uncorre-
lated at the model grid level. To account for the correlated
observation errors, as shown in Sect. 2.1, the pixel-level re-
trieval errors are filtered and averaged to the model grid level
and then inflated by a factor of 1.9 to ensure that the chi-
square testing of the χ2 value is close to 1 (Tarantola, 2004;
Chevallier et al., 2007).

3.2 Inversion using in situ measurements

As described in Sect. 2.2, surface CO2 observations from 78
sites, including flask samples and from a quasi-continuous
analyzer, are adopted in this inversion. These data are se-
lected from the data collection of ObsPackCT2016. The ob-
servation uncertainties of the 78 sites are also obtained from
this product, which account for both measurement and rep-
resentative errors (Peters et al., 2007, with updates docu-
mented at http://carbontracker.noaa.gov, last access: 10 Au-
gust 2017). An examination for differences between observa-
tions and the forward model simulation was conducted (data
not shown), and the results show that observation uncertain-
ties from CT2016 represent the model–data mismatch errors
of the GEOS-Chem model well. In addition, we neglect cor-
relations between observations and assume a diagonal obser-
vation error covariance matrix.

3.3 Poor-man inversion

A baseline inversion, which was introduced by Chevallier et
al. (2009, 2010) as a poor-man method, is implemented to
evaluate satellite retrievals and in situ measurement-based in-
versions. Usually, the posteriori fluxes are evaluated by the
improvement of the simulated CO2 mixing ratios. Since the
global CO2 trend can be accurately estimated from marine
sites, it is important to assess whether the inverted flux can
capture more information than this trend. In this baseline in-
version, the ocean flux is kept identical to the prior ones. The
poor-man inverted land flux Fpm at location (x, y) and at time
t is defined as

Fpm (x,y, t)= Fprior (x,y, t)+ k× σ(xyt), (3)

where Fprior is the prior flux, σ is the uncertainty of the prior
flux and k is a coefficient that can be solved directly from the
formula (3) as

k =
(∑

Fpm (x, y, t)−
∑

Fprior (x, y, t)
)
/
∑

σ(x, y, t), (4)

where
∑
Fpm (x, y, t) equals the global total land flux,

which can be calculated from the observed annual global
CO2 growth rate, global annual fossil fuel and biomass burn-
ing emissions, and ocean flux. In this study, the observed
annual global CO2 growth rate is from the Global Mon-
itoring Division (GMD) of the NOAA/Earth System Re-
search Laboratory (ESRL) (Ed Dlugokencky and Pieter Tans;
NOAA/ESRL, https://www.esrl.noaa.gov/gmd/ccgg/trends/,
last access: 10 July 2018). The annual global CO2 growth
rate is 2.96 ppm in 2015, which is converted to 6.28 PgC yr−1

for the poor-man global total by multiplying by a factor
of 2.123 PgC ppm−1.

4 Results and discussion

4.1 Evaluation for the inversion results

4.1.1 Flask observations

As shown in Sect. 2.2, flask observations from 52 sites are
used to evaluate the inversion results. Actually, there are
many more flask observations in the dataset. When there is
more than one flask dataset for one site, we give priority to
that from NOAA/ESL or that with more consistent records.
There are 56 sites with available flask observations for eval-
uation. In addition, during the evaluations, we find that the
GEOS-Chem model is unable to capture the variations of
CO2 mixing ratios at the Hohenpeissenberg (HPB), Hegyhát-
sál (HUN), Southern Great Plains (SGP) and Tae-ahn Penin-
sula (TAP) sites, where the standard deviations between the
observed and modeled mixing ratios are larger than 5 ppm.
Therefore, we exclude these four sites and use the rest of the
52 flask sites (shown in Fig. 2) to evaluate the posterior mix-
ing ratios. The GEOS-Chem model is driven with the prior
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flux and the four posterior fluxes to obtain the prior and pos-
terior CO2 mixing ratios. The simulated CO2 mixing ratios
are sampled at each observation site and within half an hour
of the observation time.

Table 1 shows a summary of comparisons of the simu-
lated CO2 mixing ratios against the flask measurements. The
mean difference between the prior CO2 mixing ratio and the
flask measurements is 0.93 ppm, with a standard deviation of
2.3 ppm. All four inversions show improvement in posterior
concentrations, with reductions of biases. Not surprisingly, in
situ inversion, using surface observations that include all the
flask measurements used for evaluation, shows the best im-
provement in the posterior CO2 mixing ratio with the largest
reduction of bias and standard deviation. GOSAT inversion
achieves almost the same reductions of standard deviation
as in situ inversion. OCO-2 inversion gives a larger bias and
standard deviation than in situ and GOSAT inversions. Poor-
man inversion effectively reduces the bias but with little im-
provement in the reduction of standard deviations.

Figure 3 shows the biases at each observation site at dif-
ferent latitudes. It could be found that the biases between
the simulations and the observations in the Northern Hemi-
sphere are significantly larger than those in the Southern
Hemisphere since the carbon flux distribution of the Northern
Hemisphere is more complex than that of the Southern Hemi-
sphere. When the prior flux is used, almost all sites in the
Northern Hemisphere have significant positive deviations,
with an average of 1.7 ppm, while in the Southern Hemi-
sphere, the deviations are very small, with an average bias of
only−0.08 ppm; when using the posteriori flux from OCO-2
inversion, the deviations at most Northern Hemisphere sites
are slightly reduced, with an average deviation of 0.85 ppm,
while in the Southern Hemisphere, at most sites, the biases
increase by variable amounts, with a mean of −0.13 ppm.
When using the posterior flux from the GOSAT inversion,
the deviations are significantly reduced to 0.04 ppm in the
Northern Hemisphere but further increased to −0.55 ppm in
the Southern Hemisphere. In situ inversion shows similar im-
provement in the Northern Hemisphere as GOSAT inversion,
but also with little improvement in the Southern Hemisphere.
Though poor-man inversion effectively reduces the global
bias, it shows the largest negative biases in the Southern
Hemisphere and moderate positive biases (close to OCO-2
inversions) in the Northern Hemisphere, indicating that im-
provements with poor-man inversion for posterior concentra-
tions are very limited. This suggests that GOSAT and in situ
inversions can effectively improve carbon flux estimates in
the Northern Hemisphere but overestimate the land sinks in
the Southern Hemisphere.

4.1.2 TCCON observations

We also use data from 13 TCCON sites (Fig. 2) to evaluate
our inversion results. The simulated CO2 concentrations at
47 vertical levels are mapped onto 71 TCCON levels. Fol-

Figure 3. Biases of the simulated CO2 mixing ratios against the
flask measurements at different latitudes (positive–negative biases
represent a modeled concentration greater–less than the observed,
and the different colored lines represent the smoothing of the corre-
sponding marks).

lowing the approach of Wunch et al. (2011), using prior pro-
files and the averaging kernel from the TCCON dataset, we
calculated the modeled XCO2 values at 13 TCCON sites. It
should be noted that comparisons of posterior XCO2 from
GOSAT and OCO-2 inversions with TCCON data are not
fully independent since the TCCON data were used in the
bias-correction scheme of both the GOSAT and OCO-2 prod-
ucts (Wunch et al., 2011). Table 1 also shows the compari-
son of modeled XCO2 with TCCON observations. The mean
difference between prior XCO2 and TCCON retrievals is
1.16 ppm, with a standard deviation of 1.3 ppm. GOSAT in-
version performs the best with the largest reductions of bias
and standard deviation. Though OCO-2 inversion shows im-
provement in the reduction of standard deviation, it gives a
relatively large bias for posterior XCO2. In situ inversion has
the same reduction of standard deviation as GOSAT inver-
sion. Poor-man inversion reduces the bias to 0.49 ppm and
gives slight improvement in reducing the standard deviation
of posterior XCO2.

Figure 4 shows the bias at each TCCON site. Obviously,
the biases at all TCCON sites are positive when using the
prior fluxes, ranging between 0.3 and 2.6 ppm. The biases
at the sites in the northern temperate and boreal areas are
all above 1.5 ppm except for the Lamo site. GOSAT and in
situ inversions significantly reduce the biases at most sites.
However, in the Northern Hemisphere, the biases at those
sites remain relatively large. Since GOSAT and in situ inver-
sions show evident improvement at flask sites in the Northern
Hemisphere, the remaining large biases at TCCON sites may
also be related to the biases of TCCON retrievals (Wunch
et al., 2010; Messerschmidt et al., 2011). OCO-2 and poor-
man inversions show slight improvement in the reduction of
biases at most sites, and rather large biases still remain.

Overall, it could also be found from Table 1 that only in
situ inversion beats the poor-man inversion on all four statis-
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Table 1. Statistics of the model–data mismatch errors at the 52 sur-
face flask sites and the 13 TCCON sites (ppm).

Flask TCCON

Bias SD Bias SD

Prior 0.93 2.30 1.16 1.30
OCO-2 0.33 2.15 0.80 1.08
GOSAT −0.19 2.05 0.22 1.04
In situ −0.03 2.04 0.38 1.04
Poor-man 0.14 2.28 0.49 1.25

Figure 4. The biases between the modeled and observed XCO2 at
the 13 TCCON sites.

tics, followed by GOSAT inversion, which beats the poor-
man on three statistics, indicating that in situ measurements
have the best performance among all inversions and GOSAT
retrievals have a similar performance as in situ data.

4.2 Global carbon budget

Table 2 presents the global carbon budgets in 2015 from the
four inversions. The global land sinks inferred by GOSAT
and OCO-2 XCO2 retrievals are −3.48 and −2.94 PgC yr−1,
respectively, which are both larger than the prior value and
lower than the estimate from the in situ inversion. The dif-
ferences of ocean fluxes among the a priori and two inver-
sions are small since we do not assimilate XCO2 data over
ocean. The global net flux from the poor-man inversion is
inferred from the global annual CO2 growth rate, which rel-
atively accurately represents the net carbon flux added into
atmosphere. It could be found that the global net flux from
GOSAT inversion is the closest to the poor-man inversion es-
timate, while that from the OCO-2 inversion is higher and
the in situ inversion estimate is lower than the poor-man esti-
mate, indicating that GOSAT inversion has the best estimates
for land and ocean carbon uptakes, while those from the in
situ inversion are overestimated and those from the OCO-2
inversion might be underestimated.

Figure 5. Distributions of annual land and ocean carbon fluxes;
(a) prior flux and posterior fluxes based on (b) OCO-2 and
(c) GOSAT data (gC m−2 yr−1).

4.3 Regional carbon flux

Figure 5 shows the distributions of annual land and ocean
carbon fluxes (excluding fossil fuel and biomass burning car-
bon emissions, same thereafter) of the prior and estimates
using GOSAT and OCO-2 data. It could be found that com-
pared with the prior fluxes, the carbon sinks in Central Amer-
ica, southern and northeastern China, eastern and central Eu-
rope, southern Russia, and eastern Brazil are obviously in-
creased in the GOSAT inversion. Except for eastern Brazil,
the land sinks in those areas in the OCO-2 inversion are
also increased but much weaker than those in the GOSAT
inversion; in eastern Brazil, it turns into a significant car-
bon source. In contrast, in eastern and central Canada, north-
ern Russia, northern Europe, the western Indo-China Penin-
sula, the northern Democratic Republic of the Congo, and
western Brazil, carbon sources are significantly increased in
both GOSAT and OCO-2 inversions. In eastern and central
Canada, northern Europe, and western Brazil, there are much
stronger carbon sources in the OCO-2 inversion.

To better investigate the differences between GOSAT and
OCO-2 inversions as well as their differences from the other
two inversions, we aggregate the prior and inferred land
fluxes into 11 TRANSCOM land regions (Gurney et al.,
2002) as shown in Fig. 2. Figure 6 shows aggregated annual
land surface fluxes from the prior and inversions for the 11
land regions. Clearly, in most regions, the land sinks inverted
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Table 2. Global carbon budgets estimated by the OCO-2 and GOSAT inversions in this study and those from the prior fluxes as well as in
situ and poor-man inversions (PgC yr−1).

Prior OCO-2 GOSAT In situ Poor-man

Fossil fuel and industry 9.84 9.84 9.84 9.84 9.84
Biomass burning emissions 2.20 2.20 2.20 2.20 2.20
Land sink −2.50 −2.94 −3.48 −3.63 −3.35
Ocean sink −2.41 −2.44 −2.45 −2.41 −2.41
Global net flux 7.13 6.66 6.11 6.00 6.28

based on GOSAT data are stronger than those inferred from
OCO-2 data, especially in temperate and tropical lands. For
example, in South American temperate, the estimated land
sink based on GOSAT data is about 4 times as large as the
OCO-2 inversions; in North American temperate and tropical
Asia, the carbon sinks of the GOSAT experiment are about
twice those of the OCO-2 inversions, and in South Ameri-
can tropical, the OCO-2 inversion result is a carbon source
of 0.19 PgC yr−1, while GOSAT inversion gives a weak sink
of −0.05 PgC yr−1. The total sinks of the temperate–tropical
lands optimized using GOSAT and OCO-2 XCO2 retrievals
are−2.95/−0.36 and−2.59/−0.20 PgC yr−1, respectively
(Table 3). In northern boreal land, the total carbon sinks in-
verted with GOSAT and OCO-2 data are comparable. How-
ever, the two sets of XCO2 data have opposite performances
in two northern boreal regions. In Eurasian boreal, the in-
verted land sink with GOSAT is stronger than that with OCO-
2, while in North American boreal, it is the opposite.

For different continents (Table 3), for example Asia and
Australia, the carbon sinks inverted from GOSAT and OCO-
2 data are comparable. In North America, South America
and Europe, the land sinks in the GOSAT inversion are
much stronger than those in the OCO-2 inversion. Espe-
cially in South America, the GOSAT inversion result is a
strong carbon sink (−0.51 PgC yr−1), while in the OCO-2
inversion, it is a weak carbon source (0.06 PgC yr−1). Con-
versely, in Africa, the land sink estimated with GOSAT
data is much weaker than that from OCO-2 data, the for-
mer (−0.59 PgC yr−1) being only about half of the latter
(−1.13 PgC yr−1).

Compared with the in situ inversion, in boreal regions, the
land sinks estimated from GOSAT and OCO-2 inversions are
much weaker than those from in situ inversion, especially
in the Eurasian boreal region; the land sink estimated by in
situ inversion is more than 2 times larger than the estimates
of GOSAT and OCO-2 inversions. In tropical land, the to-
tal land sinks inferred from both GOSAT and OCO-2 inver-
sions are weaker than those from the in situ inversion, but
in different regions, the situations are different. In the tem-
perate lands, except for Europe and South Africa (a defined
TRANSCOM region, as shown in Fig. 2), the land sinks from
GOSAT and OCO-2 inversions are much stronger than those
from the in situ inversion. For example, in South American

Figure 6. Aggregated annual land fluxes of the 11 TRANSCOM
land regions.

Table 3. The prior and posterior fluxes on six continents and in
boreal, temperate and tropical lands (PgC yr−1).

Regions Prior OCO-2 GOSAT In situ

North America −0.04 −0.27 −0.45 −0.42
South America −0.25 0.06 −0.51 −0.04
Europe −0.01 −0.40 −0.63 −0.66
Asia −0.76 −0.99 −1.05 −1.16
Africa −1.28 −1.13 −0.58 −1.22
Australia −0.17 −0.22 −0.26 −0.13
Northern boreal land −0.16 −0.16 −0.18 −0.81
Northern temperate land −0.35 −1.37 −1.68 −1.22
Tropical land −1.01 −0.20 −0.36 −0.49
Southern temperate land −0.98 −1.21 −1.28 −1.11

temperate, GOSAT inversion shows a strong carbon sink,
while in situ inversion shows a weak source. For different
continents, for example North America, Asia and Europe, the
carbon sinks inferred from GOSAT inversion are comparable
to those from in situ inversion, while in South America and
Africa, the carbon sinks inferred from OCO-2 inversion are
much closer to the in situ inversion.

Compared with the prior fluxes, the inferred land fluxes
in northern temperate regions have the largest changes, fol-
lowed by those in tropical regions and southern temperate
lands, while in boreal regions, the changes are the small-
est. As shown in Table 4, for different TRANSCOM regions
and different XCO2 used, the changes in carbon fluxes have
large differences. Since the same setup is used in these two
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inversions and the same algorithm is adopted for retrieving
XCO2 from GOSAT and OCO-2 measurements, the differ-
ent impacts of XCO2 data on land sinks may be related to the
spatial coverage and the amount of data in these two XCO2
datasets. As shown in Fig. 1, in different latitude zones, the
spatial coverage and the data amount of GOSAT and OCO-
2 have large differences. Statistics show that the amount of
data is largest in northern temperate land, followed by south-
ern temperate land and tropical land; it is smallest in northern
boreal regions, corresponding to the magnitude of changes
in carbon fluxes in these zones. For one specific zone, the
different impacts of these two XCO2 datasets may also be
related to the data amount. For example, in northern tem-
perate land, GOSAT has more XCO2 data than OCO-2. Ac-
cordingly, the change in carbon flux caused by GOSAT is
larger than that caused by OCO-2. Conversely, in tropical
land, OCO-2 has more data than GOSAT, and as shown be-
fore it has a more significant impact on the land sink. This re-
lationship could also be found in each TRANSCOM region.
Figure 5 gives a relationship between the XCO2 data amount
ratios of GOSAT to OCO-2 and the land sink absolute change
ratios caused by GOSAT to OCO-2 for 11 TRANSCOM land
regions. Obviously, except for North and South Africa, there
is a significant linear correlation (R = 0.95) between these
two ratios, suggesting that with more XCO2 data, the car-
bon flux relative to the prior flux is changed more. In North
Africa, we find that OCO-2 has better spatial coverage and
more data than GOSAT, as shown in Fig. 1. Although the
differences mainly occur in the Sahara where the carbon flux
is very weak but near the equatorial region where the car-
bon flux is large, OCO-2 still has more data than GOSAT. In
South Africa, both XCO2 have good spatial coverage, and the
amount of GOSAT data is about 1.5 times that of OCO-2, but
the changes in the carbon flux caused by GOSAT are about
10 times that of OCO-2. The large ratio of carbon change is
mainly due to the relatively small carbon change from OCO-
2 inversion.

In addition to the data amount, mismatches between the
simulated CO2 concentrations using prior fluxes and satel-
lite retrievals could be used to examine the performances of
OCO-2 and GOSAT retrievals in different regions. Usually,
a large model–data mismatch will impose a strong constraint
on the prior flux in inversions. Therefore, we compare the
mismatches in OCO-2 and GOSAT inversions. The results
are grouped by global land and into the 11 TRANSCOM land
regions, as shown in Table 4. The global land mean differ-
ence between modeled XCO2 and the OCO-2 and GOSAT
retrievals are 0.22 and 0.79 ppm, respectively, indicating that
the GOSAT retrieval would have a stronger constraint on
the prior fluxes. In most TRANSCOM regions except North
Africa, the mismatches in GOSAT inversion are positive and
larger than those of the OCO-2 inversion. In tropical Asia
and the South American tropics, the sizable negative mis-
matches in OCO-2 inversion could account for a weak in-
verted carbon sink and an inverted carbon source in these

Figure 7. Scatter plot for the ratio of GOSAT to OCO-2 XCO2 data
amount versus the ratio of absolute changes in the land sinks caused
by GOSAT to OCO-2 in the 11 TRANSCOM land regions.

two regions, while in North Africa, the negative mismatch
in GOSAT inversion may explain why a rather weak sink is
inverted for this region. The difference of mismatch between
OCO-2 and GOSAT inversions exhibits a rather large spread,
ranging from 0.16 to 1.33 pm, indicating that the biases of the
two satellite XCO2 retrievals differ greatly.

Moreover, the uncertainties of OCO-2 and GOSAT re-
trievals may be another reason for the different performances
in these two inversion experiments. We use the TCCON re-
trieval to evaluate the uncertainties of OCO-2 and GOSAT
XCO2 retrievals. For satellite retrievals falling in the model
grid box in which TCCON sites are located, the closest TC-
CON retrievals in time or within 2 h of satellite overpass time
are chosen for comparison. We follow the procedures in Ap-
pendix A of Wunch et al. (2011) to create both a prior profile
and averaging kernel corrections. Table 5 shows the biases
and standard deviations grouped globally and at 10 TCCON
sites where both OCO-2 and GOSAT retrievals are available
for comparison. The locations of these 10 sites are shown
in Fig. 2. At most sites except Garm, OCO-2 retrievals have
positive biases, while GOSAT retrievals tend to have nega-
tive bias except at the Bial and Garm sites. It also could be
found that the spread of GOSAT data biases are small, falling
in the range of −0.36 to −0.58 ppm at most sites, while the
spread of OCO-2 data biases is relatively large, with biases
greater than 0.7 ppm at more than half of the sites and in
the range of 0.34 to 0.59 ppm only at three sites. Overall,
GOSAT retrievals (−0.46 ppm) have a lower bias than OCO-
2 retrievals (0.6 ppm), and the difference between the two
retrievals is relatively large. It should be noted that due to the
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Table 4. Differences between the inferred and the prior carbon fluxes, the data amount of XCO2, and the deviations between the XCO2
modeled with prior flux and satellite-retrieved XCO2 in different regions.

Region Flux change (PgC yr−1)* XCO2 data amount Deviations (ppm)**

OCO-2 GOSAT OCO-2 GOSAT OCO-2 GOSAT

North American boreal −0.05 0 1143 639 0.6 1.41
North American temperate −0.18 −0.41 2390 3163 0.52 0.93
South American tropical 0.46 0.24 800 421 −0.89 0.43
South American temperate −0.15 −0.5 1711 3500 0.02 0.54
North Africa 0.19 0.39 3208 674 0.12 −0.19
South Africa −0.03 0.3 2057 3060 0.17 0.33
Eurasian boreal 0.05 −0.02 1714 1339 0.47 1.5
Eurasian temperate −0.46 −0.3 5323 4782 0.46 0.82
Tropical Asia 0.17 0.03 726 550 −0.43 0.34
Australia −0.05 −0.1 2011 3110 0.18 0.67
Europe −0.39 −0.63 1604 2106 0.28 1.35

Global land −0.44 −0.98 22687 23344 0.22 0.79
Northern boreal land 0.005 −0.02 2857 1978 0.52 1.47
Northern temperate land −1.03 −1.33 9317 10051 0.45 0.96
Tropical land 0.82 0.66 4734 1645 −0.08 0.13
Southern temperate land −0.234 −0.3 5779 9670 0.11 0.6

* Differences between posterior and prior flux. ** Deviations between the modeled XCO2 with prior flux and satellite-retrieved XCO2.

Table 5. Statistics of the OCO-2 and GOSAT retrieval uncertainties against the TCCON retrievals.

OCO-2 GOSAT

Bias (ppm) SD (ppm) No. of obs. Bias (ppm) SD (ppm) No. of obs.

Bial 0.91 1.47 21 0.06 1.35 29
Darw 0.75 0.85 43 −0.41 1.62 44
Garm −0.10 2.97 14 0.73 2.02 35
Lamo 0.04 1.09 56 −0.91 1.39 82
Laud 0.59 1.38 18 −0.79 1.70 30
Orle 1.49 1.18 24 −0.51 1.38 39
Park 0.50 1.26 29 −0.58 1.52 38
Soda 1.91 1.89 7 −0.54 2.58 9
Tsuk 0.93 1.95 16 −0.47 1.11 38
Woll 0.34 1.07 27 −0.36 1.56 45

All 0.60 1.45 255 −0.42 1.59 389

limited number of collocated satellite retrievals, the real bias
difference might be below 1 ppm. As shown in Table 4, the
difference of overall mismatches between GOSAT and OCO-
2 data is 0.57 ppm. This indicates that although both OCO-2
and GOSAT products were bias-corrected using TCCON re-
trievals, the uncertainties of OCO-2 and GOSAT retrievals
are still very large, especially for the OCO-2 retrieval, result-
ing in a degraded performance of the OCO-2 retrieval, which
also suggests that the bias-correction scheme implemented
may need to be improved.

5 Summary and conclusions

In this study, we use both GOSAT and OCO-2 XCO2 re-
trievals to constrain terrestrial ecosystem carbon fluxes from
1 October 2014 to 31 December 2015 using the GEOS-Chem
4D-Var data assimilation system. In addition, one inversion
using in situ measurements and another inversion as a base-
line are also conducted. The posterior carbon fluxes esti-
mated from these four inversions at both global and regional
scales during 1 January to 31 December 2015 are shown and
discussed. We evaluate the posterior carbon fluxes by com-
paring the posterior CO2 mixing ratios against observations
from 52 surface flask sites and 13 TCCON sites.
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Globally, the terrestrial ecosystem carbon sink (excluding
biomass burning emissions) estimated from GOSAT data is
stronger than that inferred from OCO-2 data and weaker than
that from in situ inversion, but it is closest to the poor-man in-
version estimate. Regionally, in most regions, the land sinks
inferred from GOSAT data are also stronger than those from
OCO-2 data. Compared with the in situ inversion, GOSAT
inversions have weaker sinks in boreal and most tropical
lands and much stronger ones in temperate lands. Compared
with the prior fluxes, the inferred land sinks are largely in-
creased in the temperate regions and decreased in tropical re-
gions. The largest changes in the prior fluxes are in northern
temperate regions, followed by tropical and southern temper-
ate regions, and the weakest are in boreal regions. The differ-
ent impact of XCO2 on the carbon fluxes in different regions
is mainly related to the spatial coverage and the amount of
XCO2 data. Generally, a larger amount of XCO2 data in a
region corresponds to a larger change in the inverted carbon
flux in the same region. The different biases of the two XCO2
retrievals may also give rise to their different inversion per-
formances.

Evaluations of inversions using CO2 concentrations from
flask measurements and TCCON retrievals show that the
simulated CO2 concentrations with GOSAT posterior fluxes
are much closer to the observations than those with OCO-2
estimates. Compared with poor-man inversion, both GOSAT
and in situ inversions show evident improvement, with simi-
lar reductions of both the biases and standard deviations of
posterior concentrations, while OCO-2 inversion only dis-
plays slight improvement over poor-man inversion. Gener-
ally, the posterior biases from GOSAT inversion are signifi-
cantly reduced in the Northern Hemisphere and are slightly
increased in the Southern Hemisphere. This suggests that
GOSAT data can effectively improve carbon flux estimates
in the Northern Hemisphere.

The GOSAT and OCO-2 XCO2 retrievals used in this
study are bias-corrected products. Nevertheless, there are still
apparent biases, and the differences between the data from
these two satellites are obvious. More reliable constraints
on carbon flux call for the further reduction of satellite re-
trieval errors. This indicates that we should interpret the
carbon flux inferred from current satellite XCO2 retrievals
with great caution in understanding the global carbon cy-
cle. It also should be noted that though the OCO-2 XCO2
retrievals of version b7.3 used in this study perform worse
than GOSAT data and in situ measurements in our inversions,
one recent study has shown that the newer version of OCO-2
data has a much better performance in constraining carbon
flux (Chevallier et al., 2019). With constantly improved re-
trieval algorithms and bias-correction schemes, more robust
estimates of carbon flux from satellite XCO2 retrievals could
be achieved.
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