

Supplement of

Seasonal characteristics of organic aerosol chemical composition and volatility in Stuttgart, Germany

Wei Huang et al.

Correspondence to: Claudia Mohr (claudia.mohr@aces.su.se)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Table S1.	Instruments	installed i	n the	measurement	container.

Massurad noromator	Instrument	Data period			
Measureu par ameter	mstrument	Summer 2017	Winter 2018		
Ambient temperature	WS700 (Lufft GmbH)	July 7–August 17	February 5–March 5		
Container temperature	WS700 (Lufft GmbH)	July 7–August 17	February 5–March 5		
Dew point temperature	WS700 (Lufft GmbH)	July 7–August 17	February 5–March 5		
RH	WS700 (Lufft GmbH)	July 7–August 17	February 5–March 5		
Pressure	WS700 (Lufft GmbH)	July 7–August 17	February 5–March 5		
Wind speed	WS700 (Lufft GmbH)	July 7–August 17	February 5–March 5		
Wind vertical	WS700 (Lufft GmbH)	July 7–August 17	February 5–March 5		
Wind direction	WS700 (Lufft GmbH)	July 7–August 17	February 5–March 5		
Rain	WS700 (Lufft GmbH)	July 7–August 17	February 5–March 5		
Rain type	WS700 (Lufft GmbH)	July 7–August 17	February 5–March 5		
Rain rate	WS700 (Lufft GmbH)	July 7–August 17	February 5–March 5		
Radiation	WS700 (Lufft GmbH)	July 7–August 17	February 5–March 5		
Particle number concentration		July 5–August 17	February 5–March 5		
(>7 nm)	CPC3022 (TSI Inc.)				
Particle number concentration		July 5–August 17	February 5–March 5		
(>2.5 nm)	CPC3776 (TSI Inc.)				
03	O341M (Environment SA)	July 5–August 17	February 5–March 5		
CO ₂	NGA2000 (Rosemount Inc.)	July 5–August 17	February 5–March 5		
SO ₂	AF22M (Environment SA)	July 5–August 17	February 5–March 5		
NO ₂	AS32M (Environment SA)	July 5–August 17	February 5–March 5		
Particle optical diameter		July 5–August 17	February 5–March 5		
(0.18–18 µm)	OPC FIDAS200 (Palas GmbH)				
Particle size		July 5–July 26	/		
(10–410 nm, d _m)	NanoScan-SMPS (TSI Inc.)				
	AE51 Aethalometer (Aethlabs	July 5–August 17	February 5–March 5		
Black carbon (BC)	Inc.)				
Single particle composition and		July 5–August 17	February 5–March 5		
size (0.2–2.5 µm, d _{va})	c (0.2–2.5 μm, d _{va}) LAAPTOF (AeroMegt GmbH)				
Particle mass and size		July 5–August 17	February 5–March 5		
(0.07–2.5 µm, d _{va})	AMS (Aerodyne Research Inc.)				
Particle-phase oxygenated	FIGAERO-CIMS	July 5–August 14	February 8–March 5		
organic molecules (offline filters)	(Aerodyne Research Inc.)				

Figure S1. Time series of aerosol composition measured by AMS (Organics (Org), Nitrate (NO₃), Sulfate (SO₄), Ammonium (NH₄), and
Chloride (Chl)) in the summer (a) and winter (b) periods.

Figure S2. Mean diel patterns of ambient temperature, relative humidity, and global radiation in the summer (a) and winter (b) periods. The shaded areas represent ± 1 standard deviation.

Figure S3. Wind speeds and directions for the summer (a) and winter (b) periods.

Figure S4. Comparison of time series of Organonitrates (OrgNO₃) with Organics (Org) and Nitrate (NO₃) by AMS for the summer (a) and winter (b) periods. OrgNO₃ concentrations were estimated based on the NO₂⁺/NO⁺ ion ratio measured by AMS and assuming a ratio of 0.1 for OrgNO₃ (Farmer et al., 2010; Kiendler-Scharr et al., 2016).

Figure S5. Mean diel patterns of Organics (Org), Nitrate (NO₃), and Organonitrates (OrgNO₃) by AMS for the summer (a) and winter (b) periods. The shaded areas represent ± 1 standard deviation.

20 Figure S6. Mean diel patterns of O₃ and NO₂ mixing ratios for the summer (a) and winter (b) periods. The shaded areas represent ±1 standard deviation.

Figure S7. Correlations of CHOX compounds in summer 2017 in Stuttgart (a) with CHOX compounds in summer 2016 near Karlsruhe (Huang et al., 2019) and (b) with CHOX compounds in winter 2018 in Stuttgart after removing five prominent biomass burning tracer compounds (C₆H₁₀O₅, C₆H₅O₃N, C₇H₇O₃N, C₆H₅O₄N, and C₇H₇O₄N).

Figure S8. Average mass-weighted number of carbon atoms (numC), hydrogen atoms (numH), and oxygen atoms (numO) of the CHOX compounds for the summer and winter periods.

Figure S9. Volatility distribution of CHO compounds (a) and CHON compounds (b) in the summer period (24 °C), CHO compounds (c) and CHON compounds (d) in the winter period (2 °C) vs their corresponding nominal O:C ratio. Markers were colored by different number of carbon atoms and sized by their corresponding mass contributions to total CHOX compounds.

Figure S11. Mean T_{max} distribution of CHOX compounds as a function of m/z (includes mass of I⁻ ion; m/z 126.9050 Th) for the summer (a) and winter (b) periods. Markers were sized by their corresponding mass contributions to total CHOX compounds. Mean T_{max} were calculated as the campaign-average of the T_{max} for each CHOX compound.

Figure S12. Comparison of high resolution 2D thermograms of CHOX compounds for mass range 280–380 Th of Figure 4 for the summer (a) and winter (b) periods. The 2D thermograms were normalized to their maximum values. A black dotted line was plotted by hand to guide the eye.

45 References

50

- Farmer, D. K., Matsunaga, A., Docherty, K. S., Surratt, J. D., Seinfeld, J. H., Ziemann, P. J., and Jimenez, J. L.: Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry, P Natl Acad Sci USA, 107, 6670–6675, <u>https://doi.org/10.1073/pnas.0912340107</u>, 2010.
- Huang, W., Saathoff, H., Shen, X., Ramisetty, R., Leisner, T., and Mohr, C.: Chemical characterization of highly functionalized organonitrates contributing to night-time organic aerosol mass loadings and particle growth, Environ Sci Technol, 53, 1165–1174, https://doi.org/10.1021/acs.est.8b05826, 2019.
- Kiendler-Scharr, A., Mensah, A. A., Friese, E., Topping, D., Nemitz, E., Prevot, A. S. H., Äijälä, M., Allan, J., Canonaco, F., Canagaratna, M., Carbone, S., Crippa, M., Dall Osto, M., Day, D. A., De Carlo, P., Di Marco, C. F., Elbern, H., Eriksson, A., Freney, E., Hao, L., Herrmann, H., Hildebrandt, L., Hillamo, R., Jimenez, J. L., Laaksonen, A., McFiggans, G., Mohr, C., O'Dowd, C., Otjes, R.,
- 55 Ovadnevaite, J., Pandis, S. N., Poulain, L., Schlag, P., Sellegri, K., Swietlicki, E., Tiitta, P., Vermeulen, A., Wahner, A., Worsnop, D., and Wu, H.-C.: Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol, Geophys Res Lett, 43, 7735– 7744, <u>https://doi.org/10.1002/2016GL069239</u>, 2016.