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Abstract. In this paper, a new methodology coupling aerosol
optical and chemical parameters in the same source appor-
tionment study is reported. In addition to results on source
contributions, this approach provides information such as
estimates for the atmospheric absorption Ångström expo-
nent (α) of the sources and mass absorption cross sections
(MACs) for fossil fuel emissions at different wavelengths.

A multi-time resolution source apportionment study using
the Multilinear Engine (ME-2) was performed on a PM10
dataset with different time resolutions (24, 12, and 1 h) col-
lected during two different seasons in Milan (Italy) in 2016.
Samples were optically analysed by an in-house polar pho-
tometer to retrieve the aerosol absorption coefficient bap (in
Mm−1) at four wavelengths (λ= 405, 532, 635, and 780 nm)
and were chemically characterized for elements, ions, lev-
oglucosan, and carbonaceous components. The dataset join-
ing chemically speciated and optical data was the input for
the multi-time resolution receptor model; this approach was
proven to strengthen the identification of sources, thus being
particularly useful when important chemical markers (e.g.
levoglucosan, elemental carbon) are not available. The fi-
nal solution consisted of eight factors (nitrate, sulfate, re-
suspended dust, biomass burning, construction works, traf-
fic, industry, aged sea salt); the implemented constraints led

to a better physical description of factors and the bootstrap
analysis supported the goodness of the solution. As for bap
apportionment, consistent with what was expected, biomass
burning and traffic were the main contributors to aerosol
absorption in the atmosphere. A relevant feature of the ap-
proach proposed in this work is the possibility of retriev-
ing a lot of other information about optical parameters; for
example, in contrast to the more traditional approach used
by optical source apportionment models, here we obtained
source-dependent α values without any a priori assumption
(α biomass burning = 1.83 and α fossil fuels = 0.80). In ad-
dition, the MACs estimated for fossil fuel emissions were
consistent with literature values.

It is worth noting that the approach presented here can also
be applied using more common receptor models (e.g. EPA
PMF instead of multi-time resolution ME-2) if the dataset
comprises variables with the same time resolution as well as
optical data retrieved by widespread instrumentation (e.g. an
Aethalometer instead of in-house instrumentation).
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1 Introduction

Atmospheric aerosol impacts on both local and global scale,
causing adverse health effects (Pope and Dockery, 2006), de-
creasing visibility (Watson, 2002), and influencing the cli-
mate (IPCC, 2013). To face these issues an accurate knowl-
edge of aerosol emission sources is mandatory.

Currently, multivariate receptor models are considered a
robust approach (Belis et al., 2015) for performing source ap-
portionment studies, and positive matrix factorization (PMF)
(Paatero and Tapper, 1994) has become one of the most
widely used receptor models (Hopke, 2016) in the aerosol
community. In the late 1990s, the Multilinear Engine (ME-
2) was developed and proven to be a very flexible algorithm
to solve multilinear and quasi-multilinear problems (Paatero,
1999). The scripting feature of this algorithm allows the im-
plementation of advanced receptor modelling approaches;
one example is the multi-time resolution model (Zhou et al.,
2004), which uses each experimental datum in its original
time schedule as model input. Source apportionment studies
carried out by multi-time resolution models are still scarce in
the literature (Zhou et al., 2004; Ogulei et al., 2005; Kuo et
al., 2014; Liao et al., 2015; Crespi et al., 2016; Sofowote et
al., 2018), although this methodology is very useful in mea-
surement campaigns when instruments with different time
resolutions (minutes, hours, or days) are available as high
time resolution data can be exploited without averaging them
over the longest sampling interval.

It is noteworthy that the combination of time-resolved
chemically speciated data with the information obtained
from instrumentation measuring aerosol optical properties at
different wavelengths (e.g. the absorption coefficient bap) is
suggested as one of the future investigations of receptor mod-
elling (Hopke, 2016); however, to the best of our knowledge,
very few attempts in this direction have been made (e.g. Peré-
Trepat et al., 2007; Xie et al., 2019). Wang et al. (2011, 2012)
in a source apportionment study used the Delta-C (Delta-C=
BC@370–BC@880 nm from Aethalometer measurements)
as an additional input variable and found that Delta-C was
very useful in separating traffic from biomass burning source
contributions.

The wavelength dependence of bap can be empirically con-
sidered to be proportional to λ−α , where α is the absorp-
tion Ångström exponent; α depends on particle composi-
tion and size, and it is a useful parameter to gain informa-
tion about particle type in the atmosphere (see e.g. Yang et
al., 2009). Among aerosol components, black carbon (BC)
is the main factor responsible for light absorption in the at-
mosphere; in fact, it is considered the main aerosol contrib-
utor to global warming and the second most important an-
thropogenic contributor after CO2 (Bond et al., 2013). Black
carbon refers to a fraction of the carbonaceous aerosol char-
acterized by peculiar features as for microstructure, mor-
phology, thermal stability, solubility, and light absorption
(Petzold et al., 2013); in particular, it is characterized by a

wavelength-independent imaginary part of the refractive in-
dex over visible and near-visible regions. Another aerosol-
absorbing component is brown carbon (BrC), referred to as
light-absorbing organic matter with increasing absorption to-
wards shorter wavelengths, especially in the UV region (An-
dreae and Gelencsér, 2006). BrC is an aerosol component
that also affects the elemental vs. organic carbon correct sep-
aration when using thermal-optical methods as outlined by
Massabò et al. (2016).

Source apportionment models based only on multi-
wavelength bap data are available in the literature, i.e. the
widespread Aethalometer model (Sandradewi et al., 2008a)
and the more recent Multi-Wavelength Absorption Analyzer
(MWAA) model (Massabò et al., 2015; Bernardoni et al.,
2017b). Briefly, these models estimate the source contribu-
tions to aerosol absorption, exploiting their different depen-
dence on λ (i.e. different α). As a step forward, MWAA pro-
vides the bap apportionment in relation to both the sources
(i.e. fossil fuel combustion and biomass burning) and the
components (i.e. BC and BrC), and also provides an esti-
mate for α of BrC. Indeed, source apportionment models
based on optical data usually assume two contributors to bap,
namely fossil fuel combustion and biomass burning (only a
few exceptions are present in the literature, e.g. Fialho et al.,
2005). In most cases this assumption is well founded, ex-
cept when episodic events giving a non-negligible contribu-
tion to aerosol absorption in the atmosphere occur, such as in
the presence of mineral dust from the Sahara Desert (Fuzzi
et al., 2015). Moreover, the above-mentioned models need a
priori assumptions about the α values of the sources and wide
ranges for α are reported in the literature (e.g. Sandradewi et
al., 2008a); this is the most critical step, since α depends on
fuel type, burning conditions and aging processes in the at-
mosphere. Without accurate determination of source-specific
atmospheric α (for example exploiting the information de-
rived from source apportionment using 14C measurements),
the applicability of models based on optical data is question-
able (Bernardoni et al., 2017b; Massabò et al., 2015; Zotter
et al., 2017). Moreover, the generally accepted assumption
of α = 1 for fossil fuels and BC, arising from the theory of
absorption by spherical particles in the Rayleigh regime (Se-
infeld and Pandis, 2006), might not always be valid for aged
atmospheric aerosol (Liu et al., 2018).

In the framework of a source apportionment study based
on multi-time resolution receptor modelling, optical and
chemical datasets were joined to retrieve a multi-λ appor-
tionment of bap, with no need for a priori assumptions about
the contributing sources. Instead of using α as an a priori in-
put, as far as we know here for the first time, this approach
directly provided source-dependent α values. Moreover, the
multi-λ apportionment of bap in each source allowed us to
estimate MAC values at different wavelengths, exploiting
the well-known relation EBC= bap(λ)/MAC(λ) (Bond and
Bergstrom, 2006) where elemental carbon (EC) apportioned
by the model was considered to be a proxy for BC. The eval-
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uation of atmospheric MAC values is also not trivial due
to the possible presence of absorbing components different
from BC (e.g. contribution from BrC, especially at shorter
wavelengths).

The original approach proposed in this work shows that
coupling the chemical and optical information in a receptor
modelling process is particularly advantageous because (1) it
strengthens the source identification that is particularly use-
ful when relevant chemical tracers (e.g. levoglucosan, EC)
are not available; (2) it gives estimates for source-specific
atmospheric α values which are typically assumed a priori
in source apportionment models based on optical data; and
(3) it provides MAC values at different wavelengths for spe-
cific sources.

In this work, optical data were measured by an in-house
multi-wavelength polar photometer and input data (chemi-
cal + optical) in the receptor model comprised variables ac-
quired with different time resolutions. Anyway, it is worth
noting that the approach presented here is of general interest
as the same methodology could be applied to (1) datasets
combining aerosol chemical and optical data obtained by
widespread instrumentation (e.g. Aethalometers for optical
data) and (2) variables with the same time resolution.

2 Material and methods

2.1 Site description and aerosol sampling

Two measurement campaigns were performed during sum-
mertime (June–July) and wintertime (November–December)
2016 in Milan (Italy). Milan is the largest city (more than
1 million inhabitants, doubled by commuters everyday) of
the Po Valley, a very well-known hotspot pollution area in
Europe due to both large emissions from a variety of sources
(i.e. traffic, industry, domestic heating, energy production
plants, and agriculture) and low atmospheric dispersion con-
ditions (e.g. Vecchi et al., 2007, 2019; Perrone et al., 2012;
Bigi and Ghermandi, 2014; Perrino et al., 2014).

The sampling site is representative of the urban back-
ground and it is situated at about 10 m above the ground, on
the roof of the Physics Department of the University of Mi-
lan, less than 4 km from the city centre (Vecchi et al., 2009).
It is important to note that during the sampling campaigns, a
large building site was active next to the monitoring station.

Aerosol sampling was carried out using instrumentation
with different time resolutions. Low time resolution PM10
data, with sampling durations of 24 and 12 h during summer-
time (20 June–22 July 2016) and wintertime (21 November–
22 December 2016), respectively, were collected in parallel
on PTFE (Whatman, 47 mm diameter) and pre-fired (700 ◦C,
1 h) quartz-fibre (Pall, 2500QAO-UP, 47 mm diameter) fil-
ters. Low-volume samplers with EPA PM10 inlet operating
at 1 m3 h−1 were used. High time resolution data were col-
lected during shorter periods (11–18 July and 21–28 Novem-

ber 2016) by a streaker sampler (D’Alessandro et al., 2003).
Briefly, the streaker sampler collects the fine and coarse PM
fractions (particles with aerodynamic diameter dae < 2.5 µm,
and 2.5 < dae < 10 µm, respectively) with hourly resolution.
Particles with dae > 10 µm impact on the first stage and are
discarded; the coarse fraction deposits on the second stage,
consisting of a Kapton foil; finally, the fine fraction is col-
lected on a polycarbonate filter. The two collecting supports
are kept in rotation with an angular speed of about 1.8◦ h−1

to produce a circular continuous deposit on both stages.
Meteorological data were available at a monitoring sta-

tion belonging to the regional environmental agency (ARPA
Lombardia) which is less than 1 km away.

2.2 PM mass concentration and chemical
characterization

In this section, chemical analyses performed on samples are
summarized. As concentration detected in each sample was
characterized by its own uncertainty, only ranges for experi-
mental uncertainties and minimum detection limits (MDLs)
for every set of variables are reported.

PM10 mass concentration was determined on PTFE filters
by a gravimetric technique. Weighing was performed by an
analytical balance (Mettler, model UMT5, 1 µg sensitivity)
after a 24 h conditioning period in an air-controlled room as
for temperature (20± 1 ◦C) and relative humidity (50± 3 %)
(Vecchi et al., 2004).

These filters were then analysed by energy dispersive X-
ray fluorescence (ED-XRF) analysis to obtain the elemental
composition (details on the procedure can be found in Vec-
chi et al., 2004). For most elements and samples, concentra-
tions were characterized by relative uncertainties in the range
7 %–20 % (higher uncertainties for elements with concentra-
tions next to MDLs) and minimum detection limits of 0.9–
30 ng m−3 with the above-mentioned sampling conditions.

For each quartz-fibre filter, one punch (1.5 cm2) was ex-
tracted by sonication (1 h) using 5 mL ultrapure Milli-Q
water and levoglucosan and inorganic anions concentra-
tions were quantified. Levoglucosan concentration was de-
termined by high-performance anion exchange chromatog-
raphy coupled with pulsed amperometric detection (HPAEC-
PAD) (Piazzalunga et al., 2010) only in winter samples. In-
deed, as already pointed out by other studies at the same sam-
pling site (Bernardoni et al., 2011) and routinely assessed at
monitoring stations in Milan by the Regional Environmen-
tal Agency (private communication), levoglucosan concen-
trations during summertime are lower than the MDLs (i.e.
about 6 ng m−3), due to both lower emissions (no influence of
residential heating and negligible impact from other sources)
and higher OH levels in the atmosphere depleting molec-
ular marker concentrations (Robinson et al., 2006; Henni-
gan et al., 2010). Uncertainties on levoglucosan concentra-
tion were about 11 %. The quantification of the main water-
soluble inorganic anions (SO2−

4 and NO−3 ) was performed
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by ion chromatography (IC); MDLs were 25 and 50 ng m−3

with summertime and wintertime sampling conditions, re-
spectively, and uncertainties were about 10 %. Unfortunately,
due to technical problems, no data on ammonium were avail-
able. Details on the analytical procedure for IC analysis are
reported in Piazzalunga et al. (2013).

Another punch (1.0 cm2) of each quartz-fibre filter was
analysed by thermal optical transmittance analysis (TOT,
Sunset Inc., NIOSH-870 protocol) (Piazzalunga et al., 2011)
in order to assess organic and elemental carbon (OC and EC)
concentrations. MDLs were 75 and 150 ng m−3 with sum-
mertime and wintertime sampling conditions, respectively,
and uncertainties were in the range 10 %–15 %.

Hourly elemental composition was assessed by the
particle-induced X-ray emission (PIXE) technique, using a
properly collimated proton beam and scanning the deposits
in steps corresponding to 1 h aerosol deposit (details in Cal-
zolai et al., 2015). As low time resolution PM10 samples were
also available, fine and coarse elemental concentrations de-
termined by PIXE analysis were added up to obtain PM10
concentrations with hourly resolution. PM10 hourly concen-
trations for most elements and samples were characterized by
relative uncertainties in the range 10 %–30 % (higher uncer-
tainties for elements near MDLs) and MDLs ranged from a
minimum of 0.1 to a maximum of 15 ng m−3 (higher MDLs
typically detected for Z < 20 elements).

2.3 Aerosol light-absorption coefficient measurements

The aerosol absorption coefficient (bap) at the four wave-
lengths λ= 405, 532, 635, and 780 nm was measured on both
low and high time resolution samples with the in-house po-
lar photometer PP_UniMI (Vecchi et al., 2014; Bernardoni et
al., 2017c).

Low time resolution optical measurements taken into ac-
count were those performed on PTFE filters since their physi-
cal characteristics can be considered more similar to polycar-
bonate filters used by the streaker sampler. Moreover, previ-
ous works reported a bias on bap measured by instrumenta-
tion using fibre filters (e.g. Cappa et al., 2008: Lack et al.,
2008; Davies et al., 2019, and references therein). Vecchi et
al. (2014) found that bap at 635 nm was 40 % higher when
measured on a quartz-fibre filter compared to parallel sam-
ples collected on PTFE. This effect was ascribed to sampling
artefacts due to organics in aerosol samples collected in Mi-
lan.

As for high time resolution samples, bap was measured
only in the fine fraction collected on polycarbonate filters
since absorption of the Kapton foil on which the coarse frac-
tion was collected did not allow bap assessment. Anyway, bap
values in PM2.5 and PM10 were expected to be fairly com-
parable, as aerosol absorption in the atmosphere is mostly
due to particles in the fine fraction at heavily polluted urban
sites like Milan. To verify this assumption, high time resolu-
tion bap data in PM2.5 were averaged over the timescale of

low time resolution bap in PM10 and compared; the agree-
ment was good, between 11 % and 13 % depending on the
λ, except for bap at λ= 405 nm that showed a higher dif-
ference (27 %) but with most data (83 %) within experimen-
tal uncertainties. To take into account this difference, bap
data at λ= 405 nm were homogenized before using them in
the model, following the criterion used for chemical species
(for further details about the homogenization procedure, see
Sects. 2.4 and 2.5).

Uncertainties on bap were quantified in 15 % and MDL
was in the range 1–10 Mm−1 depending on sampling du-
ration and wavelength as already reported in Vecchi et
al. (2014) and Bernardoni et al. (2017c). The pre-treatment
procedure for experimental uncertainties and MDLs was the
same used for chemical variables in order to create suitable
input matrices required by the multi-time resolution model
(see also Sect. 2.5). Optical system stability was checked dur-
ing the measurement session, evaluating the reproducibility
of the measurement on a blank test filter. Laser stability was
also checked at least twice a day and the recorded intensities
were used to normalize blank and sampled filter analysis.

2.4 Model description

Multivariate receptor models (Henry, 1997) are among the
most widespread and robust approaches used to perform
source apportionment studies for atmospheric aerosol (Belis
et al., 2014, 2015). In particular, positive matrix factoriza-
tion PMF2 (Paatero and Tapper, 1994; Paatero, 1997) had
been extensively used in the literature and, afterwards, the
Multilinear Engine ME-2 (Paatero, 1999, 2000) introduced
the possibility of solving all kinds of multilinear and quasi-
multilinear problems. The fundamental principle of these
modelling approaches is the mass conservation between the
emission source and the receptor site; using the information
carried by aerosol chemical composition assessed in samples
collected at the receptor site, a mass balance analysis can be
performed to identify the factors influencing aerosol mass
concentrations (Hopke, 2016). Factors can be subsequently
interpreted as the main sources impacting the site, through
the knowledge about major sources in the investigated area
and the exploitation of chemical fingerprints available from
previous literature works (Belis et al., 2014). Referring to
the input data as matrix X (matrix elements xij ), the chem-
ical profile of the factors as matrix F (matrix elements fkj ),
and the time contribution of the factors as matrix G (matrix
elements gik), the main equation of a bilinear problem can be
written as follows:

xij =

P∑
k=1

gikfkj + eij , (1)

where the indices i, j , and k indicate the sample, the species,
and the factor, respectively; P is the number of factors and
the matrix E (matrix elements eij ) is composed of the resid-
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uals, i.e. the difference between measured and modelled val-
ues.

In this way, a system of N ×M equations is established,
where N is the number of samples and M is the number of
species. The solution of the problem is computed by mini-
mizing the object function Q defined as

Q=

N∑
i=1

M∑
j=1

(
eij

σij

)2

, (2)

where σij are the uncertainties related to the input data.
The multi-time resolution receptor model was developed

in order to use each data value in its original time schedule,
without averaging the high time resolution data or interpolat-
ing the low time resolution data (Zhou et al., 2004; Ogulei
et al., 2005). The main Eq. (1) is consequently modified as
below:

xsj =
1

ts2− ts1+ 1

P∑
k=1

fkj

ts2∑
i=ts1

gikηjm+ esj , (3)

where the indices s, j , and k indicate the sample, the species,
and the factor, respectively; P is the number of factors; ts1
and ts2 are the starting and ending times for the sth sample
in time units (i.e. the shortest sampling interval that is 1 h for
the dataset used here); and i represents one of the time units
of the sth sample. ηjm are adjustment factors for chemical
species replicated with different time resolution and mea-
sured with different analytical methods (represented by the
subscript m).

If η is close to unity, species concentration measured by
different analytical approaches can be considered in good
agreement; non-replicated species have adjustment factors
set to unity by default. In this work, the adjustment factors
were always set to unity in the model; to take into account the
use of two types of aerosol samplers (i.e. low-volume sam-
pler with EPA inlet and streaker sampler) and different ana-
lytical techniques to obtain the elemental composition (i.e.
ED-XRF and PIXE), concentrations of replicated species
with multiple time resolutions were homogenized before in-
serting them into the input matrix X, as will be explained in
Sect. 2.5. This data treatment avoids the consistency check
between η values calculated by the model and differences in
experimental data characterized by high and low time reso-
lution. Otherwise, this step should always be performed after
running the model.

In the multi-time resolution model the following regular-
ization equation is introduced to take into account that some
sources could contain few or no species measured with high
time resolution:

g(i+1) k − gik = 0+ εi, (4)

where εi represent the residuals.
As already pointed out by Ogulei et al. (2005), a weighing

parameter for species might be necessary; in this study, it was

implemented in the equations and set at 0.5 for strong species
(not applied to weaker species such as Na, Mg, and Cr; see
Sect. 2.5) in 24 or 12 h samples.

Equations (3) and (4) are solved using the Multilinear En-
gine (ME) program (Paatero, 1999). In Eq. (2), the object
functionQ takes into account residuals from the main Eq. (3)
and from the auxiliary equations (regularization Eq. 4, nor-
malization equation, pulling equations, and constraints).

In this work, the multi-time resolution model implemented
by Crespi et al. (2016) was used; therefore, constraints were
inserted into the model and the bootstrap analysis was also
performed to evaluate the robustness of the final solution.

2.5 Input data

As already mentioned in Sect. 2.4, instead of using adjust-
ment factors in the model (all set equal to one), concen-
trations of replicated species with different time resolutions
were pre-homogenized and then inserted into the input ma-
trix X. Concentration data with longer sampling intervals (24
and 12 h in this work) were considered to be the benchmark,
since analytical techniques usually show a better accuracy on
concentration values far from MDLs (i.e. samples collected
on longer time intervals) (Zhou et al., 2004; Ogulei et al.,
2005).

Variables were then classified as weak and strong ac-
cording to the signal-to-noise ratio (S/N) criterion (Paatero,
2015). For hourly data only strong variables (S/N≥ 1.2)
were considered; for low time resolution data weak variables
such as Na, Mg, and Cr (with S/N equal to about 0.8) being
strong variables in hourly samples were also included, al-
though with associated uncertainties comparable to concen-
tration values in order to avoid the exclusion of too many
data. Indeed, excluding these low time resolution variables
from the analysis gave rise to artificial high values in the
time contribution matrix for sources traced by these species
(in this case it was an issue for aged sea salt traced by Na and
Mg; see Sect. 3.2); this oddity was already reported by Zhou
et al. (2004).

Every measured variable in each sample is characterized
by its own uncertainty; ranges of experimental uncertainties
and MDLs are reported in Sects. 2.2 and 2.3 for chemical
and optical analyses, respectively. Variables with more than
20 % of the concentration data below MDL values were omit-
ted from the analysis (Ogulei et al., 2005). Uncertainties and
data below minimum detection limits were pre-treated ac-
cording to Polissar et al. (1998). In general, missing concen-
tration values were estimated by linear interpolation of the
measured data and their uncertainties were assumed to be 3
times this estimated value (Zhou et al., 2004; Ogulei et al.,
2005). As for summertime levoglucosan data (always below
MDLs), the approach was to include them as below-MDL
data and not as missing data following Zhou et al. (2004),
who underlined that the multi-time resolution model is more
sensitive to missing values than the original PMF model. In
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order to avoid double counting, in this study S was chosen as
the input variable instead of SO2−

4 as it was determined on
both low time and high time resolution samples (by XRF and
PIXE analysis, respectively; see Calzolai et al., 2008). How-
ever, elemental SO2−

4 and S concentrations showed a high
correlation (correlation coefficient R = 0.98) and the Dem-
ing regression gave a slope of 2.69± 0.13 (sulfate vs. sul-
fur) with an intercept of −198± 82 ng m−3, i.e. compatible
with zero within 3 standard deviations. The slight difference
(of the order of 10 %) between the estimated slope and the
SO2−

4 -to-S stoichiometric coefficient (i.e. 3) can be ascribed
to either a small fraction of insoluble sulfate or to the use of
different analytical techniques.

PM10 mass concentrations were included in the model
with uncertainties set at 4 times their values (Kim et al.,
2003). In the end, 22 low time resolution variables (PM10
mass, Na, Mg, Al, Si, S, K, Ca, Cr, Mn, Fe, Cu, Zn, Pb,
EC, OC, levoglucosan, NO−3 , bap 405 nm, bap 532 nm, bap
635 nm, bap 780 nm) and 17 hourly variables (Na, Mg, Al,
Si, S, K, Ca, Cr, Mn, Fe, Cu, Zn, Pb, bap 405 nm, bap 532 nm,
bap 635 nm, bap 780 nm) were considered.

The input matrix X consisted of 386 samples and the to-
tal number of time units was 1117. The analysis was per-
formed in the robust mode; the lower limit for G contribu-
tion was set to−0.2 (Brown et al., 2015) and the error model
em=−14 was used for the main equation with C1 = input
error, C2 = 0.0, and C3 = 0.1 (Paatero, 2012) for both chem-
ical and optical absorption data.

Sensitivity tests on the uncertainty of absorption data
were performed starting from a minimum experimental un-
certainty of 10 %. Lower uncertainties were considered not
physically meaningful from an experimental point of view.
ME-2 analyses performed with 10 % experimental uncer-
tainty on absorption data gave very similar results to the base-
case solution presented in the Supplement (Fig. S1 and Ta-
ble S3 in the Supplement), with no differences in mass ap-
portionment and a maximum variation in the concentrations
of chemical and optical profiles (matrix F) of 7 % when con-
sidering significant variables in each profile (i.e. explained
variation for matrix F EVF higher or near 0.30). In contrast,
considering an experimental uncertainty of 20 % on absorp-
tion data, the solution significantly differed from the one re-
ported in the Supplement and showed less physical meaning
(e.g. a couple of factors got mixed, or an additional unique
factor appeared giving a null mass contribution). Thus, the
estimated relative experimental uncertainty of 15 % was here
considered appropriate for optical variables.

It is also noteworthy that ME-2/PMF analysis is not a pri-
ori harmed by the use of joint matrices containing different
dimensions/units (see e.g. Paatero, 2018). Indeed, if different
units are present in different columns of matrix X, the output
data in the factor matrix G are pure numbers and elements
in a column of the factor matrix F carry the same dimension
and unit as the original data in matrix X. In addition, the av-
erage total contribution to the mass of a specific source due

to species in a certain factor in matrix F must be retrieved a
posteriori by summing up only mass contributions by chemi-
cal components (i.e. excluding optical components in matrix
F).

To the authors’ knowledge, this was the first time that
the absorption coefficient at different wavelengths was intro-
duced in the multi-time resolution model jointly with chem-
ical variables and used to more robustly identify the sources;
moreover, this approach led to the assessment of source-
dependent α and MAC values in an original way.

3 Results and discussion

3.1 Concentration values

In Table S1 basic statistics on mass and chemical species
concentrations at different time resolutions are given.

Most variables showed higher mean and median concen-
trations during the winter campaign, when atmospheric sta-
bility conditions influenced the monitoring site; exceptions
were Al, Si and Ca, which had lower median concentrations
(as detected in low time resolution samples). This was not un-
expected as they are typical tracers of soil dust resuspension
(Viana et al., 2008) that can be more relevant during summer-
time due to drier soil conditions and stronger atmospheric
turbulence. Moreover, the good correlation between these el-
ements (Al vs. Si: R2

= 0.94 and Ca vs. Si: R2
= 0.78) sug-

gested their common origin.
Potassium showed the clearest seasonal behaviour in con-

centration values going from 284 ng m−3 (10th–90th per-
centile: 151–344 ng m−3) to 660 ng m−3 (10th–90th per-
centile: 349–982 ng m−3) in summer and winter, respec-
tively, in low time resolution samples. K is an ambiguous
tracer, since it is emitted by a variety of sources, among
which there are crustal resuspension and biomass burning.
In our dataset, wintertime K values showed a good correla-
tion with levoglucosan concentrations (R2

= 0.71), suggest-
ing the impact of biomass burning as levoglucosan is a well-
known tracer for biomass burning emissions in winter sam-
ples (Simoneit et al., 1999). Also looking at the K-to-Si ratio
(where Si was taken as a soil dust marker), significant sea-
sonal differences came out; it was 0.35± 0.15 in high time
resolution summer samples and 2.0± 2.2 in winter ones, to
be compared with the much more stable Al-to-Si ratio (i.e.
0.26± 0.04 and 0.28± 0.09 in summer and winter, respec-
tively) indicating a soil-related origin.

Among the elements typically associated with anthro-
pogenic sources, Fe and Cu showed a good correlation (e.g.
R2
= 0.72 on hourly resolution samples) as well as Cu and

EC (Cu vs. EC: R2
= 0.84, on low time resolution data); in

addition, the diurnal pattern of Fe and Cu showed traffic rush-
hour peaks (07:00–09:00 LT and around 19:00 LT as shown
in Fig. 1). These results were suggestive of a common source;
in the literature these aerosol chemical components are re-
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Figure 1. Diurnal profile of Fe and Cu concentrations (in ng m−3).

Figure 2. Diurnal profile of the aerosol absorption coefficient (in
Mm−1) measured at different wavelengths.

ported as tracers for vehicular emissions (e.g. Viana et al.,
2008; Thorpe and Harrison, 2008).

In Table S2 basic statistics on bap values referring to low-
resolution samples collected on PTFE are also reported. Di-
urnal mean temporal patterns for bap at different wavelengths
(retrieved from hourly resolved data) are displayed in Fig. 2.

3.2 Source apportionment with the multi-time
resolution model

Different solutions (from 5 to 10 factors) were explored; af-
ter 30 convergent runs, the eight-factor base-case solution
corresponding to the lowest Q value (2086.88) was firstly
selected (see Fig. S1). It is important to note that the model
was run using all variables (chemical+ optical) as explained
in Sect. 2.5. A lower or higher number of factors caused
ambiguous chemical profiles and the physical interpretation
suggested clearly mixed sources for a lower number of fac-
tors or unique factors in case of more factors (i.e. Pb for
nine factors); moreover, inconsistent mass closure was de-
tected by increasing the number of factors (e.g. the sum of
species contribution was up to 25 % higher than the mass
for the 10-factor solution). In the eight-factor base-case so-
lution, the mass was well reconstructed by the model (R2

=

0.98), with a slope of 0.98± 0.02 and a negligible intercept
(0.51± 0.89 µg m−3).

The factor-to-source assignment was based on both EVF
values – which are typically higher for chemical tracers (Lee
et al., 1999; Paatero, 2010) – and the physical consistency
of factor chemical profiles. In the chosen solution, the unex-
plained variation was lower than 0.25 for all variables. The
uncertainty-scaled residuals (Norris et al., 2014) showed a
random distribution of negative and positive values in the
±3 range, with a Gaussian shape for most of the variables
(Fig. S2).

Using EVF and chemical profiles reported in Fig. S1a, the
eight factors were tentatively assigned to nitrate, sulfate, re-
suspended dust, biomass burning, construction works, traffic,
industry, and aged sea salt. In Table S3 absolute and relative
average source contributions to PM10 mass are reported.

Although the above-mentioned base-case solution was a
satisfactory representation of the main sources active in the
area (as reported in previous works; see e.g. Marcazzan et
al., 2003; Vecchi et al., 2009, 2018; Bernardoni et al., 2011,
2017a; Amato et al., 2016), the chemical profiles of some
factors were improved by exploring rotated solutions. The
most relevant case was represented by aged sea salt where
typical diagnostic ratios such as Mg/Na and Ca/Na (in bulk
seawater equal to 0.12 and 0.04, respectively, as reported e.g.
in Seinfeld and Pandis, 2006) were not well reproduced in
the base-case solution and the chemical profile was too much
impacted by the presence of Fe compared to bulk seawa-
ter composition. Therefore, the above-mentioned diagnostic
ratios were here used as constraints and Fe was maximally
pulled down in the chemical profile. The effective increase in
Qwas about 61 units (Q= 2147), with a percentage increase
of about 3 %; as a rule of thumb, an increase in the Q value
of a few tens is generally considered acceptable (Paatero and
Hopke, 2009). It is noteworthy that the constrained solution
led to an improvement in the chemical profile of the aged
sea salt, and negligible differences in all other relevant fea-
tures of the solution (i.e. EVF, residuals, mass reconstruction,
source apportionment) were found compared to the base-case
solution. Therefore, the eight-factor constrained solution was
considered the most physically reliable; results are presented
in Table 1 and Fig. 3 and discussed in detail in the following.

The factor interpreted as nitrate fully accounted for the ex-
plained variation of NO−3 . This factor contained a significant
fraction of nitrate in the chemical profile (39 %) and all ni-
trate was present only in this factor. This source was by far
the most significant one at the investigated site, explaining
about 31 % of the PM10 mass over the whole campaign (a
similar estimate – 26 % – was reported by Amato et al. (2016)
during the AIRUSE campaign in Milan in 2013) increasing
up to 44 % during wintertime (comparable to the 37 % re-
ported by Vecchi et al., 2018). Indeed, the Po Valley is well
known for experiencing very high nitrate concentrations dur-
ing wintertime (Vecchi et al., 2018, and references therein)
because of large emissions of gaseous precursors related to
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Table 1. Absolute and relative average source contributions to PM10 mass in the eight-factor constrained solution.

Factors Summer (µg m−3) Winter (µg m−3) Total (µg m−3)

Nitrate 3.6 (15 %) 21.1 (44 %) 10.2 (31 %)
Sulfate 6.3 (26 %) 8.1 (17 %) 7.0 (21 %)
Resuspended dust 4.6 (19 %) 1.7 (4 %) 3.5 (11 %)
Biomass burning 0.32 (1 %) 8.3 (17 %) 3.3 (10 %)
Construction works 5.9 (24 %) 3.4 (7 %) 4.9 (15 %)
Traffic 1.4 (6 %) 2.2 (5 %) 1.7 (5 %)
Industry 0.86 (4 %) 1.2 (3 %) 1.0 (3 %)
Aged sea salt 1.4 (6 %) 1.8 (4 %) 1.6 (5 %)

urban and industrial activities, residential heating, high am-
monia levels due to agricultural field manure and poor atmo-
spheric dispersion conditions.

The factor associated with sulfate showed EVF = 0.47 for
S and much lower EVF for all the other variables in the fac-
tor. Considering the sulfur contribution in the chemical pro-
file in terms of ammonium sulfate, the relative contribution
of sulfur components in the profile increased from 11 % (S)
up to 45 % (ammonium sulfate). The latter is the main sulfur
compound detected in the Po Valley as reported in previous
papers such as Marcazzan et al. (2001) and was by far the
highest contributor in the chemical profile. The other impor-
tant contributor was OC (19 %), whose impact on PM mass
increased up to 30 % when reported as organic matter using
1.6 as the organic carbon-to-organic matter conversion fac-
tor for this site (Vecchi et al., 2004). Due to the secondary
origin of the aerosol associated with this factor, it was not
surprising to also find a significant OC contribution; indeed,
aerosol chemical composition in Milan is impacted by highly
oxygenated components due to aging processes favoured by
strong atmospheric stability (Vecchi et al., 2018, 2019). In
this factor, EC contributed about 1 %. Considering the total
EC concentration reconstructed by the model, the EC frac-
tion related to the sulfate factor was about 6 %. In contrast
to sulfates, EC has a primary origin; however, its presence
with a very similar percentage (4 %–5 %) in a sulfate chem-
ical profile was previously pointed out in Milan, indicat-
ing a more complex mixing between primary and secondary
sources (Amato et al., 2016), e.g. with sulfate condensation
on primary emitted particles. The sulfate factor accounted for
21 % of the PM10 mass.

The factor identified as resuspended dust was mainly char-
acterized by high EVF and contributions coming from Al,
Si and Mg, i.e. crustal elements. The Al/Si ratio was 0.31,
very similar to the literature value for average crustal com-
position (Mason, 1966); the relatively high OC contribution
in the chemical profile (15 %) together with the presence of
EC (about 2.6 %) was suggestive of a mixing with road dust
(Thorpe and Harrison, 2008). This source explained for about
11 % of the PM10 mass.

The factor identified as biomass burning was characterized
by high EVF for levoglucosan (0.98), a known tracer for this
source as it is generated by cellulose pyrolysis; EVF higher
than 0.3 was also found for K, OC, and EC. In the source
chemical profile, OC contributed 54 %, EC 10 %, levoglu-
cosan 7 %, and K 5 %. The average biomass burning contri-
bution during this campaign was 10 % (up to 17 % in win-
tertime). Anticipating the discussion presented in detail in
Sect. 3.3, it is worth noting that the second largest contri-
bution to the aerosol absorption coefficient after traffic was
detected in this factor.

The factor with high EVF (0.60) for Ca was associated
with construction works, following literature works (e.g.
Vecchi et al., 2009; Bernardoni et al., 2011, 2017a; Dall’Osto
et al., 2013; Crilley et al., 2017, and references therein). Ma-
jor contributors to the chemical profile were Ca (13 %), OC
(26 %), Fe, and Si (5 % each). This factor accounted on av-
erage for 15 % to PM10 mass. As already mentioned, during
the campaign a non-negligible contribution from this source
was expected, due to the presence of a building site nearby
the monitoring location.

In the factor assigned to traffic (primary contribution),
EVF larger than 0.3 characterized EC, Cu, Fe, Cr, and Pb.
The highest relative mass contributions in the chemical pro-
file were given by OC (41 %), EC (32 %), Fe (23 %), and Cu
(1 %). The lack of relevant crustal elements such as Ca and
Al in the chemical profile suggested a negligible impact of
road dust in this factor. As reported above, at our sampling
site the road dust contribution was very likely mixed to re-
suspended dust and further separation of these contributions
was not possible. This traffic (primary) contribution over the
whole dataset accounted for 5 % of the PM10 mass, with a
slightly lower absolute contribution in summer (see Table 1).
This contribution is comparable to the percentage (7 %) re-
ported by Amato et al. (2016) for exhaust traffic emissions,
but it is lower than our previous estimates (Bernardoni et al.,
2011; Vecchi et al., 2018), i.e. 15 % in 2006 in PM10 and
12 % in PM1 recorded in winter 2012. However, the current
estimate seems to still be reasonable when considering the
efforts made in recent years to reduce vehicles’ exhaust par-
ticle emissions and the fraction of secondary nitrate due to
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Figure 3. (a) Chemical profiles of the eight-factor constrained solution; (b) bap apportionment of the eight-factor constrained solution. The
blue bars represent the chemical profile (output of the matrix F normalized on mass), the green bars the output values of the matrix F for the
optical variables, and the black dots the EVF.
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high nitrogen oxides and ammonia emissions in the region
(INEMAR ARPA-Lombardia, 2018), which has to be added
to account for the overall traffic impact. Unfortunately, the
non-linearity of the emission-to-ambient concentration level
relationship and the high uncertainties in emission invento-
ries still prevent a robust estimate of this secondary contribu-
tion to total traffic exhaust emissions. As shown in Sect. 3.3,
traffic is the largest contributor to the aerosol absorption co-
efficient, thus strengthening the interpretation of this factor
as a traffic emission source.

The industry factor showed high EVF for Zn (0.59) and
the second highest EVF was related to Mn (0.13). Previous
studies at the same sampling site identified these elements
as tracers for industrial emissions (e.g. Vecchi et al., 2018,
and references therein). The chemical profile was enriched
by heavy metals and, after traffic, it was the profile with the
highest share of Cr, Mn, Fe, Cu, Zn, and Pb (explaining about
8 % of the total PM10 mass in the profile). The industry con-
tribution was not very high in the urban area of Milan, ac-
counting for 3 % on average.

The factor interpreted as aged sea salt was characterized
by high EVF of Na (0.93) and this element was – as a matter
of fact – present only in this factor chemical profile. To check
the physical consistency of this assignment and considering
that Milan is about 120 km away from the nearest sea coast,
back-trajectories coloured by the aged sea salt concentra-
tion (in ng m−3) were calculated through the NOAA HYS-
PLIT trajectory model (Draxler and Hess, 1998; Stein et al.,
2015; Rolph et al., 2017) and represented using R package
Openair (Carslaw and Ropkins, 2012; R Core Team, 2019).
As an example, results from a very short event (13 July
16:00–18:00 LT) singled out by the model and representing
the highest sea salt contribution during summer are reported
in Fig. S3. Before and during the event, south-western air
masses coming from the Ligurian Sea were observed, while
soon after the event, there was a rapid change in wind di-
rection. High wind speeds were recorded during the episode
(4.8± 1.7 m s−1 with a maximum peak of 9.5 m s−1) com-
pared to the 1.9± 1.0 m s−1 average wind speed characteriz-
ing the summer campaign.

When marine air masses are transported to polluted sites,
sea salt particles show a Cl deficit due to reactions with sul-
furic and nitric acid (Seinfeld and Pandis, 2006) and the
factor chemical profile is expected to be enriched in sulfate
and nitrate. In this work, nitrate was not present in the aged
sea salt chemical profile; a very rough estimate (Lee et al.,
1999) gave a maximum expected contribution of 2 % (about
82 ng m−3) of the total nitrate mass in the atmosphere that
can be considered negligible in terms of mass contribution of
the sources.

Temporal patterns of Cl concentrations (not inserted in the
multi-time resolution analysis as being a weak variable) dur-
ing marine aerosol episodes were exploited to further confirm
the factor-to-source association. Cl concentration and aged
sea salt pattern showed an evident temporal coincidence in

Figure 4. Temporal patterns of an aged sea salt source retrieved
from the multi-time resolution model and Cl concentrations mea-
sured in atmospheric aerosol.

peak occurrence during the short summer event (Fig. 4), thus
supporting the source identification. Moreover, during this
episode only the Cl coarse fraction increased (Fig. S4) and
reached about 90 % of the total PM10 Cl concentration; the
Cl/Na ratio was 0.38±0.05, consistent with an aging of ma-
rine air masses during advection showing the typical Cl de-
pletion.

Bootstrap analysis was performed to evaluate the uncer-
tainties associated with source profiles (Crespi et al., 2016).
One-hundred runs were carried out (see Fig. 5, values ex-
pressed in ng m−3 or Mm−1 on a logarithmic scale); fac-
tors were well mapped, with mapping always higher than
97 % considering the Pearson coefficient, and tracers for each
source showed a small interquartile range, supporting the
goodness of the solution presented in this work.

3.3 Improving source apportionment with optical
tracers

First of all, the use of the absorption coefficient determined
at different wavelengths as the input variable in the multi-
time resolution model strengthened the identification of the
sources, suggesting that it can be exploited when specific
chemical tracers are not available (e.g. levoglucosan for
biomass burning). To prove that, a separate source apportion-
ment study was performed with EPA PMF 5.0 (Norris et al.,
2014) using only hourly elemental concentrations from sam-
ples collected by the streaker sampler and hourly bap at dif-
ferent λ measured by PP_UniMI on the same filters as input
variables. Streaker samples typically lack a complete chemi-
cal characterization; in particular, important chemical tracers
such as levoglucosan and EC are not available. In this anal-
ysis, bap assessed at different wavelengths was proven effec-
tive in identifying the biomass burning factor that explained
a significant percentage of the bap itself (from 25 % to 35 %
depending on λ) (Fig. S5); without the optical variables, the
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factor-to-source assignment would otherwise be based only
on the presence of elemental potassium, although it is well
known that K cannot be considered an unambiguous tracer
as it is emitted by a variety of sources (see for example Pa-
chon et al., 2013, and references therein). Furthermore, re-
sults showed that the absorption coefficient contribution was
higher than 45 % in the factor labelled as traffic, highlighting
the importance of exhaust emissions in a factor that would be
differently characterized by elements related to non-exhaust
emissions (Cu, Fe, Cr).

From the multi-time resolution model, the two factors
identified as biomass burning and traffic were the main con-
tributors to aerosol absorption in the atmosphere and showed
significant EVF values. At 780 and 405 nm, traffic contribu-
tions to bap were 55 % and 42 %; at the same wavelengths
biomass burning accounted for 20 % and 36 %. The EVF of
bap has the maximum value at 405 nm for biomass burning
(0.32) and at 780 nm for traffic (0.49), showing the tendency
to decrease and increase with the wavelength, respectively.

The third contributor to aerosol absorption in the atmo-
sphere was the sulfate factor, with a contribution comparable
to the biomass burning one at 780 nm (about 20 % of the to-
tal reconstructed bap at this wavelength). The sulfate factor
contained a small fraction of EC, as previously discussed
(see Sect. 3.2). This might be explained considering that
non/weakly light-absorbing material can form a coating able
to enhance particle absorption (Bond and Bergstrom, 2006;
Fuller et al., 1999) within a few days after emission. Labora-
tory experiments and simulations from in situ measurements
highlighted absorption amplification for absorbing particles
coated with secondary organic aerosol (Schnaiter et al., 2003;
Moffet and Prather, 2009). Particle aging is a significant pro-
cess in the Po Valley due to low atmospheric dispersion con-
ditions and it might explain the relatively high contribution
of the sulfate factor to the absorption coefficient in respect
to the other sources (apart from traffic and biomass burning).
Among the remaining factors, resuspended dust was the main
contributor at all wavelengths (between 3 % and 7 % of the
total reconstructed bap, depending on the wavelength), likely
due to the role of iron minerals. The other sources were less
relevant in terms of EVF values and overall contributed less
than 11 %.

In contrast to the approach used in source apportionment
models based on optical data like the widespread Aethalome-
ter model (Sandradewi et al., 2008a) and MWAA model
(Massabò et al., 2015; Bernardoni et al., 2017b), it is note-
worthy that no a priori information about α values of the
fossil fuel and biomass burning sources was introduced in
the multi-time resolution model and an estimate for these
values was directly retrieved from the model. Another lit-
erature approach used Delta-C as an input variable together
with chemical aerosol components in source apportionment
models and was very effective in separating traffic (espe-
cially diesel) emissions from biomass combustion emissions
(Wang et al., 2011, 2012).

In order to compare the multi-time resolution model and
models based on optical data, contributions due to traffic
and industry (i.e. emissions most likely connected to fossil
fuel usage) were added up and labelled as “fossil fuel emis-
sions”. In accordance with the two-source approach used in
the Aethalometer model, the discussion about optical prop-
erties will be hereafter focused on the biomass burning and
fossil fuel sources considering that sulfate and resuspended
dust factors were less significant also in terms of EVF for
optical variables, ranging from 0.08 to 0.12 and from 0.03 to
0.06, respectively, depending on the wavelength.

In Fig. 6 the wavelength dependence of bap for the biomass
burning and the fossil fuel profiles obtained with the multi-
time resolution model is shown; as α values can show signif-
icant differences when calculated using different pairs of λ
(Sandradewi et al., 2008b), here we performed a fitting pro-
cedure considering bap ∝ λ

−α . Results were αBB (α biomass
burning) = 1.83 and αFF (α fossil fuels) = 0.80; the range of
variability of α values was estimated with the bootstrap anal-
ysis obtaining 0.78–0.88 for αFF and 1.65–1.88 for αBB (as
the 25th and 75th percentiles, respectively).

Zotter et al. (2017) reported a possible combination of
αFF = 0.8 and αBB = 1.8 when EC concentration from fossil
fuel combustion (estimated with radiocarbon measurements)
is between 40 % and 85 % of the total EC concentration;
in this work, the fraction of EC ascribed by the multi-time
model to fossil fuel sources was 56 %. The combination 0.9
and 1.68 for αFF and αBB, respectively, was also suggested
when in the study there is no or only limited additional infor-
mation (e.g. from 14C measurements). From the wide range
of possible combinations reported in the literature it is clear
that the assessment of αBC (assumed to be equal to αFF in
source apportionment models based on optical data) is still
an issue, and both experimental and simulation studies are in
progress to reduce uncertainties and give a better evaluation
of this key parameter.

The αFF value resulted in the range 0.8–1.1 typically re-
ported in source apportionment studies based on optical data
(e.g. Bernardoni et al., 2017b; Zotter et al., 2017, and refer-
ences therein). Indeed, the sampling site was an urban back-
ground station in Milan and our samples were hardly im-
pacted by fresh traffic emissions. Considering the aged na-
ture of Milan aerosol, the average αFF was comparable to
estimates for BC-coated particles reported in the literature
(approximately 0.6–1.3; see e.g. Liu et al., 2018) and ob-
tained by both ambient measurement (e.g. Fischer and Smith,
2018, and references therein) and numerical simulations (e.g.
Gyawali et al., 2009; Liu et al., 2018, and references therein).
The αBB value retrieved by the model was very similar to val-
ues reported by Zotter et al. (2017) and also comparable to
1.86 found for biomass burning by Sandradewi et al. (2008a)
and 1.8 obtained by Massabò et al. (2015), who also used
independent 14C measurements for checking.

Results here reported also allow us to study the relation-
ship between the absorption coefficient and the mass of black
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Figure 5. Box plot of the bootstrap analysis on the eight-factor constrained solution. The red dots represent the output values of the solution
of the model; the black lines the medians from the bootstrap analysis; the blue bars the 25th and 75th percentiles; the dotted lines the interval
equal to 1.5 times the interquartile range; and the black dots the outliers from this interval.
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Table 2. Average contribution to total reconstructed bap for the biomass burning and fossil fuel factors; in parentheses the 25th and 75th
percentiles are reported.

λ= 405 nm λ= 532 nm λ= 635 nm λ= 780 nm

Biomass burning 36 % (31 %–36 %) 29 % (25 %–30 %) 26 % (23 %–27 %) 20 % (16 %–22 %)
Fossil fuels 45 % (41 %–46 %) 43 % (39 %–44 %) 45 % (41 %–47 %) 55 % (48 %–55 %)

Figure 6. bap dependence on λ for biomass burning and fossil fuel
emissions.

carbon (BC), i.e. the so-called mass absorption cross section,
at different wavelengths. The MAC(λ) = bap(λ) / BC rela-
tionship assumes that BC is the only light-absorbing species
present; however, this assumption is not always valid since
the transport of mineral dust from desert areas and brown car-
bon can significantly contribute to aerosol absorption. Dur-
ing our monitoring campaign, no contribution from Saharan
dust was observed; in contrast, biomass burning was proven
to be an important source, so that BrC was certainly a sig-
nificant contributor (Fuzzi et al., 2015), as also suggested
by αBB = 1.83 in the biomass burning factor. The possi-
ble overestimation of BC when total bap is ascribed to BC
only is usually minimized by choosing a wavelength longer
than 600 nm, exploiting the spectral dependence of absorp-
tion from different aerosol compounds (Petzold et al., 2013).

EC concentration retrieved from the chemical profiles (see
Fig. 3) was used as a proxy for BC to estimate a source-
dependent bap(λ)-to-BC ratio. Results are represented in
Fig. 7. It is noteworthy that here this ratio is intentionally
not indicated as MAC, since overestimation of the BC ab-
sorption especially at shorter λmight occur (see the previous
discussion). BrC is expected to give a small contribution in
the fossil fuel source; therefore, the best approximations for
MAC(λ) values are likely the bap(λ)-to-BC ratios observed
in the fossil fuel source at our monitoring site. They resulted
in 13.7 m2 g−1 for λ= 405 nm, 10.2 m2 g−1 for λ= 532 nm,
8.8 m2 g−1 for λ= 635 nm, and 8.6 m2 g−1 for λ= 780 nm.
For λ= 550 nm, Bond and Bergstrom (2006) reported a
MAC value of 7.5± 1.2 m2 g−1 for uncoated fresh emitted
particles and MAC values in polluted regions ranging from
9 to 12 m2 g−1, attributable to absorption enhancement due

Figure 7. bap-to-EC ratio dependence on λ for biomass burning
and fossil fuel emissions. Error bars represent the 25th and 75th
percentiles retrieved from the bootstrap analysis.

to particle coating. The MAC estimate obtained in this work
from the multi-time resolution model for 532 nm is compa-
rable to literature values reported above, thus confirming the
importance of aging processes in the atmosphere for the op-
tical properties of particles.

Ratios represented in Fig. 7 are less comparable at λ=
405 nm (see also Table S4) due to the significant contribu-
tion of BrC to bap at this wavelength in the biomass burning
factor.

No seasonal differences in the atmospheric ratios were ob-
served except at λ= 405 nm (see Table S4), for which win-
ter values were higher than summer ones (17.8± 0.4 and
14.2± 0.5, respectively), due to the influence of biomass
burning emissions on BrC concentration in the atmosphere
during the cold season.

From the outputs of the modelling approach here pro-
posed, the apportionment of the biomass burning and fossil
fuel contributions to bap at different wavelengths was also
obtained. As expected, the relative contribution to the total
reconstructed bap ascribed to the biomass burning factor de-
creased with increasing λ, in contrast to the contribution from
fossil fuel combustion which gave the highest contribution
at 780 nm (Table 2); in addition, the latter contribution pre-
vailed at all wavelengths at the investigated site.

4 Conclusions

The multi-time resolution model implemented through the
Multilinear Engine (ME-2) script allowed the analysis of ex-
perimental data collected at different timescales, coupling the
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detailed chemical speciation at low time resolution and the
temporal information given by high time resolution samples.
The use of the aerosol absorption coefficient (bap) measured
at different wavelengths in the modelling process was inves-
tigated and gave promising results. First of all, a more robust
identification of sources was provided; secondly, it paved
the way to the retrieval of optical apportionment and opti-
cal characterization of the sources (e.g. estimate of a source-
specific absorption Ångström exponent – α – and a mass ab-
sorption cross section – MAC - at different wavelengths). It
is worth noting that currently in source apportionment mod-
els based on optical data (e.g. Aethalometer model) values
for α related to fossil fuel emissions and biomass burning are
fixed by the modeller, thus carrying a large part of the uncer-
tainties in the model results. Considering that the estimates
for the absorption Ångström exponent were here obtained as
a result of a quite complex modelling approach (i.e. using
multi-time resolution datasets joining chemical and optical
variables) and without any a priori assumption, the results
obtained were fairly comparable to literature results and gave
a further tool to assess more robust source-related α values.
Obviously these estimates are affected by a certain degree of
uncertainty due to both experimental data and modelling pro-
cess (while uncertainties are typically not taken into consid-
eration for fixed α values used in the literature). In perspec-
tive, joining together different approaches such as the recep-
tor modelling here proposed and e.g. 14C data and artefact-
free bap measurements will lead to better estimates of the
absorption Ångström exponent.

The original approach described in this work can be ap-
plied to source apportionment studies using any suitable
dataset (not necessarily with multi-time resolution). Besides
the traditional source apportionment, the impact of different
sources on the aerosol absorption coefficient was estimated;
this piece of information can be very useful for formulat-
ing strategies of pollutant abatement, in order to improve air
quality and to face climate challenges. In particular, at the in-
vestigated site secondary compounds constituted the highest
contribution in terms of PM10 mass (52 % on average), while
the two factors identified as biomass burning and traffic were
found to be the most significant contributors to aerosol light
absorption in the atmosphere, in agreement with the available
literature.
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