

Corrigendum to "Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements" published in Atmos. Chem. Phys., 19, 11315–11342, 2019

Eleni Marinou^{1,2,3}, Matthias Tesche^{4,5}, Athanasios Nenes^{6,7}, Albert Ansmann⁸, Jann Schrod⁹, Dimitra Mamali¹⁰, Alexandra Tsekeri¹, Michael Pikridas¹¹, Holger Baars⁸, Ronny Engelmann⁸, Kalliopi-Artemis Voudouri², Stavros Solomos¹, Jean Sciare¹¹, Silke Groß³, Florian Ewald³, and Vassilis Amiridis¹

¹Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS), National Observatory of Athens (NOA), Athens, Greece

²Department of Physics, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece

³Institute of Atmospheric Physics, German Aerospace Center (DLR), Oberpfaffenhofen, Germany

⁴University of Hertfordshire, College Lane, Hatfield, UK

⁵Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany

⁶Laboratory of Atmospheric Processes and their Impacts (LAPI), School of Architecture, Civil and Environmental

Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

⁷Institute of Chemical Engineering Sciences, Foundation for Research and Technology, Hellas, Patras, Greece

⁸Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

⁹Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany ¹⁰Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, the Netherlands

¹¹The Cyprus Institute, Energy, Environment and Water Research Centre, Nicosia, Cyprus

Correspondence: Eleni Marinou (elmarinou@noa.gr)

Published: 9 October 2019

In the abovementioned paper, the correct units of the surface area concentration in Figs. 2, 6 and 7 are $10^{-12} \text{ m}^2 \text{ cm}^{-3}$. See the correct Figs. 2, 6 and 7 below.

Figure 2. PollyXT profiles of the total particle backscatter coefficient (purple) and particle linear depolarization ratio (green) measured between 01:00 and 02:00 UTC on 21 April 2016. The extinction coefficient as well as the number and surface concentration of particles with a dry radius larger than 250 nm related to mineral dust (orange) and nondust aerosol (black) was obtained following the methodology described in Sect. 3.2.

Figure 6. Profiles of the surface (**a**, **b**) and number concentrations (**c**, **d**) of mineral dust (**a**, **c**) and continental particles (**b**, **d**) with a dry radius larger than 250 nm derived from measurements with PollyXT between 01:00 and 02:00 UTC on 21 April 2016 (red) and retrieved from averaging 160 km of CALIOP measurements centered around an overpass at a distance of 5 km from Nicosia at 11:01 UTC on 21 April 2016 (blue).

Figure 7. Profiles of $n_{250,dry}$ (upper panel) and S_{dry} (lower panel) obtained from PollyXT and in situ measurements (UAV uncorrected data in red, UAV corrected data in blue) on 5, 9, 15 and 22 April 2016. The lidar-derived profiles refer to dust-only concentrations (orange), as well as the combination of dust and continental pollution concentrations (black).