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Abstract. Fine particulate matter (PM2.5) is a severe air
pollution problem in China. Observations of PM2.5 have
been available since 2013 from a large network operated
by the China National Environmental Monitoring Center
(CNEMC). The data show a general 30 %–50 % decrease in
annual mean PM2.5 across China over the 2013–2018 period,
averaging at −5.2 µg m−3 a−1. Trends in the five megacity
cluster regions targeted by the government for air quality
control are −9.3± 1.8 µg m−3 a−1 (±95 % confidence inter-
val) for Beijing–Tianjin–Hebei, −6.1± 1.1 µg m−3 a−1 for
the Yangtze River Delta,−2.7±0.8 µg m−3 a−1 for the Pearl
River Delta, −6.7± 1.3 µg m−3 a−1 for the Sichuan Basin,
and −6.5± 2.5 µg m−3 a−1 for the Fenwei Plain (Xi’an).
Concurrent 2013–2018 observations of sulfur dioxide (SO2)
and carbon monoxide (CO) show that the declines in PM2.5
are qualitatively consistent with drastic controls of emissions
from coal combustion. However, there is also a large meteo-
rologically driven interannual variability in PM2.5 that com-
plicates trend attribution. We used a stepwise multiple linear
regression (MLR) model to quantify this meteorological con-
tribution to the PM2.5 trends across China. The MLR model
correlates the 10 d PM2.5 anomalies to wind speed, precipita-
tion, relative humidity, temperature, and 850 hPa meridional
wind velocity (V850). The meteorology-corrected PM2.5

trends after removal of the MLR meteorological contribu-
tion can be viewed as being driven by trends in anthro-
pogenic emissions. The mean PM2.5 decrease across China
is −4.6 µg m−3 a−1 in the meteorology-corrected data, 12 %
weaker than in the original data, meaning that 12 % of the
PM2.5 decrease in the original data is attributable to mete-
orology. The trends in the meteorology-corrected data for
the five megacity clusters are −8.0± 1.1 µg m−3 a−1 for
Beijing–Tianjin–Hebei (14 % weaker than in the original
data), −6.3± 0.9 µg m−3 a−1 for the Yangtze River Delta
(3 % stronger), −2.2± 0.5 µg m−3 a−1 for the Pearl River
Delta (19 % weaker), −4.9±0.9 µg m−3 a−1 for the Sichuan
Basin (27 % weaker), and−5.0±1.9 µg m−3 a−1 for the Fen-
wei Plain (Xi’an; 23 % weaker); 2015–2017 observations of
flattening PM2.5 in the Pearl River Delta and increases in the
Fenwei Plain can be attributed to meteorology rather than to
relaxation of emission controls.
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1 Introduction

PM2.5 (particulate matter with aerodynamic diameter less
than 2.5 µm) is a severe air pollution problem in China, re-
sponsible for 1.1 million excess deaths in 2015 (Cohen et
al., 2017). The Chinese government introduced, in 2013, the
“Action Plan on the Prevention and Control of Air Pollution”
(Chinese State Council, 2013a), called Clean Air Action for
short, to aggressively control anthropogenic emissions. Start-
ing that year, PM2.5 data from a nationwide monitoring net-
work of about 1000 sites became available from the China
National Environmental Monitoring Center (CNEMC) of the
Ministry of Ecology and Environment of China (MEEC).
These data show 30 %–40 % decreases in PM2.5 across east-
ern China over the 2013–2017 period (Chinese State Council,
2018a; Zhang et al., 2019). However, interpretation of these
trends in terms of emission controls may be biased by inter-
annual variability and trends in meteorology (Zhang et al.,
2014; Wang et al., 2014; Zhu et al., 2012; Jia et al., 2015;
Li et al., 2018; Yang et al., 2018, 2016; Liang et al., 2016;
Cheng et al., 2019; Chen et al., 2019; Silver et al., 2018).
Here we use a stepwise multilinear regression (MLR) model
to separate the effects of meteorological variability and emis-
sion controls on the 2013–2018 trends in PM2.5 across China.

Meteorology drives large day-to-day, seasonal, and inter-
annual variations in PM2.5 in China by affecting transport,
scavenging, emissions, and chemical production (Wang et
al., 2014; Leung et al., 2018; Tai et al., 2012; Zou et al.,
2017). The relationships between PM2.5 and meteorological
variables are complex and differ by region and time of year
(Shen et al., 2017). For example, wintertime PM2.5 pollu-
tion events in central and eastern China are associated with
low wind speed and high relative humidity (RH; Wang et
al., 2014; Zhang et al., 2014; Shen et al., 2018; Pendergrass
et al., 2019; Moch et al., 2018; Song et al., 2019). On the
other hand, high wind speeds in northern China in spring and
summer promote dust emission (Lyu et al., 2017; Wang et
al., 2004). Precipitation scavenging is a major factor driving
PM2.5 variability in southern and coastal China (Chen et al.,
2018; Leung et al., 2018).

Anthropogenic emissions of PM2.5 and its precursors, in-
cluding sulfur dioxide (SO2), nitrogen oxides (NOx), am-
monia (NH3), and nonmethane volatile organic compounds
(NMVOCs), have undergone large changes in China over the
past decades. Rapid growth in emissions from 1980 to 2006
led to a general increase in PM2.5 over China, as demon-
strated by visibility data (Che et al., 2007; Han et al., 2016;
Wang and Chen, 2016; Fu et al., 2014; Zhang et al., 2012)
and, since 1999, by satellite aerosol optical depth (AOD)
data (Ma et al., 2016; Lin et al., 2018; Zhao et al., 2017).
SO2 emissions peaked in 2006–2007, NOx emissions peaked
in 2011, and NH3 emissions peaked around 1996, as esti-
mated from emission inventories (Zhao et al., 2017; Wang
et al., 2017; Xia et al., 2016; F. Liu et al., 2016; Lu et al.,
2010; Xu et al., 2016; Kang et al., 2016) and observed from

satellites (Xia et al., 2016; F. Liu et al., 2016; de Foy et
al., 2016; van der A et al., 2017). SO2 and NOx emissions
have declined since their peaks, whereas emissions of NH3
have remained relatively stable since its peak (Zhao et al.,
2017). The onset of emission controls led to slight decreases
in PM2.5 over the 2006–2012 period, as indicated by satellite
AOD data (Ma et al., 2016, 2019; Lin et al., 2018; Zhao et
al., 2017) and surface observations (Tao et al., 2017; Wang
et al., 2017). The Clean Air Action greatly increased the
scope of emission controls. The Multi-resolution Emission
Inventory for China (MEIC; http://www.meicmodel.org, last
access: 20 March 2019) estimates nationwide emission de-
creases over the 2013–2017 period of 59 % for SO2, 33 %
for primary PM2.5, 21 % for NOx , and 3 % for NH3, with
NMVOCs increasing by 2 % (Zheng et al., 2018). Contin-
ued reductions in emissions are required and implemented in
2018 (Chinese State Council, 2018b). Our goal in this work
is to quantify the response of PM2.5 to these rapid emission
changes by resolving the effect of meteorological variabil-
ity, thus allowing improved assessment of the success of the
Clean Air Action.

2 Data and methods

2.1 Observations

We use 2013–2018 hourly data for surface air PM2.5 together
with SO2, nitrogen dioxide (NO2), and CO concentrations
from the CNEMC network (http://106.37.208.233:20035/,
last access: 18 March 2019). The network started in Jan-
uary 2013, with 496 sites in 74 major cities across the country
(Chinese State Council, 2013b), growing to ∼ 1500 sites in
454 cities by 2018. PM2.5 mass concentrations are measured
using the micro-oscillating balance method and/or the β-
absorption method (MEE, 2012; Zhang and Cao, 2015). SO2,
NO2, and CO concentrations are measured at the same sites
as PM2.5. NO2 concentrations are measured by the molybde-
num converter method known to have positive interferences
from NO2 oxidation products (Dunlea et al., 2007). SO2 and
CO are respectively measured using ultraviolet fluorescence
and infrared absorption (MEE, 2012; Zhang and Cao, 2015).
We applied quality control to the hourly CNEMC data fol-
lowing Barrero et al. (2015) to exclude severe outliers (Lu
et al., 2018). There are also occasional consecutive repeats
of data that may be caused by faulty instruments or report-
ing (Rohde and Muller, 2015; Silver et al., 2018). Here we
removed values from the hourly time series when there are
> 24 consecutive repeats. These in whole removed 7.4 %,
7.0 %, 6.4 %, and 6.7 % of the PM2.5, SO2, NO2, and CO
data respectively.

We correlated these air quality observations with meteo-
rological observations from 839 stations distributed across
China (Fig. S1 in the Supplement). The meteorological ob-
servations are compiled in the Surface Daily Climate Dataset
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(V3.0) released by the China National Meteorological In-
formation Center (CNMIC; http://data.cma.cn/, last access:
16 March 2019). These include data for wind speed (WDS),
precipitation (PRECIP), relative humidity (RH), and tem-
perature (TEM). We also used the 850 hPa meridional wind
velocity (V850) from the MERRA-2 reanalysis produced
at 0.5◦× 0.625◦ horizontal resolution by the NASA Global
Modeling and Assimilation Office (https://gmao.gsfc.nasa.
gov/reanalysis/MERRA-2, last access: 20 March 2019). We
choose these meteorological variables for their strong corre-
lations with PM2.5 identified in previous studies (Wang et al.,
2014; Cai et al., 2017; Shen et al., 2017; Leung et al., 2018;
Song et al., 2019; Zou et al., 2017). V850 in particular is a
strong predictor of PM2.5 wintertime pollution events in the
North China Plain because northerly winds (negative V850)
ventilate the region with clean dry air (Cai et al., 2017; Pen-
dergrass et al., 2019).

All data in this work are averaged over 10 d (10 d time
resolution). Trend analyses use only those sites with at least
70 % data coverage for each of the 6 years from 2013 to
2018. We did sensitivity tests with data coverage thresholds
changing from 70 % to 90 % and obtained similar pollutant
trends. To make the most use of available data, 70 % is cho-
sen. For the MLR model, we further average all data on a
2◦× 2.5◦ grid to increase statistical robustness, following Tai
et al. (2012) and Shen et al. (2017).

The 2013 Clean Air Action (Chinese State Council,
2013a) identified three megacity clusters as target regions
for reducing air pollution: Beijing–Tianjin–Hebei (BTH; 35–
41◦ N, 113.75–118.75◦ E), the Yangtze River Delta (YRD;
29–33◦ N, 118.75–123◦ E), and the Pearl River Delta (PRD;
21–25◦ N, 111.25–116.25◦ E). The more recent plan re-
leased in July 2018 (Chinese State Council, 2018b) removed
PRD from the list of target regions and added the Fen-
wei Plain (FWP; 33–35◦ N, 106.25–111.25◦ E; 35–37◦ N,
108.75–113.75◦ E). Previous studies (Zhang et al., 2012)
also identified the Sichuan Basin (SCB; 27–33◦ N, 103.75–
108.75◦ E) as one of the major haze regions in China. We
present analyses for these five target regions by averaging
the data from all sites with more than 70 % data coverage for
each of the 6 years from 2013 to 2018. The only continu-
ous record for 2013–2018 in the FWP region is for Xi’an (13
sites). Additional FWP sites outside Xi’an started operating
in early 2015 and are consistent with the Xi’an data, as will
be shown below.

2.2 Multiple linear regression model

We construct a stepwise multiple linear regression (MLR)
model to quantify the effect of meteorology on PM2.5 vari-
ability. The model fits the deseasonalized and detrended 10 d
PM2.5 mean time series on the 2◦× 2.5◦ grid to the five de-
seasonalized and detrended 10 d mean meteorological vari-
ables (WDS, PRECIP, RH, TEM, and V850). The deseason-
alized and detrended time series are obtained by removing

the 50 d moving averages from the 10 d mean time series
(Tai et al., 2010). This focuses on synoptic scales of vari-
ability and avoids aliasing from common seasonal variations
and long-term trends between variables (Shen et al., 2017).

Separate fits of PM2.5 to the meteorological variables are
done for each 2◦× 2.5◦ grid square and season (DJF, MAM,
JJA, and SON). The fit has the form

Yd,i(t)=

5∑
k=1

βi,kXd,i,k(t)+ bi, (1)

where Yd,i(t) is the deseasonalized and detrended PM2.5 time
series for grid square and season i, and Xd,i,k(t) is the cor-
responding time series for the deseasonalized and detrended
meteorological variable kε[1,5]. We fit the regression coef-
ficients βi,k and the intercept bi . The regression is done step-
wise, adding and deleting terms based on their independent
statistical significance to obtain the best model fit (Draper
and Smith, 1998). The fits and the selected meteorological
variables differ by location and season, but with regional con-
sistency (Table S1 in the Supplement). For meteorological
variables not in the final MLR model, the regression coeffi-
cients βi,k in Eq. (1) are zero.

2.3 Application to 2013–2018 PM2.5 trends

We use the MLR model to remove the effect of meteorolog-
ical variability from the 2013–2018 PM2.5 trends, including
not only the 10 d synoptic-scale variability but also any inter-
annual variability and 6-year trends. This makes the standard
assumption that the same factors that drive synoptic-scale
variability also drive interannual variability (Jacob and Win-
ner, 2009; Tai et al., 2012). We thus apply Eq. (1) to the mete-
orological anomaliesXa,i,k , obtained by removing the 6-year
means of the 50 d moving averages from the 10 d mean time
series. The anomalies calculated in this manner are deseason-
alized but not detrended. This yields the meteorology-driven
PM2.5 anomalies Ym,i :

Ym,i(t)=

5∑
k=1

βi,kXa,i,k(t)+ bi . (2)

Consider now the PM2.5 anomaly Ya,i for grid square and
season i obtained by deseasonalizing but not detrending the
PM2.5 data (by removing the 6-year means of the 50 d mov-
ing averages) in the same way as for the meteorological vari-
ables. The residual anomaly Yr,i , after removing meteorolog-
ical influence from the MLR model, is given by

Yr,i (t)= Ya,i(t)−Ym,i(t). (3)

The residual is the component of the anomaly that cannot
be explained by the MLR meteorological model, and we will
refer to it as the meteorology-corrected data. It includes noise
due to limitations of the MLR model and other factors but
also a long-term trend over the 6-year period that we can
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Figure 1. Annual mean PM2.5 concentrations in China from the CNEMC network. Panels (a) and (b) show values for 2013 and 2018 for
sites with more than 70 % data coverage for the corresponding year. Panel (c) shows the ordinary linear regression trends on a 2◦× 2.5◦ grid
for sites with more than 70 % data coverage for each of the 6 years from 2013 to 2018. The trends are based on the time series of 10 d mean
anomalies, as described in the text. Polygons in (a) define the four target regions of the Clean Air Action (Beijing–Tianjin–Hebei – BTH: 35–
41◦ N, 113.75–118.75◦ E; Yangtze River Delta – YRD: 29–33◦ N, 118.75–123◦ E; Pearl River Delta – PRD: 21–25◦ N, 111.25–116.25◦ E;
and Fenwei Plain – FWP: 33–35◦ N, 106.25–111.25◦ E, and 35–37◦ N, 108.75–113.75◦ E), to which we add Sichuan Basin (SCB; 27–33◦ N,
103.75–108.75◦ E). Number inset in panel (c) is the trend in mean PM2.5 over the study region (21–41◦ N, 103.75–123◦ E). Dots in panel (c)
indicate grid squares with significant trends (p < 0.05).

attribute to changes in anthropogenic emissions. The same
approach was recently applied by Li et al. (2019) to separate
anthropogenic and meteorological drivers of ozone trends in
China.

3 Results and discussion

3.1 PM2.5 trends in China, 2013–2018

Figure 1 shows annual mean observed PM2.5 concentrations
from the CNEMC over China for 2013 and 2018 and the
linear regression trends on the 2◦× 2.5◦ grid based on the
PM2.5 anomalies Ya,i(t), including effects of both changing
emissions and meteorology. In 2013, PM2.5 across most of
China was well above the Chinese national air quality stan-
dard (annual mean of 35 µg m−3). BTH and FWP (Xi’an) had
the highest PM2.5 among the five target regions, with annual
average concentrations of 108± 34 µg m−3 (standard devia-
tion describes variability in the annual average across sites
in the region) and 108± 11 µg m−3 respectively, followed
by SCB (71± 17 µg m−3), YRD (67± 12 µg m−3), and PRD
(47±7 µg m−3). PM2.5 decreased dramatically from 2013 to
2018, by 34 %–49 % for the five target regions. Mean 2018
concentrations were 55±13 µg m−3 in BTH, 62±4 µg m−3 in
FWP (Xi’an), 40±6 µg m−3 in SCB, 40±7 µg m−3 in YRD,
and 31± 5 µg m−3 in PRD.

Figure 2 shows the 2013–2018 relative trends of annual
mean PM2.5 for the five target regions along with the corre-

sponding trends of SO2, NO2, and CO concentrations mea-
sured at the same sites. Also shown in the bottom panels are
the MEIC trends in emissions of primary PM2.5, SO2, NOx ,
NH3, and CO for 2013–2017. The PM2.5 observations show
steady decreases for BTH, YRD, and SCB. PRD flattens out
in 2015–2017 before decreasing again in 2018. FWP (Xi’an)
decreases sharply by 47 % from 2013 to 2015 but rebounds in
2015–2017 before decreasing again in 2018. Trends at other
FWP sites that became operational in early 2015 are similar
to Xi’an. We argue in Sect. 3.3 that the 2015–2017 flattening
at PRD and the anomalous 2013–2015 sharp decrease and
2015–2017 rebound at FWP are driven by meteorology.

We see from Fig. 2 that only SO2 has a decrease steeper
than PM2.5, indicating that SO2 emission controls have been
a major driver of the PM2.5 trend (Lang et al., 2017; Shao et
al., 2018). The overall SO2 decrease for the five regions is
57 %–76 % from 2013 to 2018. The SO2 decrease is quan-
titatively consistent with the decrease in SO2 emissions es-
timated by MEIC (Zheng et al., 2018). This drastic cut of
China SO2 emissions is due to installation of scrubbers at
coal-fired power plants (Siwen et al., 2015; Karplus et al.,
2018; Silver et al., 2018), elimination of small coal boilers,
improvement of coal quality (Zheng et al., 2018), and switch
from residential coal to cleaner fuels (Zhao et al., 2018). We
also see a significant decrease in CO of 18 %–43 % for the
five regions from 2013 to 2018, again consistent with the
MEIC and suggesting a reduction in organic PM2.5 emis-
sions. Primary PM2.5 emissions in the MEIC decreased at
a rate comparable to or steeper than CO. Trends in China
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Figure 2. Relative trends of 2013–2018 observed concentrations and 2013–2017 MEIC emission estimates for the five target regions of
Fig. 1. The observed PM2.5 trends are shown as thick lines. Values are annual means referenced to 2013. The observed concentrations are
averaged over all sites in each region with at least 70 % data coverage for each year. The number of sites for each region is indicated. Fenwei
Plain trends are for Xi’an, as other sites did not start operating until early 2015. Post-2015 relative PM2.5 trends at these other sites are shown
as the dashed line.

PM2.5, SO2, and NO2 presented here are consistent with pre-
vious studies (Silver et al., 2018; Ma et al., 2019) that cover
a shorter time period than 2013–2018.

Figure 3 shows the time series of monthly mean PM2.5 for
the five target regions, illustrating the seasonal and interan-
nual variability. All regions show winter maxima that can be
mostly attributed to meteorology, including shallower mix-
ing depth, lower precipitation, and increased stagnation in
winter (Wang et al., 2018). Residential heating emissions in
winter also contribute to the seasonality in China, north of
about 33◦ N (covering BTH and FWP in this study; J. Liu et
al., 2016; Xiao et al., 2015). There is a large interannual vari-
ability, particularly in winter, that must be largely driven by
meteorology. Studies for BTH have shown that high PM2.5
in winter months is associated with weak southerly winds,
low mixing depths, and high relative humidity (Zhang et al.,
2014; Chang et al., 2016; Li et al., 2018; Shao et al., 2018).
The relatively clean 2017–2018 winter was due in part to
a higher frequency of northerly flow and associated venti-
lation (CMA, 2018; Yi et al., 2019). In addition, particu-
larly aggressive actions by the government to restrict coal use
that winter may have played a role in reducing PM2.5 levels
(Zhang et al., 2019).

3.2 Meteorological influence on PM2.5

Figure 4 shows the correlations of 10 d PM2.5 concentrations
with the individual meteorological variables used in the MLR
model. Correlation coefficients r as low as 0.3 are statisti-
cally significant, more so when consistent across a region.

Figure 3. Time series in 2013–2018 of monthly mean PM2.5 con-
centrations over the five target regions. Values are averages from all
sites in the region with over 70 % data coverage for each of the 6
years.

Wind speed is negatively correlated with PM2.5, as would be
expected from ventilation, except in areas of the north where
wind promotes dust formation (Lyu et al., 2017; Wang et al.,
2004). Precipitation is also generally negatively correlated
with PM2.5, as one would expect from scavenging (Chen et
al., 2018). The positive correlation between precipitation and
PM2.5 over northern China in spring is likely a result of high
RH associated with precipitation in adjacent days.

Correlation between RH and PM2.5 is positive over north-
ern China, especially in winter, and negative over southern
China, especially in summer. The positive correlation be-
tween PM2.5 and RH over northern China in winter has been
reported by previous studies and attributed in part to the
role of aqueous-phase aerosol chemistry in driving secondary
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Figure 4. Correlation coefficients (r) of PM2.5 concentration with the individual meteorological variables used in the MLR model: surface
wind speed (m s−1), precipitation (mm d−1), relative humidity (RH; %), surface air temperature (◦C), and 850 hPa meridional wind velocity
(m s−1) for different seasons in China. The correlations are based on 10 d average observations on a 2◦× 2.5◦ grid. Dots indicate statistically
significant correlations (p < 0.05).

PM2.5 formation (Zheng et al., 2015; He et al., 2018; Song
et al., 2019; Pendergrass et al., 2019; Tie et al., 2017). The
negative correlation of PM2.5 with RH over southern China
likely reflects the association of high RH with precipitation
and onshore wind, which facilitate PM2.5 wet removal and
ventilation (Zhu et al., 2012; Leung et al., 2018).

Temperature has a positive correlation with PM2.5 year-
round over most of China (Wang et al., 2014; Leung et al.,
2018), even though there is no strong direct dependence of
PM2.5 on temperature (Jacob and Winner, 2009). The cor-
relation likely reflects the covariation of temperature with
other meteorological variables, including wind speed, precip-
itation, and RH (Tai et al., 2012; Zhu et al., 2012). A possible
explanation for the negative correlation with temperature in
summer over the North China Plain could be the volatiliza-
tion of ammonium nitrate at high temperatures (Kleeman,
2008). V850 shows strong positive correlations with winter
PM2.5 over most of China, and strong negative correlations
with summer PM2.5 over southern China, especially for the
Pearl River Delta.

Figure 5a describes the ability of the MLR model to ac-
count for PM2.5 variability in relation to wind speed, precipi-
tation, RH, temperature, and V850 as potential predictor vari-
ables. Results are presented as the coefficients of determina-
tion R2 (fraction of variance explained) between observed
and model PM2.5 in the detrended deseasonalized time se-

Figure 5. Resolving meteorological influences on PM2.5 2013–
2018 trends in China. Panel (a) shows the fraction of detrended
and deseasonalized variance in 10 d PM2.5 means explained by
the stepwise multilinear regression (MLR) meteorological model.
Panel (b) shows the meteorology-corrected trends to be compared
to the trends in the original data shown in Fig. 1. Number inset in (b)
is the trend in mean PM2.5 over the study region (same definition
as in Fig. 1). Dots indicate significant correlations (p < 0.05) in (a)
and significant trends (p < 0.05) in (b).
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Figure 6. Time series of 2013–2018 PM2.5 10 d mean anomalies for the five target regions of Fig. 1. The anomalies are relative to the
2013–2018 means. The data are averaged over all measurement sites in each region with at least 70 % of data coverage for each year (same
as for Fig. 2). The meteorological contribution to the anomalies as determined from the MLR model is shown in red. The long-term trend in
the meteorology-corrected residual in blue (Eq. 3) is interpreted as being driven by changes in anthropogenic emissions. Values inset in each
panel are the ordinary linear regression trends, with 95 % confidence intervals obtained by the bootstrap method.

ries. The R2 values have been adjusted to account for differ-
ent numbers of significant explanatory terms (predictor vari-
ables). R2 values for the five target regions are 0.59 (BTH),
0.46 (YRD), 0.65 (PRD), 0.65 (SCD), and 0.41 (FWP). Fig-
ure 5b shows the meteorology-corrected PM2.5 trends af-
ter removal of meteorological variability predicted by the
MLR model, i.e., the trends in the residuals Yr,i(t) in Eq. (3).
The meteorology-corrected decreasing trend averaged across
China is −4.6 µg m−3 a−1, 12 % weaker than in the original
data, meaning that 12 % of the PM2.5 decrease in the origi-
nal data is attributable to meteorology. We elaborate on this
below for the five target regions.

3.3 Meteorology-corrected PM2.5 trends for the five
target regions

Figure 6 shows the 10 d mean PM2.5 anomalies in the desea-
sonalized (but not detrended) data for the five target regions
(Ya(t) in Sect. 2.3). Also shown is the meteorological com-
ponent Ym(t) derived from the MLR meteorological model
and the residual Yr(t) (meteorology-corrected; Eq. 3) whose

long-term trend can be interpreted as being due to changes in
anthropogenic emissions. The PM2.5 anomalies show large
features on 10 d basis that can be mostly captured by the
MLR model. The residual meteorology-corrected time series
is much smoother, as depicted by the narrower 95 % con-
fidence intervals in the anthropogenic residual trends than
in the original observed trends. The meteorology-corrected
trends differ by 3 % (YRD) to 27 % (SCB) from the ob-
served trends. The YRD trend reflects a significant contri-
bution from the December 2013 outlier, which reflects unfa-
vorable meteorological conditions (Fig. S2) that are not ade-
quately captured by the MLR model. If we exclude this out-
lier month from the time series, the observed YRD trend be-
comes−5.7±0.9 µg m−3 a−1 and the meteorology-corrected
trend becomes −5.9± 0.7 µg m−3 a−1.

Most remarkably, it appears that the 2015–2017 flattening
in the PRD and 2015–2017 increase in the FWP (see Fig. 2)
can be mostly attributed to meteorological variability as re-
solved by the MLR model rather than to emissions. The trend
in the residual is more consistent with a steady 2013–2018
anthropogenic decrease in both regions. The MLR model
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shows that meteorology accelerated the PM2.5 decline in
PRD and FWP from 2013 to 2015 and contributed partly
to the 2015–2017 PM2.5 rebound over FWP. In particular,
the high PM2.5 anomalies in PRD in 2013 and early 2014
are driven by anomalously low V850, and the low PM2.5
in winter 2015–2016 is associated with anomalously high
southerly flow and precipitation (Fig. S4). The low PM2.5
in FWP in the winter 2014–2015 is associated with anoma-
lously high wind speed, low RH, and low temperature, while
the high anomalies in the winter 2016–2017 are associated
with anomalously low wind speed, high RH, and high tem-
perature (Fig. S5).

4 Conclusions

Observations of fine particulate matter (PM2.5) pollution
in China from the extensive CNEMC network established
in 2013 show large 2013–2018 decreases driven by emis-
sion controls with complicating influences from meteorol-
ogy. Here we used a stepwise multiple linear regression
(MLR) meteorological model to investigate and separate
contributions from anthropogenic emissions and meteorol-
ogy to these 6-year trends.

The CNEMC observations show 34 %–49 % decreases in
PM2.5 in the five megacity clusters targeted by the Chi-
nese government’s Clean Air Action to reduce anthropogenic
emissions. Concurrent observations of SO2, CO, and NO2
are qualitatively consistent with these PM2.5 decreases being
driven by drastic cuts in emissions from coal combustion. At
the same time, there is large interannual variability driven by
meteorology particularly in winter when PM2.5 is highest.

We used the stepwise MLR meteorological model to re-
late PM2.5 anomalies across China to wind speed, pre-
cipitation, relative humidity (RH), temperature, and merid-
ional velocity at 850 hPa (V850) as potential predictors. The
model accounts for ∼ 50 % of the variance in the deseason-
alized detrended PM2.5 data, including 41 %–65 % for the
five megacity clusters. Application to the PM2.5 time se-
ries shows that meteorological variability contributed signif-
icantly to the 6-year trends across China and in the megac-
ity clusters. Removing meteorological variability as given
by the MLR model also reduces the uncertainty in the
trend that can be attributed to emission controls. We re-
fer to the data series after removal of meteorological vari-
ability as the meteorology-corrected data. Thus the 2013–
2018 PM2.5 decrease for Beijing–Tianjin–Hebei is −9.3±
1.8 µg m−3 a−1 in the original data and is 14 % weaker in the
meteorology-corrected data (−8.0±1.1 µg m−3 a−1). For the
Sichuan Basin where the meteorological correction is par-
ticularly large, the PM2.5 decrease is −6.7± 1.3 µg m−3 a−1

in the original data and is reduced by 27 % to −4.9±
0.9 µg m−3 a−1 in the meteorology-corrected data. The av-
erage 2013–2018 PM2.5 decrease over our study domain is
−5.2 µg m−3 a−1 in the original data (Fig. 1c) and is reduced

by 12 % to −4.6 µg m−3 a−1 in the meteorology-corrected
data (Fig. 5b).

Observations for the 2015–2017 period indicate a flatten-
ing of the PM2.5 trend in the Pearl River Delta and an in-
crease in the Fenwei Plain. We find from the MLR model
that these 3-year trends can be explained by meteorologi-
cal variability (including particularly steep 2013–2015 de-
creases) rather than by relaxation of emission controls.

Data availability. All of the measurements and reanalysis data
are openly available for download from the websites given
in the main text. The anthropogenic emission inventory is
available from http://www.meicmodel.org (last access: 20 Jan-
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