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Abstract. Ozone (O3) is a secondary air pollutant that neg-
atively affects human and ecosystem health. Ozone simu-
lations with regional air quality models suffer from unex-
plained biases over Europe, and uncertainties in the emis-
sions of ozone precursor group nitrogen oxides (NOx =
NO+NO2) contribute to these biases. The goal of this study
is to use NO2 column observations from the Ozone Mon-
itoring Instrument (OMI) satellite sensor to infer top-down
NOx emissions in the regional Weather Research and Fore-
casting model with coupled chemistry (WRF-Chem) and to
evaluate the impact on simulated surface O3 with in situ ob-
servations. We first perform a simulation for July 2015 over
Europe and evaluate its performance against in situ obser-
vations from the AirBase network. The spatial distribution
of mean ozone concentrations is reproduced satisfactorily.
However, the simulated maximum daily 8 h ozone concen-
tration (MDA8 O3) is underestimated (mean bias error of
−14.2 µg m−3), and its spread is too low. We subsequently
derive satellite-constrained surface NOx emissions using a
mass balance approach based on the relative difference be-
tween OMI and WRF-Chem NO2 columns. The method ac-
counts for feedbacks through OH, NO2’s dominant daytime
oxidant. Our optimized European NOx emissions amount to
0.50 Tg N (for July 2015), which is 0.18 Tg N higher than
the bottom-up emissions (which lacked agricultural soil NOx
emissions). Much of the increases occur across Europe, in
regions where agricultural soil NOx emissions dominate.
Our best estimate of soil NOx emissions in July 2015 is
0.1 Tg N, much higher than the bottom-up 0.02 Tg N nat-
ural soil NOx emissions from the Model of Emissions of
Gases and Aerosols from Nature (MEGAN). A simulation

with satellite-updated NOx emissions reduces the system-
atic bias between WRF-Chem and OMI NO2 (slope= 0.98,
r2
= 0.84) and reduces the low bias against independent sur-

face NO2 measurements by 1.1 µg m−3 (−56 %). Following
these NOx emission changes, daytime ozone is strongly af-
fected, since NOx emission changes particularly affect day-
time ozone formation. Monthly averaged simulated daytime
ozone increases by 6.0 µg m−3, and increases of> 10 µg m−3

are seen in regions with large emission increases. With re-
spect to the initial simulation, MDA8 O3 has an improved
spatial distribution, expressed by an increase in r2 from 0.40
to 0.53, and a decrease of the mean bias by 7.4 µg m−3

(48 %). Overall, our results highlight the dependence of sur-
face ozone on its precursor NOx and demonstrate that sim-
ulations of surface ozone benefit from constraining surface
NOx emissions by satellite NO2 column observations.

1 Introduction

Ozone (O3) is an air pollutant that affects human and ecosys-
tem health (Lelieveld et al., 2015; Ainsworth et al., 2012).
It also affects radiative forcing directly as a greenhouse gas
(IPCC, 2013) and indirectly by impacting ecosystem car-
bon uptake via deposition (Sitch et al., 2007). Despite de-
creases in ozone concentrations in Europe starting from 2000
(Chang et al., 2017), peak ozone concentrations still exceed
the World Health Organization (WHO) air quality guide-
line of 100 µg m−3 and the European long-term objective of
120 µg m−3 (EMEP/CCC, 2016). For example, 87 % of Eu-
ropean air quality stations did not meet this long-term objec-
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tive (EEA, 2017) in 2015, and vegetation exposure thresh-
olds were exceeded in large parts of the continent during this
year, particularly in southern and central Europe (Rouïl and
Meleux, 2018).

The formation of ozone in the lower troposphere is a pho-
tochemical process that depends non-linearly on concentra-
tions of its precursor species nitrogen oxides (NOx = NO+
NO2) and volatile organic compounds (VOCs) (e.g., Sillman
et al., 1990). In NOx-limited conditions, ozone production
increases with NOx emissions and is less sensitive to VOC
emissions. However, ozone production under NOx-saturated
conditions increases with VOC emissions but decreases with
increasing NOx emissions. European NOx emissions are
dominated by the anthropogenic contribution from fossil fuel
combustion for transportation, electricity generation and in-
dustry. In summer, there are additional contributions from
soils and lightning, which together comprise 40 % of the to-
tal European NOx emission budget (Jaeglé et al., 2005). Soil
NOx emissions in turn have an anthropogenic component,
since nitrogen-containing fertilizers are partly re-emitted to
the atmosphere as NOx (Steinkamp and Lawrence, 2011).

Anthropogenic emissions in Europe have decreased due to
air pollution abatement measures and the economic crisis that
started in 2008 (Castellanos and Boersma, 2012). Bottom-up
anthropogenic emission inventories suggest a continued re-
duction of NOx emissions in more recent years. This is con-
sistent with the ongoing development of European air qual-
ity conditions towards the NOx-limited regime (Jin et al.,
2017), which is projected to continue in the future (Beek-
mann and Vautard, 2010). Downward anthropogenic emis-
sion trends have also been suggested as an important driver
of the decreasing trend in peak ozone concentrations in Eu-
rope (ETC/ACM, 2016).

Regional air quality (AQ) models are important tools for
studying and forecasting ozone pollution. These models sim-
ulate processes relevant for ozone pollution at a resolution
that can better capture observed spatial gradients compared
to coarser global models. Regional AQ models can there-
fore be applied to simulate polluted conditions in or sur-
rounding urban areas or for air quality impact assessments.
Coupled (or “online”) meteorology–chemistry models re-
solve meteorology, transport, chemical transformation and
removal of pollutants at the same spatial and temporal res-
olution. The coupled treatment of meteorology and chem-
istry is mandatory, because ozone concentrations depend on
feedbacks between meteorological and chemical processes:
(1) O3 sources such as chemical formation depend on ra-
diation, temperature and water vapor (Pusede et al., 2015;
Coates et al., 2016), and (2) O3 sinks, such as dry deposi-
tion, also largely depend on meteorological drivers (Clifton
et al., 2017; Kavassalis and Murphy, 2017). However, cou-
pled regional air quality models are subject to several sources
of uncertainties. These uncertainties are related to the lim-
ited knowledge on ozone precursor emissions (Kuenen et al.,
2014; Pouliot et al., 2015), the representation of boundary

conditions (Giordano et al., 2015), tropospheric chemistry in
the chemical mechanism (Knote et al., 2015) and the land
surface and its feedbacks with tropospheric chemistry (Bak-
lanov et al., 2014).

Many regional AQ models have been applied to simulate
NOx and O3 in European summers, for research and fore-
casting purposes. Models tend to underestimate summertime
NOx compared to rural background in situ observations (Ter-
renoire et al., 2015; Mar et al., 2016). Comparison against
satellite NO2 column observations also revealed underesti-
mations at regional scales (Huijnen et al., 2010; Aidaoui
et al., 2015). Another study found both positive as well as
negative biases, which were attributed to the coarse resolu-
tion of the emission inventories (Pope et al., 2015). AQ mod-
els satisfactorily reproduce the spatial distribution in summer
O3. However, mean O3 can be under- or overestimated de-
pending on the model and chemical mechanism (Terrenoire
et al., 2015; Mar et al., 2016). In addition, many models con-
sistently underestimate peak ozone values that typically oc-
cur in the afternoon (Tuccella et al., 2012; Solazzo et al.,
2012; Marécal et al., 2015; Im et al., 2015). This is prob-
lematic for air pollution impact assessments, since the peak
ozone values are important for determining the detrimental
effects on human health and ecosystems.

The sensitivity of O3 to its precursor NOx , which is par-
ticularly pronounced in summer (e.g., Jin et al., 2017), sug-
gests that there is good potential to improve O3 simula-
tions by constraining simulated NOx with observations. The
past 20 years have seen the development of methods to
estimate NOx emissions with satellite-based NO2 columns
in a mass balance approach, where biases in the model-
simulated and satellite-observed NO2 columns are used to
update NOx emissions. The technique has been applied in
global models (Martin et al., 2003; Lamsal et al., 2008;
Vinken et al., 2014a) and more recently also in regional mod-
els (e.g., Ghude et al., 2013). Applications of the technique
include emission trend analysis (e.g., Lamsal et al., 2011) and
source-specific constraints on NOx emissions (e.g., Ghude
et al., 2013; Vinken et al., 2014a, b; Verstraeten et al., 2015).
Changes in NOx emissions impact tropospheric chemistry,
and therefore changes in O3 are expected. This was shown
by Ghude et al. (2013), who found local changes in surface
O3 mole fractions up to 10 ppb over India after satellite-
based NOx emission scaling. Verstraeten et al. (2015) re-
ported ozone increases up to 8 ppb at 800 hPa (±1.5 km) in
China after scaling local NOx emissions with Ozone Mon-
itoring Instrument (OMI) observations and found that sim-
ulated free-tropospheric ozone between 3 and 9 km was in
better agreement with tropospheric O3 columns observed by
the Tropospheric Emission Sounder (TES). However, ozone
changes at the surface after constraining NOx emissions with
satellite observations have thus far not been evaluated with in
situ data to our knowledge.

Considering the importance of NOx for simulations of
ozone and the previously reported ozone changes after ap-

Atmos. Chem. Phys., 19, 11821–11841, 2019 www.atmos-chem-phys.net/19/11821/2019/



A. J. Visser et al.: OMI-derived NOx emissions: impacts on surface O3 11823

plying satellite-based NOx emissions, we here investigate
the potential improvement in simulated surface ozone con-
centrations over Europe due to the application of satellite
observations of NO2 to adjust NOx emissions. To this end,
we use the Weather Research and Forecasting model with
coupled chemistry (WRF-Chem) (Grell et al., 2005) to simu-
late surface ozone in Europe in July 2015, at the approximate
peak of the ozone season. We first perform a model evalua-
tion with AirBase in situ NO2 and O3 observations (EEA,
2018) and OMI NO2 column measurements from the re-
cently released Quality Assurance for Essential Climate Vari-
ables (QA4ECV) dataset (Boersma et al., 2017a). We subse-
quently derive a new, OMI-based (“top-down”) NOx emis-
sion inventory and evaluate its effects on WRF-Chem simu-
lations of surface NO2 and O3 with the independent AirBase
observations.

The structure of the paper is as follows. We describe the
model setup and observations in Sect. 2. Section 3 presents
the method to calculate OMI-derived NOx emissions. In
Sect. 4, we evaluate a WRF-Chem setup with bottom-up
emissions in situ and column observations, and in Sect. 5
we describe the derived modified surface NOx emissions. We
evaluate the impacts on surface NOx and O3 with indepen-
dent in situ observations in Sect. 6. We conclude with a dis-
cussion (Sect. 7) and summarize our conclusions in Sect. 8.

2 Model and data description

2.1 WRF-Chem

We perform simulations with the coupled meteorology–
chemistry model WRF-Chem, version 3.7.1 (Grell et al.,
2005). The model domain consists of 170 by 170 cells at
20×20 km2 horizontal resolution covering Europe, centered
at 51.98◦ N and 5.66◦ E. Vertically, the domain extends from
the Earth’s surface up to 50 hPa and consists of 27 layers with
13 layers in the lowermost 1500 m. Chemistry simulations of
O3 and its precursor groups (NOx and VOCs) are performed
with the Carbon Bond Mechanism Z (CBM-Z) gas-phase
chemical mechanism (Zaveri and Peters, 1999). Simulations
of atmospheric chemistry with this mechanism compare well
with the European multi-model mean for summer O3 in a
gas-phase mechanism comparison study (Knote et al., 2015).
A complete list of parameterization options adopted in our
WRF-Chem setup can be found in Table S1 of the Supple-
ment. Our simulations were performed with a time stepping
of 180 s for a period of 38 d (24 June–31 July 2015), allowing
a 1-week spin-up to analyze the model output for July. An
evaluation of large-scale meteorological performance with
ERA-Interim reanalysis fields can be found in Sect. S2 of
the Supplement.

We used anthropogenic emissions from the Netherlands
Organisation for Applied Scientific Research – Monitoring
Atmospheric Composition and Climate (TNO-MACC-III)

inventory (Kuenen et al., 2014) for 2011, the most recent
inventory available when the model experiments were per-
formed. TNO-MACC-III contains anthropogenic emissions
for lumped species groups (NOx and VOCs). NOx emissions
were partitioned assuming that 97 % is emitted as NO and
3 % as NO2. VOC emissions were divided over 15 emis-
sion categories in CBM-Z, following the VOC speciation
by Archer-Nicholls et al. (2014). This speciation procedure
is further described in Table S3 of the Supplement. Point-
source emissions were distributed over the five lowermost
model layers following sector-specific emission altitude pro-
files (Bieser et al., 2011).

Biogenic emissions of VOCs and soil NOx were calculated
online with the Model of Emissions of Gases and Aerosols
from Nature (MEGAN) implementation within WRF-Chem
(Guenther et al., 2006, 2012). The domain-total biogenic iso-
prene emissions are 1.82 Tg of isoprene, which is slightly
lower than the 9-year spread of 2–4.5 Tg isoprene for July,
based on an inverse modeling study using OMI HCHO col-
umn measurements for 2005–2013 (Bauwens et al., 2016).
We simulate lightning NOx emissions using a parameteriza-
tion based on cloud-top height (Price and Rind, 1993; Wong
et al., 2013), using a flash rate of 80 mol flash−1 based on a
recent satellite-based estimate (Pickering et al., 2016). Sim-
ulations with higher flash rates of 500 mol flash−1 (Ott et al.,
2010) and 310 mol flash−1 (Miyazaki et al., 2014) resulted in
overestimated upper-tropospheric contributions to the NO2
columns relative to OMI.

Anthropogenic emissions are the dominant NOx source
over Europe in July, with a total monthly emission strength
of 304 Gg N (76 %). Minor contributions are associated with
lightning (81.4 Gg N; 20 %) and soils (15.0 Gg N; 4 %). We
note that especially soil NOx emissions are low compared to
previous studies, in which soils, including agricultural areas,
have been estimated to contribute 40 % to the total European
NOx emission budget (Jaeglé et al., 2005; Ganzeveld et al.,
2010).

Meteorological initial and boundary conditions were
taken from ERA-Interim reanalysis data (Dee et al., 2011).
Chemical boundary conditions for O3, NO, NO2, CO and
peroxyacetyl nitrate (PAN) are taken from the Copernicus
Atmosphere Monitoring Service (CAMS) chemical reanaly-
sis product for Europe (Inness et al., 2015, retrieved at http:
//apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/
(last access: 18 September 2019)). Upper boundary con-
ditions for ozone were prescribed with climatological
values (retrieved at https://www2.acom.ucar.edu/wrf-chem/
wrf-chem-tools-community, last access: 17 Septem-
ber 2019).

2.2 AirBase NO2 and O3 in situ measurements

Surface measurements are taken from the European Air
Quality Data Portal operated by the European Environment
Agency, hereafter referred to as AirBase (EEA, 2018). We
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used all data at rural background stations from the validated
E1a data stream. The large availability of the data allows us
to make a strict selection on data availability. For monthly
averages, we discard stations if data are missing for more
than 24 h. Stations used for the evaluation of monthly aver-
ages at 12:00 UTC may have a maximum data gap of one
data point. This resulted in a final selection of 184–397 sta-
tions, depending on the performance metric (see Table 1). In
our analysis of O3 and NO2, we evaluate monthly time series
and midday (12:00 UTC) concentrations (denoted as [O3]12 h

and [NO2]12 h, respectively). We additionally calculate the
maximum daily 8 h mean ozone concentration (MDA8 O3),
a widely applied metric for O3 health impacts.

2.3 OMI NO2 column measurements

We use tropospheric NO2 columns from OMI aboard
NASA’s Earth Observing System (EOS) Aura mission (Lev-
elt et al., 2006). The polar-orbiting instrument detects radia-
tion backscattered from the Earth’s atmosphere. Retrieval of
tropospheric vertical column densities (VCDs) from space
follows a three-step procedure (Boersma et al., 2018). First,
total slant columns (SCDs; i.e., columns along the average
light path through the atmosphere) are obtained from a spec-
tral fit to the OMI-measured reflectance spectra in the visi-
ble wavelength range using the differential optical absorption
spectroscopy (DOAS) method. Then, the stratospheric con-
tribution component is separated from the total NO2 column
via data assimilation into the TM5 global chemistry trans-
port model (Dirksen et al., 2011). The final step is to obtain
tropospheric VCDs by dividing the SCDs by a tropospheric
air mass factor (AMF) that describes the vertical sensitivity
of the instrument to atmospheric NO2 (Eskes and Boersma,
2003). This is a function of satellite viewing geometry, sur-
face albedo, terrain height, cloud properties and a priori NO2
profile.

The recent EU FP7 QA4ECV project has led to the devel-
opment of a new OMI NO2 data product (Boersma et al.,
2017a). The underlying consortium retrieval algorithm is
based on the NO2 column retrieval principles described in
Boersma et al. (2007) but with improvements in the three
aforementioned steps (Boersma et al., 2018). Zara et al.
(2018) described how better wavelength calibration and in-
clusion of liquid water absorption and an intensity offset cor-
rection reduced uncertainties in NO2 SCDs to 0.7− 0.8×
1015 molec. cm−2 (up to ±35 %). Lorente et al. (2017) im-
proved the AMF calculation method via the extension of the
AMF look-up table with more reference points and a cor-
rection for the sphericity of the atmosphere. The ancillary
data for the AMF calculation have also improved relative
to earlier algorithms such as DOMINO v2 (Boersma et al.,
2011): surface albedo from the 5-year OMI albedo climatol-
ogy (Kleipool et al., 2008), cloud information from the im-
proved OMI O2–O2 algorithm (Veefkind et al., 2016) and
a priori NO2 profiles from TM5-MP at 1◦× 1◦ (Williams

et al., 2017). The study by Lorente et al. (2017) also showed
that substantial differences between AMFs arise when dif-
ferent a priori NO2 profiles (as well as surface albedo and
cloud properties) are used in the retrieval. This underlines
that a recalculation of the tropospheric AMFs based on sim-
ulated WRF-Chem NO2 profiles at 20× 20 km2, replacing
the coarse TM5-MP 1◦× 1◦ NO2 profiles, may help to re-
duce model–satellite differences (Lamsal et al., 2010; Vinken
et al., 2014b), and we will explore this further below.

2.4 AMF recalculation

We take care to remove inconsistencies in the model–satellite
comparison introduced by different assumptions about the
vertical NO2 profile in the satellite product compared to the
model. The AMF calculation requires assumptions about the
vertical profile of NO2 to convert slant columns into vertical
columns. We replace the a priori TM5-MP NO2 profiles (at
1◦× 1◦) by WRF-Chem NO2 profiles at a 20× 20 km2 reso-
lution. This has two advantages: (1) model–satellite compar-
isons are no longer affected by differences in model assump-
tions between WRF-Chem and TM5-MP that lead to differ-
ent vertical NO2 profiles, and (2) the higher-resolution WRF-
Chem setup resolves spatial gradients in the a priori profile
that are not appropriately captured in TM5-MP due to the
coarser model resolution. Single-orbit results indicate that re-
calculation of the AMFs leads to retrieved columns that are
1× 1015 molec. cm−2 higher in densely populated areas and
lower or unaffected in surrounding non-urban regions. This
effect has been seen before in earlier studies (Huijnen et al.,
2010; Heckel et al., 2011; Russell et al., 2011; Maasakkers,
2013; Vinken et al., 2014b).

We apply the method described by Lamsal et al. (2010)
and Boersma et al. (2016) to replace the TM5-MP vertical
NO2 profile by the WRF-Chem profile in the calculation of
the AMF:

Mtrop,WC =Mtrop,TM5×

∑L
l=1Atrop,lxl,WC∑L

l=1xl,WC
, (1)

where Mtrop is the tropospheric AMF based on an assumed
profile from WRF-Chem (WC) or TM5, Atrop,l is the tropo-
spheric averaging kernel element for layer l, xl,WRF−Chem is
the NO2 column density in model layer l, and L is the up-
permost TM5-MP layer in the troposphere. The tropospheric
averaging kernel in Eq. (1) is defined as follows (Boersma
et al., 2017b): Atrop = A×

M
Mtrop

, where M and Mtrop refer
to the AMF and the tropospheric AMF, respectively. Note
that the WRF-Chem vertical NO2 profile has been sampled
at the TM5-MP vertical layer structure, so l refers to TM5-
MP model layers.
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Table 1. Performance statistics of WRF-Chem bottom-up and top-down simulations for July 2015 for several conventionally applied perfor-
mance metrics (mean bias error (MBE), RMSE, slope and intercept of a linear regression fit of simulations against observations, and r2 from

orthogonal distance regression), as well as the index of agreement (d = 1−
∑N
i=1(Pi−Oi )

2∑N
i=1(|P

′
i |+|O

′
i |)

2 ; Willmott, 1982), where Pi and Oi represent

simulations and observations, respectively. MBE, RMSE and intercept are in units of µg m−3; slope, r2 and d are unitless.

Bottom-up Top-down

n MBE RMSE Slope Intercept r2 d MBE RMSE Slope Intercept r2 d

[O3] 289 −2.37 2.50 0.26 54.27 0.32 0.60 2.18 17.03 0.34 53.23 0.41 0.68

[O3]
12h 397 −15.07 24.68 0.33 51.63 0.43 0.63 −7.56 19.09 0.41 51.13 0.58 0.74

MDA8 O3 289 −14.24 24.79 0.28 55.98 0.40 0.61 −7.38 19.99 0.36 55.72 0.53 0.70
[NO2] 184 −2.49 3.86 0.73 −0.28 0.42 0.70 −1.09 3.09 0.89 −0.12 0.46 0.80

[NO2]
12 h 250 −2.96 3.56 0.30 −0.03 0.25 0.51 −2.59 3.28 0.33 0.04 0.23 0.53

3 Top-down NOx emissions: methods

Satellite-detected NO2 columns are sensitive to NOx emis-
sions at the surface. We exploit this dependence to derive
satellite-based surface NOx emissions using local OMI NO2
columns. We apply an improved version of the mass balance
procedure (Martin et al., 2003; Lamsal et al., 2011; Vinken
et al., 2014b), which accounts for non-linear feedback from
NOx emission changes on NO2 concentrations via OH:

Etd = Ebu

(
1+β(1+ γ )

COMI,bu−CWC,bu

CWC,bu

)
, (2)

where Ebu and Etd represent NOx emissions from the
bottom-up inventory (bu) and the satellite-based top-down
estimate (td), respectively. CWC,bu represents the monthly
averaged NO2 vertical column density (VCD) simulated by
WRF-Chem, and COMI,bu is the monthly averaged modified
QA4ECV OMI NO2 VCD using air mass factors based on
the original WRF-Chem NO2 vertical profile (CWC,bu; see
Sect. 2.4). WRF-Chem NO2 VCDs are co-sampled with valid
OMI observations. We only use OMI and WRF-Chem data
for pixels with valid satellite observations for at least 4 d in
July 2015 to minimize the random error in the satellite re-
trieval.

We account for the non-linear NOx-OH chemistry feed-
back via a dimensionless scaling factor β, for which we per-
formed a perturbation simulation with surface emissions in-
creased by 20 %:

β =
1Ebu,1.2/Ebu

1Cbu,1.2/Cbu
=

0.2Cbu

1Cbu,1.2
, (3)

where Cbu are the NO2 columns after a WRF-Chem simu-
lation with bottom-up NOx emissions, and 1Cbu,1.2 is the
change in NO2 columns after perturbing bottom-up NOx
emissions by +20 %. In low-NOx environments, this pertur-
bation leads to higher OH levels and thus to more efficient
NOx loss to HNO3, so that a β > 1 is needed to achieve
column agreement. In NOx-rich environments, however, OH

levels are suppressed by enhanced NOx emissions so that the
relative increase in NO2 columns is larger than 20 %, result-
ing in a β < 1. The use of β to account for the sensitivity of
the NO2 column to local emissions is essentially a lineariza-
tion step of non-linear effects due to chemistry.

Application of Eqs. (2) and (3) would lead to updated
NOx emissions and consequently also to modifications in
the WRF-Chem NO2 profile shapes in response to the up-
dates (e.g., Vinken et al., 2014b). This is accounted for via
γ , which we also obtain from the simulation with+20 % per-
turbed emissions:

γ =
(COMI,1.2−COMI,bu)/COMI,bu

(CWC,1.2−CWC,bu)/CWC,bu
, (4)

where CWC represents the WRF-Chem NO2 vertical column
density (VCD), and COMI represents the OMI NO2 VCD
retrieved using WRF-Chem NO2 vertical profiles from the
bottom-up simulation (CWC), for the bottom-up (subscript
bu) and emission perturbation simulation (subscript 1.2), re-
spectively. Our approach to calculate γ differs from Vinken
et al. (2014b), who derived γ from a separate simulation af-
ter accounting for β. Our approach requires one less forward
simulation and is thus computationally more efficient, with
little impact (< 3 %) on total derived emissions compared to
the approach by Vinken et al. (2014b).

We calculate the scaling factors β and γ for all land-
based and shipping lane WRF-Chem cells based on monthly
mean NO2 columns (i.e., ocean-based pixels with emissions
above a threshold value of 1 mol km−2 h−1). These pixels
thus also include shipping lanes and offshore oil platforms.
OMI-inferred emission changes are calculated locally, i.e.,
for each individual model cell for which the aforementioned
data availability criteria are fulfilled. This differs from pre-
vious work where these factors were calculated for regions
containing multiple model cells (Vinken et al., 2014a, b) or
for individual pixels in global models with a coarse resolu-
tion (e.g., Lamsal et al., 2011).

We discard the effect of transport of NO2 away from the
source region (“smearing”). In July, solar intensity in Europe
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is close to its annual peak, which means that the NO2 lifetime
is short due to efficient oxidation. Therefore, the clear-sky
monthly mean NO2 column difference between model and
satellite is indicative of local NOx emission updates. Pre-
vious studies showed that this method reduces the model–
satellite NO2 column difference but does not resolve it com-
pletely (e.g., Vinken et al., 2014b; Ghude et al., 2013) as a
result of the linearization that is applied in the perturbation
calculation. Nonetheless, we will show in this study that the
systematic bias between WRF-Chem and OMI NO2 columns
is largely removed after application of Eqs. (2)–(4).

4 Bottom-up model evaluation

4.1 Surface O3

We start our evaluation of O3 chemistry in WRF-Chem (with
bottom-up NOx emissions, i.e., not yet based on the OMI-
inferred NOx emissions) by a comparison of monthly aver-
aged 24 h mean surface ozone simulations with AirBase ob-
servations (Fig. 1a and b; Table 1). WRF-Chem reproduces
the spatial distribution of surface ozone satisfactorily, with
an increase in surface O3 concentrations from north to south,
as reported elsewhere (e.g., Mar et al., 2016). Highest con-
centrations are found around the Mediterranean basin. O3
concentrations over central and southern Europe are under-
estimated in WRF-Chem. Simulated monthly averaged con-
centrations do not exceed 110 µg m−3, while higher concen-
trations were observed at several stations in the southern part
of the domain. Most notably, WRF-Chem does not capture
observed high concentrations of ±130 µg m−3 in northern
Italy. The good agreement between WRF-Chem and in situ
data in the western part of the domain close to the model
boundaries with a prevailing westerly circulation indicates
that the model boundary conditions describe inflow of long-
lived compounds such as O3 from the western boundary well.

Monthly averaged ozone concentrations are an important
and widely used metric to evaluate model skill but are not
necessarily indicative of the peak ozone concentrations that
typically occur in the afternoon. These monthly averages in-
clude the nocturnal conditions with generally the presence of
stable boundary layers, in which the titration of ozone in the
NOx-saturated regions is difficult to model (e.g., Im et al.,
2015). The simulated and observed monthly averaged ozone
concentrations at 12:00 UTC (Fig. 1c, d) demonstrate a sim-
ilar geographical distribution compared to the monthly aver-
age but with higher values because photochemical ozone pro-
duction generally peaks during daytime. This figure demon-
strates that peak ozone values occur around the Mediter-
ranean basin, most prominently in northern Italy and Spain,
where the levels of sunlight and ozone precursor concentra-
tions are high. WRF-Chem shows elevated ozone with re-
spect to adjacent areas, but maximum simulated ozone lev-
els do not exceed 120 µg m−3. This underestimation of peak

Figure 1. Monthly averaged surface O3 and simulated by WRF-
Chem with bottom-up NOx emissions (a, c) and observed at Air-
Base stations (b, d). Panels (a) and (b) are monthly averages,
and (b) and (d) are sampled at 12:00 UTC.

ozone concentrations is also apparent from in Fig. 8b (dis-
cussed in more detail in Sect. 6), which shows the simulated
versus the observed 12:00 UTC ozone concentrations.

Our results are in agreement with previous regional chem-
istry model evaluations for Europe. Such studies typically
focus on seasonal variability; we compare our results with
the results for European summer (JJA) from those stud-
ies. Im et al. (2015) found that a model ensemble under-
estimates the daytime maximum O3 concentration for sites
where observed O3 concentrations exceed 120–140 µg m−3,
which agrees with our results. In that study, the ensemble
mean model bias tends to become more negative for observed
concentrations above 80 µg m−3 (Im et al., 2015). The two
ensemble members that use CBM-Z chemistry, similar to
our WRF-Chem model setup, are qualitatively in line with
the ensemble mean, lending support to the use of CBM-Z in
this study. Mar et al. (2016) compared two chemical mech-
anisms in a WRF-Chem evaluation study over Europe and
reported large differences in the representation of peak sum-
mer (JJA) ozone: one chemistry model (MOZART) overes-
timates mean and MDA8 ozone, while simulations with the
other chemistry scheme (RADM2) shows underestimations
of peak ozone that are in line with our findings. We will
discuss the dependence of ozone simulation on the chem-
ical mechanism choice in detail in Sect. 7. The ensemble
model mean daytime ozone concentration in Solazzo et al.
(2012) is underestimated by 10–30 µg m−3 in four subre-
gions of the European continent. Tuccella et al. (2012) ana-
lyzed WRF-Chem O3 concentrations for 2007 and found that
yearly averaged midday ozone is underestimated by approx-
imately 10 µg m−3. The model performance in the aforemen-
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Figure 2. As Fig. 1 but for NO2.

tioned studies is qualitatively similar to our findings and the
magnitude compares well. Overall, most studies consistently
show underestimated daytime O3, regardless of the chemical
mechanism, model resolution and other model assumptions.
To further explore the potential role of a model misrepre-
sentation of NO2 concentrations in explaining this model O3
bias, the next sections will focus on a model comparison with
in situ and remote sensing data for NO2.

4.2 Surface NO2

Figure 2a and b present a comparison of monthly averaged
surface concentrations of NO2 between WRF-Chem and Air-
Base (note the logarithmic scale). Performance statistics are
shown in Table 1. We find that WRF-Chem reproduces the
spatial distribution well, with peak NO2 occurring in north-
west Europe and northern Italy. In these regions with high
NOx emissions, average WRF-Chem-simulated concentra-
tions are however underestimated by up to 10 µg m−3 com-
pared to observations. AirBase concentrations show a region
with elevated NO2 concentrations in southwest Germany.
WRF-Chem also shows elevated NO2 concentrations in this
region but does not reach such elevated concentrations. Over-
all, WRF-Chem shows more spatial heterogeneity in surface
NO2 concentrations than is apparent from the observations.
Observed NO2 concentrations in background areas in Spain,
France and eastern Europe are 2–5 µg m−3 or higher, while
the model consistently simulates values < 2 µg m−3 in these
regions. This overall underestimation is also seen in Fig. 8,
where the simulated daily mean NO2 concentration is shown
against AirBase observations. The model performance of our
WRF-Chem setup is in line with previous WRF-Chem stud-
ies. Mar et al. (2016) found small overestimations (0.67–
2.96 µg m−3) in mean NO2. Another study found an annual

Figure 3. Change in monthly averaged OMI-retrieved NO2
columns after using WRF-Chem vertical NO2 profiles to calculate
the air mass factors (AMFs) in the OMI retrieval, as described in
Sect. 2.4.

average mean bias of −0.9 µg m−3, caused by underestima-
tions of peak NO2 in WRF-Chem (Tuccella et al., 2012).

A comparison between WRF-Chem and AirBase monthly
averaged 12:00 UTC NO2 concentrations is presented in
Fig. 2c and d and Table 1. We find that WRF-Chem on aver-
age strongly underestimates midday NO2 concentrations by
2.96 µg m−3 (38.5 %).

4.3 NO2 VCD

Before we perform a comparison between NO2 VCDs from
WRF-Chem and OMI, we first discuss the effect of the NO2
profile shape on the OMI-retrieved columns. Figure 3 shows
the change in the monthly averaged OMI NO2 column den-
sity after replacing TM5-MP NO2 profiles by WRF-Chem
profiles using the procedure described in Sect. 2.4. The OMI
NO2 VCDs change most prominently over urban/industrial
areas such as the Netherlands, Paris, Berlin, Madrid, Mi-
lan and Rome. The background areas are largely unaffected
or show small (±0.2× 1015 molec. cm−2) NO2 VCD in-
creases (e.g., Spain) or decreases (regions in France, Ger-
many, Poland, Ukraine and Romania). The vertical NO2 pro-
file over sea regions in western Europe strongly peaks at the
surface, because shipping NOx in WRF-Chem is emitted in
the lowermost model layer. Overall, the average NO2 column
change over non-land regions is small (< 2 %).

We subsequently compare WRF-Chem to this modified
OMI product. The monthly averaged NO2 vertical column
densities from WRF-Chem and OMI are displayed in Fig. 4.
The model is sampled at 12:00 UTC, close to the OMI over-
pass time of ± 13:30 LT, and is co-sampled with valid satel-
lite observations. There is good agreement in the spatial
distribution of monthly averaged NO2 VCDs (r2

= 0.68).
NO2 columns are underestimated by 0.3×1015 molec. cm−2

on average, with strong underestimations of up to 2×
1015 molec. cm−2 in urban and industrial northwestern Eu-
rope. WRF-Chem overestimates NO2 columns in some iso-
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Figure 4. Monthly averaged tropospheric NO2 vertical column densities from (a) WRF-Chem with bottom-up NOx emissions, (b) OMI and
(c) their difference (WRF-Chem – OMI). WRF-Chem NO2 columns have been co-sampled with OMI, and pixels are shown when nobs ≥ 4.

Figure 5. Surface NOx emissions for (a) the bottom-up simulation (TNO-MACC-III anthropogenic plus MEGAN soil NOx emissions) and
(b) the top-down simulation; panel (c) depicts the change in surface NOx emissions after the recalculation procedure.

lated urban areas with high NOx emissions such as London,
Madrid, Rome and in parts of eastern Europe.

We note that Fig. 4 shows small underestimations of
the simulated NO2 VCD compared to OMI (±0.2×
1015 molec. cm−2) in background regions (e.g., the Alps, ru-
ral Spain and France, Scandinavia) and over the oceans. Sim-
ulated NO2 columns therefore show stronger spatial gra-
dients than OMI-retrieved columns, which is in line with
Huijnen et al. (2010). Other distinct underestimations in
the simulated NO2 columns compared to OMI indicate a
misrepresentation of emissions. For example, the simulated
NO2 column in northwestern Spain is underestimated by
2×1015 molec. cm−2 compared to OMI. The enhanced NO2
columns in this region mainly reflect the contribution to at-
mospheric NOx by power plant emissions. Although emis-
sions from power plants should have decreased in recent
years in this region (Zhou et al., 2012), these emissions seem
to be underestimated in WRF-Chem. However, since these
results are only representative of July 2015, a more dedicated
analysis is needed to further corroborate this hypothesis.

We have shown that our WRF-Chem setup with bottom-up
emissions underestimates NO2 with respect to both surface
and column measurements. To combine these model com-
parisons against different data sources, we already discuss

parts of Fig. 9, which compares the agreement between sim-
ulations with bottom-up and top-down emissions. Figure 9a
shows the relative difference of WRF-Chem against AirBase
and OMI NO2 binned as a function of bottom-up anthro-
pogenic emission strength. This shows an overall underesti-
mation of WRF-Chem at the surface and in the troposphere,
except for regions with strongest emissions. There is a rel-
atively larger model underestimation of surface NO2 than
of the NO2 VCD in regions with comparatively low emis-
sions. Given that the surface NO2 mixing ratios are more
sensitive to surface emissions than the NO2 column (Li and
Wang, 2019), this suggests that emissions are generally too
low in WRF-Chem, but especially that emissions in rural
background regions are underestimated. This, in turn, sug-
gests that the representation of surface NOx emissions in
WRF-Chem (anthropogenic emissions for 2011 and online
calculated natural soil emissions) are too low to explain the
observations in July 2015. In the following section, we will
derive satellite-constrained NOx emissions and discuss po-
tential reasons for this mismatch.
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5 Satellite-derived NOx emissions

5.1 Top-down emissions

We derive top-down NOx emissions using the method de-
scribed in Sect. 3. Figure 5 shows the July total bottom-up
and top-down surface NOx emissions and their difference.
Top-down NOx emissions amount to 498 Gg N, which is
56 % higher than the bottom-up inventory, and increases oc-
cur across the domain (Fig. 5c). NOx emissions are reduced
in several isolated grid cells that generally correspond to ur-
ban areas. The difference between top-down and bottom-
up emissions is larger than the 16 % increase reported by
Miyazaki et al. (2017), although that study found strong
(40 %–67 %) local increases in areas with high NOx emis-
sions such as Belgium, western Germany and northern Italy.

Our top-down emissions are much higher than the bottom-
up emissions over Germany and Poland. Over Belgium
and the Netherlands, the difference between top-down and
bottom-up emissions is also substantial but notably smaller
despite larger differences between OMI and WRF-Chem
NO2 columns over the low countries (Fig. 4c). This reflects
the chemical regime with very high bottom-up NOx emis-
sions in this region, resulting in suppressed midday OH con-
centrations and consequently longer NO2 lifetimes (as diag-
nosed by low beta values over northwestern Europe in Fig. S1
of the Supplement).

We subsequently replace bottom-up emissions with our
observation-constrained top-down NOx emissions and per-
form a new WRF-Chem simulation. As expected, the new
NO2 columns agree much better with the OMI NO2 columns
than those from the simulation with bottom-up emissions
(Fig. 6). WRF-Chem with bottom-up emissions generally un-
derestimates OMI NO2 columns by 23.4 %. As expected, the
simulations with the top-down emissions agree better with
OMI, and the slope of 0.98 between the new WRF-Chem
and OMI NO2 columns (Fig. 6b) suggests that the system-
atic underestimation in the model is effectively resolved by
applying the top-down emissions. The mean relative error is
reduced to−7.5 %, and the spatial correlation coefficient be-
tween WRF-Chem and OMI NO2 also improves consider-
ably (from 0.68 to 0.84).

5.2 Attribution to emission sources

Figure 7 shows the bottom-up and top-down NOx emis-
sions as a function of the bottom-up anthropogenic emission
strength. This comparison demonstrates that top-down NOx
emissions are higher than bottom-up emissions regardless
of the emission strength. However, top-down emissions are
50 %–100 % higher than bottom-up estimates for relatively
weak emissions between 0.5 and 50 Mg N month−1 cell−1

and only up to 20 % higher for some urban and industrial
hotspots (Fig. 7b). This 0.5–50 Mg N month−1 range is dom-
inated by WRF-Chem grid cells located in the rural areas

Figure 6. NO2 vertical column density scatter plots of WRF-Chem
against OMI, presented as a heat map with a bin size of 0.25×
1015 molec. cm−2 for WRF-Chem with bottom-up emissions (a)
and WRF-Chem with OMI-derived top-down surface NOx emis-
sions (b). The OMI NO2 VCDs in panels (a) and (b) are calcu-
lated with AMFs based on NO2 vertical profiles of the WRF-Chem
simulations against which they are compared, to ensure a consistent
model–satellite comparison. The solid black lines represent the 1 : 1
line, and the dashed lines display the orthogonal distance regression
fits.

of Europe, excluding the largest urban agglomerations as
well as low-emission regions such as mountainous areas. Our
substantially larger top-down emissions partly reflect a re-
quired increase in NOx emissions in areas where soil NO
emissions are expected to be a dominant NOx source. Soil
NO emissions are simulated in WRF-Chem using an imple-
mentation of the MEGAN biogenic emission model. The ob-
served discrepancy between the WRF-Chem-simulated and
OMI-observed NO2 VCD triggers to assess how much of this
discrepancy can be attributed to this model’s representation
of soil NO emissions.

To separate the soil NOx contribution from the anthro-
pogenic emission updates, we perform a simple budget cal-
culation as a first-order constraint on the partitioning of the
top-down emissions between their anthropogenic and soil-
based sources. We assume that the relative difference in an-
thropogenic sources is uniform over the emission bins in
Fig. 7. This factor is calculated as the median of the rel-
ative change in emissions for the three highest bins (>
50 Mg N cell−1 for July; see Fig. 7) and amounts to 0.22. This
allows us to attribute the remaining emission difference to
soils. Based on this crude first estimate, we derive top-down
soil NOx emissions to be 112 Gg N month−1 versus WRF-
Chem-/MEGAN-simulated bottom-up soil NO emissions of
only 15 Gg N month−1. The anthropogenic enhancement fac-
tor is relatively uncertain but does not strongly impact our de-
rived posterior soil NOx emission estimate: if, instead of the
median (m= 0.22), we use the mean relative change in emis-
sions for the three highest bins (µ= 0.41), our soil contri-
bution is still a factor > 4 larger (69.0 Gg N month−1) com-
pared to WRF-Chem’s simulated bottom-up soil NO source.
Therefore, this first-order estimation suggests that a substan-
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Figure 7. Difference between bottom-up and top-down surface
NOx emissions, expressed as (a) a bar plot (note the logarithmic
scale) of median emissions binned by bottom-up anthropogenic
NOx emissions (error bars indicate the interquartile range) and (b)
a bar plot of relative emission differences

(
posterior−prior

prior

)
be-

tween the bars in panel (a). In panel (b), we define the rela-
tive anthropogenic emission difference to be the median of the
relative change between top-down and bottom-up emissions in
anthropogenic-dominated regions (shaded, with bottom-up emis-
sions > 50 Mg N month−1 cell−1.

tial fraction (43 %–69 %) of the NOx emission increment af-
ter optimization can be attributed to soils.

To evaluate the derived total soil NOx emissions, we per-
form a comparison with literature-based estimates in Table 2.
We find that bottom-up soil NOx emissions are underesti-
mated by a factor of 5–7 compared to previous studies. In
some of those studies (e.g., Ganzeveld et al., 2010), land
use management practices (fertilizer and manure application)
provide a substantial contribution to European soil NO emis-
sions, a feature that appears to be missing in the represen-
tation of soil NO emissions in WRF-Chem. This supports
our hypothesis that a substantial fraction of the increase in
surface NOx emissions may be attributed to soils. We will
discuss this further in Sect. 7.

6 Emission scaling impacts on surface NO2 and O3

6.1 Nitrogen dioxide

Table 1 summarizes the model performance of our bottom-
up and top-down WRF-Chem simulations against a large
number of AirBase NO2 observations throughout Europe

Figure 8. Scatter plots of monthly averaged simulated concentra-
tions of (a) NO2 and (b) O3 against AirBase observations. Panel
(a) shows monthly averages for 00:00–23:00 UTC, while panel
(b) is sampled at 12:00 UTC. The black solid lines represent the
1 : 1 line.

in July 2015. The simulation with top-down emissions im-
proves upon the a priori run in all metrics. Most notably,
the model index of agreement (d) improves by 0.10 (14 %).
The modified model setup still slightly underestimates the
monthly averaged observed NO2 observations, as indicated
by a slope of 0.89. However, the low bias in WRF-Chem sur-
face NO2 concentrations with respect to AirBase improves
from −2.5 to −1.1 µg m−3.

Compared to the monthly average, we find little im-
provement in WRF-Chem’s skill to predict surface NO2 at
12:00 UTC. The model’s low bias in NO2 reduces from−3.0
to−2.6 µg m−3 and the index of agreement improves by only
0.02 (4 %). This more modest improvement in performance
can be understood from midday surface NO2 concentrations
being more strongly driven by photochemical removal pro-
cesses and boundary layer development than the 24 h mean
NO2 levels, which are more sensitive to NOx emissions due
to strongly reduced mixing and photochemistry at night. Fig-
ure 8 displays WRF-Chem monthly 24 h mean NO2 con-
centrations against AirBase observations for the bottom-up
(black) and top-down (red) simulations. The model orthogo-
nal distance regression (ODR) slope improves considerably,
while the explained variance of the model improves slightly
to 0.46.

Figure 9 shows the relative biases between WRF-Chem
and observed NO2 as a function of (binned) bottom-up an-
thropogenic NO emission strength. Both the WRF-Chem
simulations with bottom-up emissions (Fig. 9a) as well as
the simulation with top-down emissions (Fig. 9b) show a low
bias against OMI and AirBase for regions with low emissions
and a positive relative bias in regions with stronger emis-
sions. The relative bias is however considerably reduced in
the simulation with top-down NOx emissions, both at the sur-
face and in the column. However, WRF-Chem still displays
a stronger relative bias compared to AirBase than compared
to OMI. This feature can likely be attributed to a difference
in spatial scales between the 20× 20 km2 resolution model
and the footprint area of local AirBase measurements, which
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Table 2. Comparison of WRF-Chem surface NOx emissions in July (in Tg N month−1, unless indicated otherwise) with literature-reported
values.

Year Region Surface Anthropogenic Soils Soils (%)

This study, bottom-up 2015 Maps in this study 0.32 0.30 0.015 4.7

This study, top-down, after 2015 Maps in this study 0.50 0.39–0.43 0.07–0.11 14–22
bias attribution (see Sect. 5.2)

Stohl et al. (1996) 1994 34.9–72.1◦ N, −24.6–41.9◦ E – – – 17.6∗

Ganzeveld et al. (2010) 2000 34–64◦ N, −16–41◦ E – – 0.14 –
Jaeglé et al. (2005) 2000 35–60◦ N, −15–45◦ E 0.59 0.35 0.25 42.3
Miyazaki et al. (2017) 2005–2014 35–60◦ N, −10–30◦ E 0.33–0.38 – – –
Dammers (2013) 2005–2007 35–70◦ N, −15–35◦ E – – 0.09 –

Lathière et al. (2005) referenced 1983–1995 −15–35◦ E, 35–70◦ N – – 0.13 –
in Dammers (2013)

∗ This estimate is based on summer (JJA) estimates.

Figure 9. Relative bias
(

RB= model−observations
observations

)
of WRF-Chem

against land-based OMI NO2 vertical column densities (box plots)
and AirBase in situ NO2 measurements (green scatter), binned by
bottom-up anthropogenic NO emission strength, for the bottom-
up (a) and top-down (b) WRF-Chem simulations. Green diamonds
indicate the median WRF-Chem RB against AirBase observations
for pixels within every emissions bin.

can be easily influenced by a nearby NOx source that is less
well captured in the model, due to instantaneous mixing over
a larger volume. Another potential explanation for lower rel-
ative bias of WRF-Chem compared to AirBase than com-
pared to OMI is interference of in situ measurements with
molybdenum converters (see Sect. 2.2). This is in line with
our previous finding that the slope of the top-down NO2 col-
umn regression fit approaches 1, while the slope of the fit
for in situ NO2 observations is still below 1. We also note
that the spread in the relative bias compared to AirBase in-
creased for the top-down simulation, with more positive rela-
tive bias values for all bins. Nonetheless, the results shown in
Fig. 9 provide confidence regarding application of the model
as a tool to reconcile local-scale bottom-up emissions and
concentrations with larger-scale remote-sensing-based NO2
measurements.

6.2 Ozone

Next, we address our main question whether the improved
simulation of NO2 leads to better model performance for sur-
face ozone simulations. We find that WRF-Chem with top-
down emissions improves upon the bottom-up simulation for
both the 24 h mean, as well as the 12:00 UTC and MDA8
ozone metrics. The model index of agreement improves by
0.08–0.11 (13 %–17 %; Table 1). However, the top-down
model still simulates too-low surface O3, especially over
southern, eastern and central Europe, where observed surface
O3 exceeds 80 µg m−3 at 12:00 UTC (see Fig. 11).

A comparison between monthly averaged midday O3 con-
centrations from the bottom-up and top-down simulations
(Fig. 11a and b, respectively) shows that ozone increases
across the model domain. This particularly improves the
WRF-Chem–AirBase agreement in large parts of western
and central Europe. The simulated ozone values in northern
Italy remain underestimated.

Surface ozone concentrations display a strong increase due
to the use of top-down NOx emissions (Fig. 11). The areas
where ozone concentrations increase by> 10 µg m−3 largely
coincide with regions where top-down NOx emissions are
much higher than the bottom-up emissions (Fig. 5c), such as
in northern Spain, southern Germany, southern Poland, Croa-
tia, Serbia, western Greece and southern Romania. There are
also strong simulated ozone increases in central France and
over the Adriatic Sea. These regions are all characterized as
(rural) background areas, where ozone formation is strongly
sensitive to the increases introduced in the NOx emissions for
the relatively low bottom-up anthropogenic and soil emis-
sions. We find decreases in ozone around the main ship-
ping lanes, where the higher NOx emissions further enhance
ozone titration. The enhanced titration also reduced simu-
lated surface ozone around urban regions such as Barcelona,
Rome and Paris. The increases in surface NOx emissions in
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Figure 10. July 2015 monthly median diurnal ozone concentrations for six representative regions in Europe, as simulated by WRF-Chem
with bottom-up NOx emissions (green line) and top-down NOx emissions (red line), and as observed at AirBase stations in these regions.
Shaded areas and whiskers indicate the interquartile range. Results represent the median over all model–observation comparisons per region.
The sample size for the comparison is displayed on the top right of each subplot.

the BeNeLux region and western Germany slightly increase
simulated midday surface ozone. Ozone production is less
sensitive to NOx emissions in these high NOx-emitting re-
gions compared to the unpolluted background (Beekmann
and Vautard, 2010; Mar et al., 2016; Jin et al., 2017).

Figure 8 shows that O3 simulations with the higher top-
down NOx emissions lead to a somewhat better match be-
tween modeled and observed surface O3, with an improve-
ment in spatial correlation coefficient from 0.43 to 0.57, and
an increase in slope from 0.33 to 0.41. Overall, the model
low bias has reduced from −15 to −8 µg m−3, which indi-
cates that the use of OMI NO2 VCD data to constrain WRF-
Chem surface NOx emissions results in a considerable im-
provement regarding simulation of surface layer O3 concen-
trations.

We additionally analyzed changes in the temporal evolu-
tion of ozone concentrations resulting from NOx emission
changes (Fig. 10). Daytime median O3 concentrations are
better captured in the Po Valley, central Spain and Poland.

The NOx emission changes lead to a model overestima-
tion of surface O3 concentrations for central France and
south Germany, while concentrations change only slightly
in the BeNeLux and Ruhr areas. In those regions, the mean
bias error increases, while the hourly correlation coefficient
and RMSE values improve for all regions (Table S4 of the
Supplement). In all areas, changes in NOx emissions led
to increased ozone concentrations particularly during day-
time. Enhancements in simulated nighttime concentrations
are only observed in central Spain. In other areas, night-
time O3 concentrations are overestimated in both simula-
tions. Peak daytime O3 concentrations are better captured
in all areas, as evidenced by the increase of the 75th per-
centile of simulated O3 concentrations with top-down emis-
sions. However, peak O3 concentrations remain underesti-
mated in the Po Valley, central Spain and southern Germany.
Additionally, nighttime O3 concentration overestimations re-
main, likely due to issues related to model resolution and
vertical mixing. Overall, the NOx emission changes most ef-
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Figure 11. Monthly averaged 12:00 UTC surface O3 concentration with bottom-up (bu, panel a) and top-down (td, panel b) NOx emissions.
Panel (c) shows the difference between the two monthly averages (td–bu).

fectively increase O3 concentrations during periods with el-
evated ozone (Fig. S3 of the Supplement), which coincide
with high solar radiation and temperatures and thus have a
strongly NOx-dependent O3 formation.

7 Discussion

In this study, we demonstrate the added value of deriv-
ing satellite-based NOx emissions in (regional) air pollu-
tion models for simulations of summertime ozone, focus-
ing on July 2015 over Europe. We use a modified version
of the mass balance approach introduced by Martin et al.
(2003), with further improvements by Lamsal et al. (2011)
and Vinken et al. (2014b). Although many studies report
differences in simulated (surface) ozone concentrations af-
ter applying this mass balance approach (e.g., Ghude et al.,
2013), we are aware of only one other study that used ob-
servations to validate subsequent ozone changes. Verstraeten
et al. (2015) used TES O3 observations in the global chem-
istry model TM5 in a study on transcontinental transport of
Asian air pollution and found an improved model–satellite
agreement in lower-tropospheric ozone. However, their ap-

proach did not allow for an evaluation of model performance
closer to the surface.

The mass balance approach that we used to derive
observation-constrained European NOx emissions has sev-
eral important advantages over more formal inversion meth-
ods that are applied in the literature (e.g., Miyazaki et al.,
2014, 2017). The method is highly traceable due to the sim-
ple calculation of scaling parameters from model output for a
baseline and perturbation simulation, and column NO2 mea-
surements. However, the linearization (see Sect. 3) oversim-
plifies the non-linearity of the NOx–O3 chemistry, which
means that the model–satellite discrepancy is not resolved
completely after one iteration. Additionally, the approach
is only applicable on a pixel basis when the NOx lifetime
is sufficiently short to discard the contribution of transport
from adjacent model NO2 columns. The model–satellite dif-
ference for a simulation we performed for March 2015 (not
shown) shows less spatial heterogeneity over regions with a
diffuse spatial distribution of NOx sources (e.g., Germany).
These shortcomings can be resolved by averaging the signal
over multiple grid cells or by applying more formal inversion
methods.
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Our results demonstrate that surface NOx emissions in
our WRF-Chem configuration are increased substantially af-
ter applying an emission scaling approach. In a first-order
budget calculation, we derive that 43 %–69 % of this total
increase can be attributed to soil NOx . This is diagnosed
from the notably higher relative increase in emissions in
regions with moderate anthropogenic emissions compared
to regions with low and high anthropogenic emissions. We
therefore conclude that the contribution of soil NOx to to-
tal surface emissions is likely underestimated in our model
setup. Additionally, our top-down soil NOx emission esti-
mate, derived with a budget calculation, agrees well with
previous estimates for European summer (Table 2). Our find-
ings are in line with a previous study (Oikawa et al., 2015)
that, using WRF-Chem with MEGAN soil NOx emissions,
found a strong underestimation of NOx emissions in a high-
temperature agricultural region.

Several studies previously investigated the relation be-
tween soil NOx emissions and O3 formation. For exam-
ple, one study estimated that European soil NOx emissions
contribute 4 ppb to the daily maximum concentration (Stohl
et al., 1996). A sensitivity study by Li et al. (2019) indicates
that a strong upscaling of soil NOx emissions by a factor of
5 indeed leads to a better representation of the peak ozone
concentration. It has further been shown that an improved
process-based representation of soil NOx emissions leads to
MDA8 O3 changes by up to 6 ppb (Rasool et al., 2016) and a
reduced mean bias for ozone concentrations, particularly in
agricultural areas (Rasool et al., 2019). Together, these find-
ings provide support for the hypothesis that underestimated
soil NOx emissions, in particular those from agricultural ar-
eas, contribute to underestimated peak ozone concentrations.

The comparison against in situ NO2 observations from the
AirBase network may be hindered by interference of reac-
tive N species for measurements with molybdenum convert-
ers. The type of converter is not reported in the database.
Literature-reported estimates of measurement overestima-
tions due to this interference are 22 % (Dunlea et al., 2007)
and 5 %–18 % (Boersma et al., 2009) at urban sites and
20 %–42 % at a rural site (Steinbacher et al., 2007). A cor-
rection factor can be applied to obtain corrected NO2 mea-
surements from observations using a molybdenum converter,
which is on average 0.4–0.6 in summer, but with a large
spread (0.2–0.8) (Lamsal et al., 2008, 2010). The strongest
corrections of molybdenum-based in situ NO2 measurements
are needed in remote environments, where NOx is a relatively
smaller component of the total reactive nitrogen budget com-
pared to areas closer to NOx sources (Lamsal et al., 2008).
We hypothesize that this can partially explain the remaining
model–observation mismatch for NO2 after the use of top-
down emissions.

Despite the demonstrated improvement in ozone simula-
tions, our simulation with OMI-derived top-down NOx emis-
sions still misrepresents the high tail of the ozone distribu-
tion. We believe that there is a potential explanatory role

for local to regional meteorological processes. The repre-
sentation of several mesoscale phenomena requires a higher
model resolution than 20×20 km2. For example, Millán et al.
(1997) demonstrated that local recirculation of residual air
masses from higher aloft, containing elevated O3 transported
aloft during previous days, can be entrained in the boundary
layer and contribute substantially to air pollution episodes in
southern Europe. This is supported by an analysis of mea-
sured ozone (precursors) in northeast Spain by Querol et al.
(2017), where this mesoscale circulation pattern was found
to contribute to concentrations that exceed the information
threshold value set by the European Union (180 µg m−3),
alongside contributions from locally emitted NOx and bio-
genic VOCs.

Simulations of surface ozone in AQ models are also im-
pacted by the choice of chemical parameterization. Recently,
several studies have investigated the influence of the chem-
ical mechanism on simulated NOx and O3 concentrations.
Regarding ozone chemistry, chemical mechanisms differ pre-
dominantly in two aspects: (1) the grouping of VOC species
in species categories (“lumping”) according to their chemi-
cal structure or number of C atoms and (2) the inorganic rate
coefficients involved in the catalytic cycling of NOx , HOx
and Ox . Especially the latter aspect has a strong influence
on simulated NO2 concentrations and can therefore influence
the derivation of top-down emission estimates using satellite
observations (Stavrakou et al., 2013). Coates et al. (2016) in-
vestigated the maximum ozone formation potential in differ-
ent chemical mechanisms and found that mechanisms with
lumped VOC categories led to lower ozone mixing ratios
compared to a mechanism with a near-explicit treatment of
VOCs. Knote et al. (2015) found small differences in inor-
ganic rate constants among mechanisms and thus concluded
that VOC representation was the dominating source of uncer-
tainty among mechanisms. However, Mar et al. (2016) per-
formed a WRF-Chem sensitivity study where MOZART in-
organic rate constants were applied within RADM2, leading
to mean O3 concentration differences of 8 µg m−3 between
those mechanisms.

In order to test the importance of inorganic NOx–HOx–
Ox reaction rates for ozone formation, we implemented inor-
ganic rate constants from three different mechanisms (CBM-
Z, RADM2 and MOZART) in a mixed layer model with sim-
plified chemistry (Janssen et al., 2012). Further details are
given in Sect. S5 of the Supplement. Our analysis shows that
varying the temperature-dependent rate constant of HNO3
formation (kNO2+OH) can lead to a spread of 2 ppb for end-
of-afternoon ozone values on a typical summer day in a
polluted boundary layer. CBM-Z uses the lowest kNO2+OH

among the considered mechanisms and thus leads to a higher
NO2 lifetime and more O3 formation than in other mecha-
nisms. Therefore, we conclude that modification of inorganic
reaction rate constants has a modest effect on simulated O3
but is not likely to lead to increases in simulated O3 in our
WRF-Chem configuration. Nevertheless, the model repre-
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sentation of ozone chemistry should be carefully considered
in NOx and O3 air quality studies, besides the representation
of NOx emissions.

Several studies have considered the resolution dependence
of air quality simulations. This is especially relevant for
NO2, since NOx emissions display strong variation on the
20×20 km2 scale applied in this study. Increasing model res-
olution leads to better representation of these local gradients
and therefore improves simulations of NO2 concentrations
(Schaap et al., 2015). Valin et al. (2011) found that an accu-
rate representation of midday NO2 columns from highly lo-
calized sources requires a high model resolution, but regions
with more diffuse sources can be simulated at a coarser reso-
lution of ±10×10 km2. Although ozone production regimes
do not strongly depend on the model resolution in regional
models, high-resolution models perform better at simulating
local O3 titration in freshly emitted NO plumes (Cohan et al.,
2006).

Besides the representation of meteorological processes,
there is an additional uncertainty related to surface–
atmosphere exchange of pollutants. Dry deposition consti-
tutes 17 % of the tropospheric sink of ozone and is the sec-
ond most important removal process after chemical removal
(Hu et al., 2017). Several studies have recently investigated
the role of meteorological drivers that determine ozone re-
moval at the surface. However, these meteorological con-
trols are oversimplified in deposition parameterizations. The
vapor pressure deficit strongly controls stomatal uptake of
ozone, thereby affecting surface ozone levels in spring to
summer in the United States (Kavassalis and Murphy, 2017).
Analysis of 10-year O3 flux observations in the northeastern
United States revealed that the removal of ozone by the land
surface exhibits a strong interannual variability, which is not
captured in dry deposition parameterizations (Clifton et al.,
2017). Lastly, the role of soil moisture has been proposed as a
regulator of surface ozone uptake (Tawfik and Steiner, 2013)
and is often neglected in parameterizations of dry deposition,
even though a recent study found that it can significantly re-
duce simulated ozone uptake (Anav et al., 2017). Improving
the biophysical representation of the dry deposition process
in WRF-Chem will be one of our foci in the future.

Future studies that apply satellite-based constraints on
surface NOx emissions can benefit from observations from
the recently launched TROPOspheric Monitoring Instrument
(TROPOMI) instrument (Veefkind et al., 2012), which de-
livers NO2 column data at an unprecedented resolution of
7× 3.5 km2. This has the potential to lead to important im-
provements in satellite-constrained NOx emissions. Recent
work (Lorente et al., 2019) has applied TROPOMI observa-
tions in a column model study to derive emissions from Paris.
The resolution of the instrument additionally enables the fo-
cus on more local areas with one dominating source such as
soils in agricultural or bare-soil regions.

8 Conclusions

We performed a WRF-Chem simulation of NOx and ozone
over Europe for July 2015 and assessed its performance with
AirBase in situ observations and OMI NO2 column mea-
surements. We find that WRF-Chem underestimates high
surface ozone concentrations in central and southern Eu-
rope, and overestimates lower ozone concentrations in north-
ern Europe. The model also underestimates the spread. The
monthly averaged mean bias error (MBE) is relatively small
(−2.4 µg m−3, 10 %). WRF-Chem underestimates daytime
increases in ozone concentrations, as evidenced by substan-
tial negative MBE values for the midday (12:00 UTC) O3
concentration and MDA8 O3 (−15.1 and −14.2 µg m−3, re-
spectively). We relate the low bias in surface ozone to biases
in ozone precursor concentrations. Of particular relevance
are nitrogen oxides, which drive ozone production in much
of NOx-limited summertime Europe.

For NO2, we find that WRF-Chem underestimates surface
and column NO2 values for most of the domain, with the
exception of some high-emission regions. With respect to
AirBase, WRF-Chem monthly averaged surface NO2 is bi-
ased low by −2.5 µg m−3 (−73 %). The spatial distribution
of WRF-Chem column NO2 agrees well with OMI (r2

=

0.68) and a mean underestimation of 0.3×1015 molec. cm−2

(−23 %). We attribute the low bias in WRF-Chem NO2 con-
centrations to underestimations in surface NOx emissions in
WRF-Chem. We subsequently derive optimized NOx emis-
sions based on the WRF-Chem/OMI relative difference using
a mass balance approach. Overall emissions increase from
0.32 to 0.50 Tg N, an increase of 0.18 Tg N (+56 %), for
July 2015. The updates indicate that NOx emissions should
be scaled up across the domain. The relative increase in emis-
sions is largest for regions with moderate emission strength
(up to 50 Mg N month−1 cell−1) and coincides with regions
where agricultural soil NOx emissions are substantial. Our
optimized soil NOx emissions amount to 0.1 Tg N, in much
better agreement with values from the literature.

A WRF-Chem simulation with optimized NOx emis-
sions removes the model’s systematic bias with respect
to OMI NO2 and leads to an improved spatial agreement
(slope= 0.98, r2

= 0.84). An evaluation against AirBase
NO2 reveals that the top-down simulation improves particu-
larly in the monthly average, where the systematic mismatch
is reduced (slope= 0.89 instead of 0.73) and the mean bias
is reduced by 50 %. For ozone, the model skill improves par-
ticularly for midday and MDA8 O3, when local ozone for-
mation occurs and the sensitivity of ozone formation to NOx
concentrations is highest. On average, surface O3 concentra-
tions increase by 6 µg m−3 (6 %). Still, peak (midday) ozone
values are underestimated after NOx emission optimization.

Overall, our findings demonstrate that air quality model
simulations combined with in situ and remote sensing obser-
vations can be used to infer missing sources of NOx at the
surface. By optimizing NOx emissions with satellite obser-
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vations, substantial improvements in simulated ozone can be
achieved. Our work shows that this helps to reduce the per-
sistent biases in O3 that most air quality models are suffer-
ing from. Projected decreasing trends in anthropogenic NOx
emissions will mean that the contribution of soils to total
European NOx emissions will likely increase in the future
and thus deserves careful attention in (European) air quality
assessments, along with detailed assessments of emissions
of volatile organic compounds and wildfires, boundary layer
mixing and chemistry.
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