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Abstract. A 5-year Clean Air Action Plan was implemented
in 2013 to reduce air pollutant emissions and improve am-
bient air quality in Beijing. Assessment of this action plan
is an essential part of the decision-making process to review
its efficacy and to develop new policies. Both statistical and
chemical transport modelling have been previously applied
to assess the efficacy of this action plan. However, inherent
uncertainties in these methods mean that new and indepen-
dent methods are required to support the assessment process.
Here, we applied a machine-learning-based random forest
technique to quantify the effectiveness of Beijing’s action
plan by decoupling the impact of meteorology on ambient
air quality. Our results demonstrate that meteorological con-
ditions have an important impact on the year-to-year varia-
tions in ambient air quality. Further analyses show that the
PM2.5 mass concentration would have broken the target of
the plan (2017 annual PM2.5 < 60 µg m−3) were it not for
the meteorological conditions in winter 2017 favouring the
dispersion of air pollutants. However, over the whole period
(2013–2017), the primary emission controls required by the
action plan have led to significant reductions in PM2.5, PM10,
NO2, SO2, and CO from 2013 to 2017 of approximately
34 %, 24 %, 17 %, 68 %, and 33 %, respectively, after meteo-
rological correction. The marked decrease in PM2.5 and SO2
is largely attributable to a reduction in coal combustion. Our

results indicate that the action plan has been highly effective
in reducing the primary pollution emissions and improving
air quality in Beijing. The action plan offers a successful ex-
ample for developing air quality policies in other regions of
China and other developing countries.

1 Introduction

In recent decades, China has achieved rapid economic
growth and become the world’s second largest economy.
However, it has paid a high price in the form of serious
air pollution problems caused by the rapid industrialization
and urbanization associated with its fast economic growth
(Lelieveld et al., 2015; Zhang et al., 2012; Guan et al., 2016).
According to the World Bank, air pollution costs China’s
economy USD 159 billion (∼ 9.9 % of GDP equivalent) in
welfare losses and was associated with 1.6 million deaths
in China in 2013 (Xia et al., 2016; World Bank and IHME,
2016). Accordingly, air pollution has been receiving much
attention from both the public and policymakers in China, es-
pecially in Beijing – the capital of China with around 22 mil-
lion inhabitants – which has suffered extremely high levels of
air pollutants (Rohde and Muller, 2015; Guo et al., 2013; Zhu
et al., 2012; Cai et al., 2017). To tackle air pollution prob-
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lems, China’s State Council released an action plan in 2013
which set new targets to reduce the concentration of air pol-
lutants across China (CSC, 2013). Within the plan, a series
of policies, control and action plans with a focus on Beijing–
Tianjin–Hebei, the Yangtze River Delta, and the Pearl River
Delta regions, were proposed. To implement the national ac-
tion plan and further improve air quality, the Beijing munici-
pal government (BMG) formulated and released the “Beijing
2013–2017 Clean Air Action Plan”, which set a target for the
mean concentration of fine particles (PM2.5, particulate mat-
ter with aerodynamic diameter less than 2.5 µm) to be below
60 µg m−3 by 2017 (BMG, 2013). Since then, the 5-year pe-
riod of 2013–2017 has seen the implementation of numerous
regulations and policies in Beijing.

It is of great interest to the government, policymakers, and
the general public to know whether the action plan is working
to meet the set targets. Research in this area is often termed
an air quality accountability study (HEI, 2003; Henneman et
al., 2017a; Cheng et al., 2019). This is highly challenging be-
cause both the actions taken to reduce the air pollutants and
the meteorological conditions affect the air quality levels dur-
ing a particular period (Henneman et al., 2017b; Cheng et al.,
2019; Liu et al., 2017; Grange et al., 2018; Chen et al., 2019).
Therefore, it is essential to decouple the meteorological im-
pact from ambient air quality data to see the real benefits in
air quality by different actions.

Chemical transport models are used widely to evaluate the
response of air quality to emission control policies (Wang et
al., 2014; Daskalakis et al., 2016; Souri et al., 2016; Chen et
al., 2019). However, there are major uncertainties in emission
inventories and in the models themselves, which inevitably
affect the outputs of chemical transport models (Li et al.,
2017; Gao et al., 2018). Statistical analysis of ambient air
quality data is another commonly used method to decou-
ple the meteorological effects on air quality (Henneman et
al., 2017b; Liang et al., 2015), including the Kolmogorov–
Zurbenko (KZ) filter model and deep neural networks (Wise
and Comrie, 2005; Comrie, 1997; Eskridge et al., 1997;
Hogrefe et al., 2003; Gardner and Dorling, 2001). Among
these models, the deep neural network models showed a bet-
ter performance (i.e., higher correlation coefficient, lower
root-mean-square error – RMSE) but did not allow us to in-
vestigate the effect of input variables (therefore it is referred
to as a “black-box” model) (Gardner and Dorling, 2001; Hen-
neman et al., 2015). More recently, new approaches based
on regression decision trees are being developed, which are
suitable for air quality weather detrending, including the
boosted regression tree (BRT) and random forest (RF) al-
gorithms (Carslaw and Taylor, 2009; Grange et al., 2018).
These machine-learning-based techniques have a better per-
formance than the traditional statistical and air quality mod-
els by reducing variance/bias and error in highly dimensional
data sets (Grange et al., 2018). However, similar to the deep
learning algorithms including neural networks, it is hard to
interpret the working mechanism inside these models as well

as the results. In addition, the decision tree models are prone
to overfitting, especially when the number of tree nodes is
large (Kotsiantis, 2013). An overfitting problem of a random
forest model is checked by its ability to reproduce observa-
tions using an unseen training data set. Recently published
R packages can partly explain and visualize random forest
models including the importance of input variables and their
interactions (Liaw and Wiener, 2018; Paluszynska, 2017).

Here, we applied a machine learning technique based upon
the random forest algorithm and the latest R packages to
quantify the role of meteorological conditions in air quality
and thus evaluate the effectiveness of the action plan in re-
ducing air pollution levels in Beijing. The results were com-
pared with the latest emission inventory as well as results
from previous study which used a chemical transport model –
the Weather Research and Forecasting (WRF) – Community
Multiscale Air Quality (CMAQ) model (Wong et al., 2012;
Xiu and Pleim, 2001).

2 Materials and methods

2.1 Data sources

As part of the Atmospheric Pollution and Human Health in a
Development Megacity programme (Shi et al., 2019), hourly
air quality data for six key air pollutants (PM2.5, PM10, NO2,
SO2, O3, and CO) at the 12 national air quality monitor-
ing stations in Beijing were collected from the China Na-
tional Environmental Monitoring Network (CNEM) web-
site – http://106.37.208.233:20035 (last access: 5 Septem-
ber 2019). Since air quality data are removed from the web-
site on a daily basis, data were automatically downloaded to a
local computer and combined to form the whole data set for
this paper. All data are now available at https://github.com/
tuanvvu/Air_Quality_Trend_Analysis (last access: 5 June
2019). These sites were classified in three categories (urban,
suburban, and rural areas). The map and categories of the
monitoring sites are given in Fig. S1 and Table S1. Hourly
meteorological data including wind speed (ws), wind direc-
tion (wd), temperature, relative humidity (RH), and pressure
recorded at Beijing International Airport were downloaded
using the “worldMet” R package (Carslaw, 2017b). Monthly
emissions of air pollutants were from the Multi-resolution
Emission Inventory for China (http://www.meicmodel.org/,
last access: 5 September 2019), and for the whole Beijing
region. Data were analysed in RStudio with a series of pack-
ages, including “openair”, “normalweatherr”, and “random-
ForestExplainer” (Liaw and Wiener, 2018; Carslaw and Rop-
kins, 2012; Carslaw, 2017a; Paluszynska, 2017).

2.2 Random forest modelling

Figure 1 shows a conceptual diagram of the data modelling
and analysis, which consists of three steps.
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Figure 1. A diagram of long-term trend analysis model.

2.2.1 Building the random forest (RF) model

A decision-tree-based random forest regression model de-
scribes the relationships between hourly concentrations of an
air pollutant and their predictor features (including time vari-
ables: month 1 to 12, day of the year from 1 to 365, hour of
the day from 0 to 23, and meteorological parameters wind
speed, wind direction, temperature, pressure, and relative
humidity). The RF regression model is an ensemble model
which consists of hundreds of individual decision tree mod-
els. The RF model is described in detail in Breiman (1996,
2001).

In the RF model, the bagging algorithm, which uses boot-
strap aggregating, randomly samples observations and their
predictor features with a replacement from a training data set.
In our study, a single regression decision tree is grown in dif-
ferent decision rules based on the best fitting between the ob-
served concentrations of a pollutant (response variable) and
their predictor features. The predictor features are selected
randomly to give the best split for each tree node. The hourly
predicted concentrations of a pollutant are given by the fi-
nal decision as the outcome of the weighted average of all
individual decision trees. By averaging all predictions from
bootstrap samples, the bagging process decreases variance,
thus helping the model to minimize overfitting.

As shown in Fig. 1, the whole data sets were randomly
divided into (1) a training data set to construct the random
forest model and (2) a testing data set to test the model per-
formance with unseen data sets. The training data set was
comprised of 70 % of the whole data, with the rest as testing

data. The RF model was constructed using R “normalweath-
err” packages by Grange et al. (2018).

The original data sets contain hourly concentrations of
air pollutants (response) and their predictor features that in-
clude time variables (ttrend – Unix epoch time, the day of
the year, week/weekend, hour) and meteorological param-
eters (wind speed, wind direction, pressure, temperature,
and relative humidity). These time predictor features repre-
sent effects upon concentrations of air pollutants by diurnal,
weekday/weekend day, and seasonal cycles, and ttrend (Unix
epoch time) represents the trend in time which captures the
long-term change of air pollutant due to changes in poli-
cies/regulations, which was calculated as

ttrend = yeari +
tJD− 1

Ni

+
tH

24Ni

,

where Ni is the number of days in a year i (the ith year from
2013 to 2017), tH is diurnal hour time (0–23), tJD is day of
the year (1–365)) (Carslaw and Taylor, 2009).

Table S2, Fig. S3–S4, and Sect. S3 provided information
on the performance of our model to reproduce observations
based on a number of statistical measures including mean
square error (MSE) or root-mean-square error (RMSE), cor-
relation coefficients (r2), FAC2 (fraction of predictions with
a factor of 2), MB (mean bias), MGE (mean gross error),
NMB (normalized mean bias), NMGE (normalized mean
gross error), COE (coefficient of efficiency), and IOA (in-
dex of agreement) as suggested in a number of recent papers
(Emery et al., 2017; Henneman et al., 2017b; Dennis et al.,
2010). These results confirm that the model performs very
well in comparison with traditional statistical methods and
air quality models (Henneman at al., 2015).

2.2.2 Weather normalization using the RF model

A weather normalization technique predicts the concentra-
tion of an air pollutant at a specific measured time point
(e.g., 09:00 on 1 January 2015) with randomly selected me-
teorological conditions. This technique was first introduced
by Grange et al. (2018). In their method, a new data set of
input predictor features including time variables (day of the
year, the day of the week, hour of the day, but not the Unix
time variable) and meteorological parameters (wind speed,
wind direction, temperature, and RH) is first generated (i.e.,
resampled) randomly from the original observation data set.
For example, for a particular day (e.g., 1 January 2011), the
model randomly selects the time variables (excluding Unix
time) and weather parameters at any day from the data set
of predictor features during the whole study period. This is
repeated 1000 times to provide the new input data set for
a particular day. The input data set is then fed to the ran-
dom forest model to predict the concentration of a pollutant
at a particular day (Grange et al., 2018; Grange and Carslaw,
2019). This gives a total of 1000 predicted concentrations for
that day. The final concentration of that pollutant, referred
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to hereafter as weather normalized concentration, is calcu-
lated by averaging the 1000 predicted concentrations. This
method normalizes the impact of both seasonal and weather
variations. Therefore, it is unable to investigate the seasonal
variation in trends for a comparison with the trend of primary
emissions. For this reason, we enhanced the meteorological
normalization procedure.

In our algorithm, we first generated a new input data set of
predictor features, which includes original time variables and
resampled weather data (wind speed, wind direction, temper-
ature, and relative humidity). Specifically, weather variables
at a specific selected hour of a particular day in the input data
sets were generated by randomly selecting from the observed
weather data (i.e., 1988–2017 or 2013–2017) at that particu-
lar hour of different dates within a four-week period (i.e., 2
weeks before and 2 weeks after that selected date). For ex-
ample, the new input weather data at 08:00, 15 January 2015,
are randomly selected from the observed data at 08:00 on any
date from 1 to 29 January of any year in 1988–2017 or 2013–
2017. The selection process was repeated automatically 1000
times to generate a final input data set. The 1000 data were
then fed to the random forest model to predict the concentra-
tion of a pollutant. The 1000 predicted concentrations were
then averaged to calculate the final weather normalized con-
centration for that particular hour, day, and year. This way,
unlike Grange et al. (2018), we only normalize the weather
conditions but not the seasonal and diurnal variations. Fur-
thermore, we are able to resample observed weather data for
a longer period (for example, 1998–2017), rather than only
the study period. This new approach enables us to investi-
gate the seasonality of weather normalized concentrations
and compare them with primary emissions from inventories.

2.2.3 Quantifying long-term trend using Theil–Sen
estimator

The Theil–Sen regression technique was performed on the
concentrations of air pollutants after meteorological normal-
ization to investigate the long-term trend of pollutants. The
Theil–Sen approach, which computes the slopes of all pos-
sible pairs of pollutant concentrations and takes the median
value, has been commonly used for long-term trend analy-
sis over recent years. By selecting the median of the slopes,
the Theil–Sen estimator tends to give us accurate confidence
intervals even with non-normal data and non-constant error
variance (Sen, 1968). The Theil–Sen function is provided via
the “openair” package in R.

2.3 Notices, regulations, and policies for air pollution
control in Beijing

The 5-year period of 2013–2017 saw the implementation of
numerous regulations and policies. The “Beijing Clean Air
Action Plan 2013–2017” proposed eight key regulations in-
cluding (1) controlling the city development intensity, popu-

lation size, vehicle ownership, and environmental resources,
(2) restructuring energy by reducing coal consumption, sup-
plying clean and green energy, and improving energy effi-
ciency, (3) promoting public transport, implementing stricter
emission standards, eliminating old vehicles and encourag-
ing new and clean energy vehicles, (4) optimizing indus-
trial structure by eliminating polluting capacities, closing
small polluting enterprises, building eco-industrial parks and
pursuing cleaner production, (5) strengthening treatment of
air pollutants and tightening environmental protection stan-
dards, (6) strengthening urban management and regulation
enforcement, (7) preserving the ecological environment by
enhancing green coverage and water area, and (8) strengthen-
ing emergency response to heavy air pollution. We collected
more than 70 major notices and policies on air pollution con-
trol from the Beijing government website (http://zhengce.
beijing.gov.cn/library/, last access: 5 September 2019). Most
important regulations were related to energy system restruc-
turing and vehicle emissions (Sect. S2). These key measures
include (1) reform and an upgrade action plan for coal energy
conservation and emission reduction (2017), (2) “no-coal
zone” for Beijing–Tianjin–Hebei in October 2017, (3) Bei-
jing fifth phase emission standards for new light-duty gaso-
line vehicles (LDVs) and heavy-duty diesel vehicles (HDVs)
for public transport in 2013, and (4) traffic restrictions to
yellow-label and non-local vehicles to enter the city within
the sixth ring road during daytime since 2015.

3 Results and discussions

3.1 Observed levels of air pollution in Beijing during
2013–2017

The annual mean concentration of PM2.5 and PM10 in Bei-
jing measured from the 12 national air quality monitoring
stations declined by 34 and 19 % from 88 and 110 µg m−3

in 2013 to 58 and 89 µg m−3 in 2017, respectively. Simi-
larly, the annual mean levels of NO2 and CO decreased by
16 and 33 % from 54 µg m−3 and 1.4 mg m−3 to 45 µg m−3

and 0.9 mg m−3 while the annual mean concentration of SO2
showed a dramatic drop by 68 % from 23 µg m−3 in 2013
to 8.0 µg m−3 in 2017. Along with the decrease in annual
mean concentration, the number of haze days (defined as
PM2.5 > 75 µg m−3 here) also decreased (Fig. S7). These re-
sults confirm a significant improvement of air quality and
that Beijing appeared to have achieved its PM2.5 target un-
der the action plan (annual average PM2.5 target for Bei-
jing is 60 µg m−3 in 2017). On the other hand, the annual
mean concentration of PM2.5 is still substantially higher than
China’s national ambient air quality standard (NAAQS-II) of
35 µg m−3 (Table S3) and the WHO guideline of 10 µg m−3.
While PM10, PM2.5, SO2, NO2, and CO showed a decreas-
ing trend, the annual average concentration of O3 increased
slightly by 4.9 % from 58 µg m−3 in 2013 to 61 µg m−3 in
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Figure 2. Air quality and primary emissions trends. Trends of monthly average air quality parameters before and after normalization of
weather conditions (first vertical axis), and the primary emissions from the MEIC inventory (secondary vertical axis). “Model” in the figure
means the modelled concentration of a pollutant after weather normalization. The red line shows the Theil–Sen trend after weather nor-
malization. The black and blue dotted lines represent weather-normalized and ambient (observed) concentration of air pollutants. The red
dotted line represents total primary emissions. The levels of air pollutants after removing the weather’s effects decreased significantly with
median slopes of 7.2, 5.0, 3.5, 2.4, and 120 µg m−3 year−1 for PM2.5, PM10, SO2, NO2, and CO, respectively, while the level of O3 slightly
increased by 1.5 µg m−3 year−1.

2017. The number of days exceeding NAAQS-II standards
for O3 8 h averages (160 µg m−3) during the period 2013–
2017 was 329, accounting for 18 % of total days.

3.2 Air quality trends after weather normalization

A key aspect in evaluating the effectiveness of air qual-
ity policies is to quantify separately the impact of emis-
sion reduction and meteorological conditions on air quality
(Carslaw and Taylor, 2009; Henneman et al., 2017b), as these
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are the key factors regulating air quality. By applying a ran-
dom forest algorithm, we showed the normalized air quality
parameters, under the 30-year average (1988–2017) meteo-
rological conditions (Fig. 2). The temporal variations in am-
bient concentrations of monthly average PM2.5, PM10, CO,
and NO2 do not show a smooth trend from 2013 to 2017 be-
cause of the spikes during pollution events. However, after
the weather normalization, we can clearly see the decreasing
real trend (Fig. 2). The trends of the normalized air quality
parameters represent the effects of emission control and, in
some cases, associated chemical processes (for example, for
ozone, PM2.5, PM10). SO2 showed a dramatic decrease while
ozone increased year by year (Fig. 2). The normalized annual
average levels of PM2.5, PM10, SO2, NO2, and CO decreased
by 7.4, 7.6, 3.1, 2.5, and 94 µg m−3 year−1, respectively,
whereas the level of O3 increased by 1.0 µg m−3 year−1.

Table 1 compares the trends of air pollutants before and
after normalization, which are largely different depending on
meteorological conditions. For example, the annual average
concentration of fine particles (PM2.5) after weather normal-
ization was 61 µg m−3 in 2017, which was higher than their
observed level of 58 µg m−3 by 5.2 %. This suggests that Bei-
jing would have missed its PM2.5 target of 60 µg m−3 if not
for the favourable meteorological conditions in winter 2017
and the emission reduction contributed to 10 µg m−3 out of
the 13 µg m−3 (77 %) PM2.5 reduction (71 to 58 µg m−3)
from 2016 to 2017. Overall, the emission control led to a
34 %, 24 %, 17 %, 68 %, and 33 % reduction in normalized
mass concentration of PM2.5, PM10, NO2, SO2, and CO, re-
spectively, from 2013 to 2017 (Table 1).

When meteorological conditions were randomly selected
from 2013 to 2017 (instead of 1998–2017) in the RF model,
the normalized level of PM2.5 in 2017 was 60 µg m−3, which
is 1 µg m−3 difference to that using 1998–2017 data. This dif-
ference is due to the variation in the long-term climatology
(1998–2017) to the 5-year period (2013–2017).

The observed PM2.5 mass concentration decreased by
30 µg m−3 from 2013 to 2017, whereas the normalized values
decreased by 32 µg m−3. Similarly, the observed PM10 and
SO2 mass concentration decreased by 30 and 15.5 µg m−3

from 2013 to 2017, whereas the normalized values were
33 and 17.9 µg m−3. These results suggest that the effect of
emission reduction would have contributed to an even better
improvement in air quality (except ozone) from 2013 to 2017
if not for meteorological variations year by year.

Figure 3 shows that the action plan has led to a major im-
provement in the air quality of Beijing at the urban, suburban,
and rural sites, particularly for SO2 (16 %–18 % year−1),
CO (8 %–9 % year−1), and PM2.5 (6-8 % year−1). The action
plan also led to a decrease in PM10 and NO2 but to a lesser
extent than that of CO, SO2, and PM2.5, indicating that PM10
and NO2 were affected by other less well-controlled sources
or different atmospheric processes. Urban sites showed a
bigger decrease in PM2.5, PM10, and SO2 concentrations in
comparison to the rural and suburban sites (Fig. 3).

Figure 3. Yearly change of air quality in different areas of Bei-
jing. This figure presents yearly average changes of weather nor-
malized air pollutant concentrations at rural, suburban, and urban
sites (see Figure S1 for classification) of Beijing from 2013 to
2017. Specifically, average yearly changes are for SO2 (−14 %,
−15 %, and −16 % year−1 for rural, suburban, and urban areas, re-
spectively), CO (−9 %,−9 %,−8 % year−1), PM2.5 (−7 %,−8 %,
−9 % year−1), PM10 (−6 %, −5 %, −7 % year−1), NO2 (−2 %,
−6 %, −5 % year−1), and O3 (1 %, 0.3 %, 2 % year−1). The error
on the bar shows the minimum and maximum yearly change.

3.3 Impact of meteorological conditions on PM2.5
levels: a comparison with results from the
CMAQ-WRF model

We compared our RF modelling results with those from an
independent method by Cheng et al. (2019), who evaluated
the de-weathered trend by simulating the monthly average
PM2.5 mass concentrations in 2017 by the CMAQ model
with meteorological conditions of 2013, 2016, and 2017 from
the WRF model. The WRF-CMAQ results predict that the
annual average PM2.5 concentration of Beijing in 2017 is
61.8 and 62.4 µg m−3 under the 2013 and 2016 meteorolog-
ical conditions, respectively, both of which are higher than
the measured value – 58 µg m−3. Thus, the modelled results
are similar to those from the machine learning technique,
which gave a weather-normalized PM2.5 mass concentration
of 61 µg m−3 in 2017.

Figure 4 also shows that the PM2.5 concentrations would
have been significantly higher in November and Decem-
ber 2017 if under the meteorological conditions of 2016.
In contrast, the PM2.5 concentrations would have been
lower in spring 2017 under the meteorological conditions
of 2016 or the 30-year normalized meteorological data. The
more favourable meteorological conditions in the two winter
months contributed appreciably to the lower measured an-
nual average PM2.5 level in 2017. This also suggests that the
monthly levels of PM2.5 strongly depend upon the monthly
variation in weather.

Atmos. Chem. Phys., 19, 11303–11314, 2019 www.atmos-chem-phys.net/19/11303/2019/
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Table 1. A comparison of the annual average concentrations of air pollutants before and after weather normalization.

Pollutants PM2.5 PM10 NO2 SO2 CO O3

Year Obs. Model Obs. Model Obs. Model Obs. Model Obs. Model Obs. Model

2013 88 93 110 123 54 58 23 26.3 1.4 1.5 58 59
2014 84 85 119 121 57 56 20 20 1.2 1.3 55 56
2015 80 75 107 106 50 50 13 13 1.3 1.2 58 59
2016 71 71 98 101 47 48 10 10 1.1 1.1 63 60
2017 58 61 90 93 45 48 7.5 8.4 0.9 1.0 60 61

Note: Obs: observed concentration. Model.: modelled concentration of a pollutant after weather normalization. Unit: micrograms per cubic metre for all
pollutants, except CO (mg m−3).

Figure 4. Relative change in monthly PM2.5 levels in 2017 under
different weather conditions. This figures presents relative changes
(%) in monthly average modelled PM2.5 concentrations in 2017
if under the 2016 (red) and 2013 (green) meteorological condition
using the CMAQ model and under averaged 30 years of meteoro-
logical conditions using the machine learning technique. A posi-
tive value indicates PM2.5 concentration would have been higher in
2017 if under the 2013 or 2016 meteorological conditions. Under
the meteorological condition of 2016, monthly PM2.5 concentra-
tion in 2017 would have been approximately 28 % lower in January
but 53 % to 82 % higher in November and December. This suggests
that 2017 meteorological conditions were very favourable for better
air quality compared to those in 2016. If under the meteorologi-
cal condition of 2013, monthly PM2.5 concentration in 2017 would
have been higher in January (22 %) and February (36 %) but only
slightly higher in November (12 %) and December (14 %).

Comparison of model uncertainties from the two
methods

Figure 5 compares observation and prediction of monthly
concentrations of PM2.5 by the WRF-CMAQ model and the
RF model. The correlation coefficients between monthly val-
ues was 0.82, whereas that from the random forest method
is > 0.99 for both the training and test data sets. The differ-
ence between the monthly observed PM2.5 values and those
simulated by the WRF-CMAQ model ranged from 3 % to
33.6 %, resulting in a 7.8 % difference in the yearly value.
In contrast, the deviation between observed and predicted
PM2.5 value from the RF model ranges from 0.4 % to 7.9 %

Figure 5. Comparison of predicted monthly average PM2.5 mass
concentrations by the WRF-CMAQ (Cheng et al., 2019) and RF
model against observations in Beijing. WRF-CMAQ results are av-
eraged over the whole Beijing region and the observed values refer
to the average concentration of PM2.5 over the 12 sites.

with an average of 1.5 %. In the modelled concentration of
PM2.5 from the random forest technique, standard deviation
of the 1000 predicted concentrations of PM2.5 in 2017 is only
0.35 µg m−3, accounting for 0.6 % of the observed PM2.5
concentration.

3.4 Evaluating the effectiveness of the mitigation
measures in the Clean Air Action Plan

The weather-normalized air quality trend (Fig. 2) allows us
to assess the effectiveness of various policy measures to
improve air quality to some extent. In particular, the SO2
normalized trend clearly shows that the peak monthly con-
centration in the winter months decreased from 60 µg m−3

in January 2013 to less than 10 µg m−3 in December 2017
(Fig. 2). This indicates that the control of emissions from
winter-specific sources was highly successful in reducing
SO2 concentrations. The Multi-resolution Emission Inven-
tory for China (MEIC) shows a major decrease in SO2 emis-
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Figure 6. Primary energy consumption in Beijing. Petroleum con-
sumption remained stable (21–23 million tonnes of coal equiva-
lent (Mtce)) over the years while natural gas and primary electric
power increased significantly by a factor of 1.8 and reached 23 Mtce
in 2016. Coal consumption declined remarkably by 56.4 % from
15.7 Mtce in 2013 to 6.8 Mtce in 2016. The proportion of coal in
primary energy consumption in 2016 was 9.8 %, within its target of
10 % set by the Beijing government. Note electricity here represents
primary electricity.

sions from heating (both industrial and centralized heating)
and residential sectors (mainly coal combustion) (Fig. S8),
which is consistent with the trend analyses. On the other
hand, the “baseline” SO2 concentration – defined as the min-
imum monthly concentration in the summer (Fig. 2) – also
decreased somewhat during the same period. SO2 in the
summer mainly came from non-seasonal sources including
power plants, industry, and transportation (Fig. S9). Over-
all, the MEIC estimated that SO2 emissions decreased by
71 % from 2013 to 2017 (Fig. S8), which is close to the
67 % decrease in the weather-normalized concentration of
SO2 (Table 1). According to the Beijing Statistical Yearbooks
(2012–2017), coal consumption in Beijing declined remark-
ably by 56 % in 6 years as shown in Fig. 6 (Karplus et al.,
2018; BMBS, 2013–2017). The slightly faster decrease in
SO2 concentrations relative to coal consumption (Fig. S9)
was attributed to the adoption of clean coal technologies that
were enforced by the “Action Plan for Transformation and
Upgrading of Coal Energy Conservation and Emission Re-
duction (2014–2020)” (Karplus et al., 2018; Chang et al.,
2016). In summary, energy restructuring, e.g., replacement
of coal with natural gas (Fig. 6; Sect. S2), is a highly effec-
tive measure in reducing ambient SO2 pollution in Beijing.

Coal combustion is not only a major source of SO2, but
also an important source of NOx and primary particulate
matter (PM) in Beijing (Streets and Waldhoff, 2000; Zíková
et al., 2016; Lu et al., 2013; Huang et al., 2014). Precursor
gases including SO2 and NOx from coal combustion also

contribute to secondary aerosol formation (Lang et al., 2017).
The MEIC emission inventory showed that 8.8 %–29 % of
NOx was emitted from heating, power, and residential activi-
ties, primarily associated with coal combustion. As shown in
Fig. S9, the normalized NO2 concentration is also decreas-
ing, but much slower than that of SO2. Most notably, the
level of SO2 dropped rapidly in 2014 but the level of NO2 de-
creased by a small proportion. The different trends between
SO2 and NO2 indicate that other sources (e.g. traffic emis-
sions, Fig. S9) or atmospheric processes have a greater in-
fluence on ambient concentration of NO2 than coal combus-
tion. For example, the chemistry of the NO–NO2–O3 system
will tend to “buffer” changes in NO2 causing non-linearity
in NOx−NO2 relationships (Marr and Harley, 2002). NO2
concentrations decreased more rapidly from January 2015,
specifically by 17 %, 18 %, 10 %, and 15 % (Fig. 2) in the
first 6 months of 2015, which suggests that emission control
measures implemented in 2015 were effective. These mea-
sures include regulations on spark ignition light vehicles to
meet the national fifth phase standard and expanded traffic re-
strictions to certain vehicles, including banning entry of high
polluting and non-local vehicles to the city within the sixth
ring road during daytime and the phasing out of 1 million old
vehicles (Yang et al., 2015) (Sect. S2).

Normalized PM2.5 decreased faster than NO2, but more
slowly than SO2 (Fig. S9). Yearly peak normalized PM2.5
concentrations decreased from 2013–2014 to 2015–2016 but
slighted rebounded in 2016–2017. The monthly normalized
peak PM2.5 concentration decreased from 115 µg m−3 in Jan-
uary 2013 to 60 µg m−3 in December 2017. The biggest drop
is seen in winter 2017, which decreased by more than half
from the peak value in winter 2016, suggesting that the “no
coal zone” policy (Sect. S2) to reduce pollutant emissions
from winter-specific sources (i.e., heating and residential sec-
tors) was highly effective in reducing PM2.5. The normalized
“baseline” concentration – minimum monthly average con-
centration in the summer – also decreased from 71 µg m−3

in summer 2013 to 42 µg m−3 in summer 2017. This sug-
gests that non-heating emission sources, including industry,
industrial heating, and power plants also contributed to the
decrease in PM2.5 from 2013 to 2017. These are broadly
consistent with the PM2.5 and SO2 emission trends in MEIC
(Fig. S8). A small peak in both PM2.5 and CO in June–July
seen in Fig. 2 from 2013 to 2016 attributed to agricultural
burning almost disappeared over the period of the measure-
ments and simulations in 2017, suggesting the ban on open
burning is effective.

The normalized trend of PM10 is similar to that of PM2.5,
except that the rate of decrease is slower. The trend agrees
well with PM10 primary emissions for the summer (Fig. S8).
The biggest drop in peak monthly PM10 concentration is seen
in winter 2017, which decreased by more than half from the
peak value in winter 2016, suggesting that no coal zone pol-
icy (Sect. S2) to reduce pollutant emissions from winter-
specific sources (i.e., heating and residential sectors) was
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highly effective in reducing PM10, as with PM2.5. The rate
of decrease in peak monthly PM10 emission is slower than
that of weather-normalized PM10 concentrations, which may
suggest an underestimation of the decrease by the MEIC.
The normalized baseline concentration (minimum monthly
average concentration, Fig. 2) – also decreased substantially
from 2013 to 2017. This indicates that non-heating emission
sources, including industry, industrial heating, and power
plants also contributed to the decrease in PM10. This is con-
sistent with the trends in MEIC (Fig. S8). The peaks in the
spring are attributed to Asian dust events.

The normalized CO trend shows that the peak CO concen-
tration decreased by approximately 50 % from 2013 to 2017
with the largest drop from 2016 to 2017 (Fig. 2). The decreas-
ing trend in total emission of CO in the MEIC is slower from
2015 to 2017, suggesting that CO emission in the MEIC may
be overestimated in these 2 years. During 2013–2016, the
CO level decreased by 26 % and 34 % for winter and sum-
mer. Similar to the normalized PM2.5 trend, a small peak of
CO concentration occurred in June–July during 2013–2016,
which is likely associated with open biomass burning around
the Beijing region. This peak disappeared in 2017. A major
decrease in normalized CO levels in winter 2017 is mainly
attributed to the no-coal zone policy (see below Sect. S2;
Fig. S8).

3.5 Implications and future perspectives

We have applied a machine-learning-based model to identify
the key mitigation measures contributing to the reduction of
air pollutant concentrations in Beijing. However, three chal-
lenges remain. Firstly, it is not always straightforward to link
a specific mitigation measure to improvement in air quality
quantitatively. This is because often more than two measures
were implemented on a similar timescale, making it difficult
to disentangle the impacts. Secondly, we were not able to
compare the calculated benefit for each mitigation measure
with that intended by the government due to a lack of in-
formation about the implemented policies, for example, the
start and end dates of air pollution control actions. If data on
the intended benefits are known, this will further enhance the
value of this type of study. Thirdly, the ozone level increased
slightly during 2013–2017, especially for the summer peri-
ods (Table 1). Because ozone is a secondary pollutant, in-
terpretation of the effects of emission changes of precursor
pollutants is complex and beyond the scope of this study.

Our results confirm that the action plan has led to a major
improvement in the real (normalized) air quality of Beijing
(Fig. 3). However, it would have failed to meet the target for
annual average PM2.5 concentrations if not for better-than-
average air pollutant dispersion (meteorological) conditions
in 2017. This suggests that future target setting should con-
sider meteorological conditions. Major challenges remain in
reducing the PM2.5 levels to below Beijing’s own targets, as
well as China’s national air quality standard and WHO guide-

lines. Another challenge is to reduce the NO2 and O3 levels,
which show little decrease or even an increase from 2013
to 2017. The lessons learned in Beijing thus far may prove
beneficial to other cities as they develop their own clean air
strategies.
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