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Abstract. Atmospheric sea salt plays important roles in ma-
rine cloud formation and atmospheric chemistry. We per-
formed an integrated analysis of NASA GEOS model sim-
ulations run with the GOCART aerosol module, in situ mea-
surements from the PALMS and SAGA instruments ob-
tained during the NASA ATom campaign, and aerosol op-
tical depth (AOD) measurements from the AERONET Ma-
rine Aerosol Network (MAN) and from MODIS satellite ob-
servations to better constrain sea salt in the marine atmo-
sphere. ATom measurements and GEOS model simulations
both show that sea salt concentrations over the Pacific and
Atlantic oceans have a strong vertical gradient, varying up
to 4 orders of magnitude from the marine boundary layer to
free troposphere. The modeled residence times suggest that
the lifetime of sea salt particles with a dry diameter of less
than 3 µm is largely controlled by wet removal, followed by
turbulent process. During both boreal summer and winter,
the GEOS-simulated sea salt mass mixing ratios agree with
SAGA measurements in the marine boundary layer (MBL)
and with PALMS measurements above the MBL. However,
comparison of AOD from GEOS with AERONET/MAN and
MODIS aerosol retrievals indicated that the model underes-
timated AOD over the oceans where sea salt dominates. The

apparent discrepancy of slightly overpredicted concentration
and large underpredicted AOD could not be explained by
biases in the model RH affecting the particle hygroscopic
growth, as modeled RH was found to be comparable to or
larger than the in situ measurements. This conundrum could
at least partially be explained by the difference in sea salt
size distribution; the GEOS simulation has much less sea
salt percentage-wise in the smaller particle size range and
thus less efficient light extinction than what was observed by
PALMS.

1 Introduction

Bubble-bursting and jet drops at the ocean surface result in
the production of sea spray particles composed of inorganic
sea salt and organic matter (e.g., de Leeuw et al., 2011; Quinn
and Bates, 2014). Among various atmospheric aerosol com-
ponents, sea salt is estimated to have the largest mass emis-
sion flux and the second-largest atmospheric mass loading
globally (Textor et al., 2006). Sea salt particles in the atmo-
sphere could exert direct radiative effect of around −1.5 to
−5.03 W m−2 annually at the top of the atmosphere (IPCC,
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2001). On a global and annual scale, the direct radiative ef-
fect of sea salt is equal to or greater in magnitude than that
of natural sulfate and soil dust (Jacobson, 2001; Takemura
et al., 2002). Sea salt particles are efficient cloud conden-
sation nuclei (CCN). Consequently, sea salt particles have
indirect effects on climate and weather (Dadashazaer et al.,
2017; Dall’Osto et al., 2017, 2018; Kogan et al., 2012; Pierce
and Adams, 2006). Furthermore, sea salt aerosol particles
serve as sinks for reactive gases and small particles and are
a source of halogens to the atmosphere (e.g., Alexander al.,
2005; Anastasio and Newberg, 2007; Lawler et al., 2011).
There is also observational evidence suggesting that new par-
ticle formation may be suppressed in the presence of sea salt
aerosol (Browse et al., 2014; Lewis and Schwartz, 2004). To
quantify the effects of sea salt aerosol on the environment,
a detailed knowledge of its mass, size, and vertical distribu-
tion is required. However, measurements of sea salt are not
only sparse but also mostly limited to near the surface at a
few locations (Prospero et al., 2003), posing difficulties in
assessing the global environmental effects of sea salt as well
as evaluating model skill at simulating sea salt vertical distri-
butions and properties.

A recent NASA-funded Earth Venture suborbital project,
the Atmospheric Tomography Mission (ATom), deployed
an extensive gas and aerosol instrumental payload on the
NASA DC-8 aircraft for systematic, global-scale sampling of
the atmosphere in four seasons over a 3-year period (2016–
2018), profiling continuously from 0.2 to 12 km altitude with
flight routes over the Pacific Ocean, Atlantic Ocean, South-
ern Ocean, North America, and Greenland from 85◦ N to
65◦ S (see Fig. 1). For the first time, vertical profiles of sea
salt aerosol concentration and size distribution are measured
in ATom over vast oceanic routes in different seasons, pro-
viding an unprecedented opportunity for models to evalu-
ate transport and parameterizations of physical and chemical
processes.

We present in this study a comprehensive evaluation of sea
salt aerosol simulated with the Goddard Chemistry, Aerosol,
Radiation, and Transport model (GOCART) in the Goddard
Earth Observing System (GEOS) framework using aerosol
measurements obtained during the first two ATom deploy-
ments, which represent the summer and winter seasons for
both hemispheres. We utilize ATom’s high-frequency verti-
cal measurements of sea salt over global remote oceans from
the marine boundary layer (MBL) to the upper troposphere,
in contrast with previous model validations of sea salt simu-
lation performed with in situ measurements at the surface and
over limited selected locations and regions (Chin et al., 2014;
Kishcha et al., 2011; Spada et al., 2013, 2015; Tsyro et al.,
2011; Witek et al., 2007) and typically using only monthly
averaged observations (Grini et al., 2002; Textor et al., 2006).
We compare the model-simulated sea salt vertical distribu-
tions with observations in various latitudinal zones over the
Pacific and Atlantic oceans, refer to dry and wet deposition
processes, and examine the sea salt size distribution that is

Figure 1. AToM1 (a) and AToM2 (b) flight tracks sorted out for
each flight day.

important to both aerosol optical depth (AOD) calculations
and cloud formation.

The GEOS/GOCART model is described in Sect. 2, par-
ticularly the sea salt emission scheme used in this study. The
NASA ATom field campaign is introduced in Sect. 3, in-
cluding a brief description of the Particle Analysis by Laser
Mass Spectrometry (PALMS) and Soluble Acidic Gases and
Aerosols (SAGA) instruments that are used to provide sea
salt measurements. Measured and modeled vertical profiles,
size distributions, and AOD are compared to assess model
emissions and removal processes in Sect. 4. In Sect. 5, we
summarize the outcome of our study and discuss the poten-
tially important chemical and physical processes that likely
have an impact on sea salt simulation and recommend future
improvements.

2 Model description

Global aerosol is simulated by GEOS/GOCART, which is the
global aerosol model GOCART (Chin et al., 2002, 2014) im-
plemented in the GEOS Earth system model (Gelaro et al.,
2017; Rienecker et al., 2011). The GEOS/GOCART aerosols
include dust, sea salt, sulfate, nitrate, ammonium, black car-
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bon, and organic matter, all mixed externally (Bian et al.,
2013, 2017; Colarco et al., 2010).

Sea salt emissions are controlled by aerosol particles gen-
erated from collapsing bubbles and ejected jet droplets that in
turn are directly related to the whitecap fraction in the ocean
and are commonly parameterized as a function of wind speed
and sea surface temperature (SST). The sea salt emission
scheme in the GEOS/GOCART model was initially based
on the algorithm of Gong (2003), who provided a parame-
terization of the size-resolved flux of sea salt particles as a
function of the 10 m wind speed. Two modifications to this
scheme were subsequently developed based on comparisons
of simulated sea salt aerosol to satellite AOD from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) (Dar-
menov et al., 2013; Randles et al., 2017): (1) the emission
function was recalibrated in terms of the surface friction ve-
locity rather than the 10 m wind speed, and (2) an SST cor-
rection term that is similar to the work of Jaeglé et al. (2011)
was introduced. The model’s surface winds are constrained
by the two satellite observations, Special Sensor Microwave
Imager (SSM/I) and Quick Scatterometer (QuikSCAT) (Rie-
necker et al., 2011). This emission algorithm is the default
GEOS/GOCART sea salt emission and is used in this study.

The current default setting of GEOS/GOCART allows sea
salt to be completely removed by warm clouds from convec-
tive updraft and from large-scale rainout and washout. Sea
salt can also be removed by dry deposition (turbulent) and
sedimentation. These processes were described in Chin et
al. (2002). We assume that the particles undergo hygroscopic
growth according to the equilibrium parameterization of Ger-
ber (1985), which is a function of the relative humidity (RH).
The humidified particle sizes are considered in our computa-
tions of the particle sedimentation, aerodynamic deposition
velocity, and optical properties.

The GEOS/GOCART includes five bulk sea salt size bins
in the range of 0.06–20 µm in dry diameter. Specifically, they
are 0.06–0.2, 0.2–1.0, 1.0–3.0, 3.0–10, and 10–20 µm, re-
spectively. The first bin was not included in the previous
GOCART versions (Chin et al., 2002, 2014) but was added
to facilitate aerosol–cloud interactions and optical property
studies (Colarco et al., 2010). We further classify the first
two bins as fine mode and the remaining bins as coarse
mode throughout this paper. The sea salt particle density is
2200 (kg m−3) for all sizes.

In this study, we ran GEOS/GOCART at a global∼ 50 km
horizontal resolution on the cubed-sphere grid and 72 ver-
tical layers from surface to 0.01 hPa. We ran the model in
the “replay” mode, which sets the model dynamical state
(winds, pressure, and temperature) at every 6 h to the bal-
anced state provided by the meteorological reanalysis fields
from the Modern-Era Reanalysis for Research and Applica-
tions version 2 (MERRA-2). An 18-month simulation was
conducted from the beginning of 2016 to cover the first two
phases of ATom measurement periods, with the first half year
as a spin-up period.

3 ATom aircraft sea salt measurement from PALMS
and SAGA

ATom provides measurements for various important atmo-
spheric gases, aerosols, and their precursors over vast open
oceans. Among these, sea salt has been measured by two in-
struments, the NOAA PALMS instrument, which provides
mass mixing ratio and size distribution up to 3 µm in dry di-
ameter, and the University of New Hampshire SAGA instru-
ment, which includes measurements of sodium ion (Na+) as
a proxy of sea salt.

PALMS is a laser ionization mass spectrometer that makes
in situ measurements of the chemical composition of indi-
vidual aerosol particles. A detailed description of PALMS,
including its physical working mechanism and measurement
features, has been given by Murphy et al. (2019) and Froyd
et al. (2019). The instrument is capable of measuring parti-
cles from 0.12 to 3 µm in dry diameter and analysis is com-
pleted in less than 1 ms after the aerosols enter the inlet. The
real power of the PALMS sea salt measurements is twofold:
(a) high sensitivity at low concentrations above the MBL
such that the measured vertical profiles are more reliable than
most previous data, and (b) the data are size-segregated up to
3 µm in dry diameter, covering the active size range for opti-
cal and radiative calculations.

On the other hand, the sea salt aerosol mass concentra-
tion from SAGA is deduced by applying a factor of 3.27 to
the measured Na+ mass concentration (Keene et al., 1986;
Wilson, 1975). This assumes that all of the measured Na+

comes from sea salt, which should be a reasonable assump-
tion for most ATom samples. SAGA collects particles on a
filter with a sampling frequency of around 5–15 min to al-
low more time for the filter media to collect sufficient par-
ticles. As reported by the DC-8 Inlet Characterization Ex-
periment (DICE), the SAGA inlet performed nearly iden-
tically in the marine boundary environment to the Univer-
sity of Hawaii inlet used by PALMS during ATom (Mc-
Naughton et al., 2007). In other words, the cut-off size of
the SAGA instrument is also roughly 3 µm in dry diameter.
As shown in Murphy et al. (2019), sea salt concentrations
inferred from the SAGA sodium data are highly correlated
with PALMS sea salt data in the cloud-free MBL.

We use ATom1 (July–August 2016) and ATom2 (January–
February 2017) campaign data in this study. These two de-
ployments combined together provided detailed information
for summer and winter on a global scale.
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4 Results and discussions

4.1 Comparisons in the marine boundary layer

Sea salt is sufficiently rich in the MBL that SAGA can collect
enough aerosol there for analysis. Comparisons of the sea
salt in a layer from surface up to 1.5 km between the model
simulation and ATom (PALMS and SAGA) measurements
are shown in Fig. 2a. To have a proper comparison, we made
three data treatments. First, we excluded SAGA samples with
significant dust signal, identified when the measurements
meet the two conditions: Ca2+ greater than 0.05 µg sm−3

and the ratio of Ca2+ to Na+ greater than 0.06. Second, we
only include GEOS sea salt particles smaller than 3 µm in
dry diameter in order to be consistent with the instrument
measurements. Third, we sampled GEOS and PALMS data
at the SAGA measurement time frequency when the SAGA
has valid measurements. The correlation coefficients (R) be-
tween the model and PALMS or SAGA data are generally
higher than 0.79 and the covariance (R2) higher than 0.64 in
both ATom1 and 2 periods.

There are outliers on the Fig. 2a. Just a small amount of
cloud can wash off salt previously deposited on an inlet wall.
Therefore, in Fig. 2b we excluded samples that might be con-
taminated by clouds during sampling, using a cloud indica-
tor from the Cloud, Aerosol, and Precipitation Spectrome-
ter (CAPS). The outliers are gone on Fig. 2b and the cor-
relation coefficients between model and measurements are
indeed improved from 0.82–0.84 to 0.85–0.87. On the other
hand, the GEOS sea salt mass mixing ratios are still more
than double of those of PALMS (2.3 in ATom1 and 4.7 in
ATom2), which could be at least partially explained by po-
tential sampling biases in PALMS instrument, particularly
in the size distribution. The cut-off at 3 µm in dry diameter
is recommended by the instrument teams, it is known that
this is subject to a large uncertainty of wet/dry size ratio
that is strongly dependent on ambient relative humidity. Fur-
thermore, the sea salt mass distribution is (sometimes) still
rising sharply through the inlet cutpoints. Considering the
combination of all these systematic and random uncertain-
ties, which are decreased across the sea salt coarse mode, the
measurement can easily result in uncertainties on the order of
∼ 2x in dry mass. When checking the comparison between
GEOS and SAGA, GEOS sea salt mixing ratio is compa-
rable to or slightly larger than SAGA results (i.e., ratio of
GEOS to SAGA is 0.92 in ATom1 and 1.3 in ATom2). Over-
all, the GEOS is most likely to overestimate sea salt mass
during February. Comparing sea salt between the two instru-
ments directly shows a high correlation (0.81 in ATom1 and
0.94 in ATom2), while sea salt mass of PALMS is only 36 %
(ATom1) and 24 % (ATom2) of that in SAGA (also see Mur-
phy et al., 2019).

Figure 2. (a) Scatter plot of sea salt between GEOS and PALMS
(magenta) and between GEOS and SAGA (blue) in ATom1 (sym-
bol +) and ATom2 (symbol �) for all flight measurements within
1.5 km atmospheric thickness above ocean surface. The SAGA sam-
ples are filtered out when dust signal is significant. The GEOS sea
salt shown here are cut at 3 µm in dry diameter. Both GEOS and
PALMS data are then sampled using SAGA measurement time fre-
quency. The statistical parameter r is the correlation coefficient and
b is the ratio of SS(GEOS) to SS(ATom). (b) Similar to (a) with
the samples contaminated by clouds further excluded using CAPS
cloud indicator.

4.2 Vertical distribution

Understanding the sea salt vertical distribution is important,
particularly in the tropical marine upper troposphere where
a reliable background aerosol field is needed. However, most
previous sea salt measurements were limited to the surface
or near coastal areas, leading to nearly no in situ observa-
tions of the vertical distribution of sea salt over vast areas
of the open oceans. The ATom measurements fill this gap
by providing measurements over the Pacific, Atlantic, and
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Figure 3. Sea salt (Dp < 3 µm) vertical profiles from GEOS simulation and PALMS measurement along ATom1 and ATom2 flight tracks in
five latitudinal bands over the Pacific and Atlantic oceans. The latitudinal bands are marked by dotted grey lines in Fig. 1.

Southern oceans from near surface to the upper troposphere
(0.2–12 km). Furthermore, the PALMS instrument measures
in situ sea salt mass and size distribution. The high sensitivity
of the PALMS instrument makes its data very useful in study-
ing the relatively clean environments above the MBL. Using
the ATom sea salt measurements over remote open oceans
has some additional advantages over previous studies. For in-
stance, airborne measurements alleviate biases typical at land
stations due to onshore wave breaking activities, especially at
sites with steep topography (Witek et al., 2007; Spada et al.,
2015).

Figure 3 shows the sea salt vertical profiles of the PALMS
measurement and the GEOS model simulation over five lati-
tudinal zones over the Pacific and Atlantic oceans in ATom1
and ATom2. The GEOS model results are sampled at the time

and location closest to the measurement points. As discussed
in Sect. 4.1, modeled sea salt mass concentrations are higher
than the PALMS data near the surface over all latitudinal
zones during both summer and winter seasons.

There are often two vertical regimes: a sharp gradient
of sea salt in the lower atmosphere and a lesser gradient
above. Wet removal processes, particularly convective cloud
removal, are likely the driving factors for the sea salt dis-
tribution in the size range considered in this study (Table 1,
column 2). Sea salt is a highly soluble species. It is assumed
to fully dissolve in clouds, resulting in efficient removal by
shallow marine clouds, typically marine stratus and stratocu-
mulus clouds (Eastman et al., 2011; Lebsock et al., 2011;
Wood, 2012; Zhou et al., 2015). Sea salt dry deposition (tur-
bulent) and sedimentation also contribute to its removal from

www.atmos-chem-phys.net/19/10773/2019/ Atmos. Chem. Phys., 19, 10773–10785, 2019
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Table 1. Sea salt (SS) budget analysis on annual basis from
July 2016 to June 2017 (second column: GEOS SS up to 3 µm in
dry diameter; third column: GEOS SS for all bins; fourth column:
AeroCom SS for all bins).

GEOS SS GEOS SS AeroCom
(Da

p < 3 µm) (all bins) SS (all bins)

Emission (Tg yr−1) 515.2 4015.5 2190–117 949
Burden (Tg) 1.63 6.80 3.4–18.2
Lifetime (d) 1.16 0.62 0.03–1.59
Surf concentration (µg kg−1) 3.2 16.5
Dry deposition (Tg yr−1) 103.1 460.9
Sedimentation (Tg yr−1) 61.1 2458.2
Kb

dry (d−1) 1.17 1.17 0.06–2.94

LSc deposition (Tg yr−1) 140.3 354.7
SVd deposition (Tg yr−1) 211.8 746.1
Ke

wet (d−1) 0.44 0.44 0.11–2.45
SSAOD550 nm 0.0269 0.003–0.067

a Dp: particle diameter (µm); b Kdry: loss frequency due to dry deposition and sedimentation (d−1);
c LS: large-scale wet deposition (Tg yr−1); d SV: convective wet deposition (Tg yr−1); e Kwet: loss
frequency due to wet large-scale and convective depositions (d−1).

low altitudes. Interestingly, the sedimentation process plays
the smallest removal role for the sea salt particles with a di-
ameter less than 3 µm, whereas it overwhelmingly controls
sea salt loss rate (i.e., more than 1.5 times those of all other
processes combined) when coarser-mode sea salt is included
(see Table 1, column 3). This is expected because nearly
90 % of injected sea salt mass is in coarse mode based on
our emission scheme. Since sea salt is found mostly in the
lower atmosphere, further removal of sea salt particles by
cold clouds was found to have only marginal impact on its
mass budget in our sensitivity studies, although its feedback
on cold clouds needs further study. Note that results in Ta-
ble 1 are summarized on an annual basis from July 2016 to
June 2017.

Atmospheric convection impacts the sea salt vertical dis-
tribution as well. The height of the turnaround level (or the
transition layer) between two vertical distribution regimes in
Fig. 3 is around 600 hPa in the polar regions and moves up to
400 hPa in the tropical region, given that more vigorous con-
vective activities occur in the tropical region. The seasonal
variation in the vertical gradient is larger in polar regions
than in tropical region, consistent with stronger seasonal vari-
ations in the meteorological fields (e.g., T , RH, wind, etc.) in
high latitudes.

4.3 Marine aerosol AOD

To provide an overall picture of sea salt for this study, we
compared the GEOS AOD with satellite MODIS Collec-
tion 6 (C6) Aerosol AOD retrieval (Levy et al., 2013) and
AERONET Maritime Aerosol Network (MAN) measure-
ments (Smirnov et al., 2017), focusing on sea-salt-dominated
regions. AOD integrates extinction by all aerosols in the at-
mospheric column, with extinction dependent on the absolute
mass, size distribution, hygroscopic growth, vertical distribu-

tion, and optical properties of each individual component and
the composition of aerosols.

Figure 4 shows total AOD comparison between MODIS
and GEOS in August 2016 and February 2017. Here, the
GEOS AODs are sampled using daily MODIS AOD re-
trieval. The AODs are only shown where the fraction of sea
salt AOD relative to the total aerosol AOD simulated by
GEOS (fSSAOD, Fig. 4e and f) is larger than 0.6 so that
we can focus our discussion over sea salt dominant regions.
MODIS AODs are much higher than GEOS AODs for both
seasons over remote oceans where sea salt dominates, by
0.043 in August 2016 and 0.062 in February 2017. These
differences between MODIS and GEOS are higher than the
potential positive bias of MODIS C6 AOD, up to 0.03, over
oceans (Fig. 16 in Levy et al., 2013). It is difficult for us
to remove the MODIS bias in the comparison shown in the
Fig. 4 since the study of Levy et al. (2013) gave only statis-
tical values of MODIS AOD bias without information about
geophysical location.

The conclusion of a lower GEOS AOD can also be found
in Fig. 5 by comparing AOD between ground-based ship-
board measurements and the GEOS simulations. AERONET
MAN provides shipborne aerosol optical depth measure-
ments from Microtops II sun photometers. The MAN data
are not found to have the positive systematic bias reported for
MODIS. MAN measurements from July 2016 to June 2017
are used in this study. The GEOS model results are sam-
pled at the closest time and location of the ship-based mea-
surements. The model AODs are much smaller than MAN
measurements over a majority of the open ocean areas, ex-
cept part of the Atlantic Ocean where AOD was impacted by
dust. The scatter plot at the bottom of the figure clearly in-
dicates that the modeled AOD is biased low, especially over
the Southern Ocean where the model AOD is less than half
of MAN’s.

On the one hand, GEOS’s sea salt mass is comparable to
SAGA in situ measurements in the MBL, and, on the other
hand, GEOS underestimates AOD when compared with mea-
surements from MAN and MODIS. The agreement with
PALMS vertical gradients shows that the AOD cannot be ex-
plained by sea salt above the MBL. There are various po-
tential reasons for this conundrum, such as the sea salt size
distribution, atmospheric relative humidity, sea salt particle
hygroscopic growth rate, sea salt refractive index, etc. We
will discuss the first two potential reasons below.

4.4 Size distribution and atmospheric RH

The sea salt size distribution is a key factor in AOD calcula-
tion because small particles are more optically efficient at
light extinction. Aerosol size also modulates the transport
and removal processes. The necessity for studying sea salt
size distribution also lies in the important role of sea salt par-
ticle sizes that affects atmospheric chemistry, radiative ef-
fects, and cloud formation processes.
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Figure 4. Total aerosol AOD in August 2016 (a, c) and February 2017 (b, d) from MODIS (a, b) and GEOS (c, d). Panels (e, f) show the
AOD fraction of sea salt relative to the total aerosol simulated by GEOS.

To compare the sea salt size distributions between the
model and ATom data, we calculate normalized percentage
of sea salt mass in each of the first three size bins for PALMS
and GEOS over three atmospheric vertical layers for ATom1
and 2, as shown in Fig. 6. The three vertical layers (i.e., 0–
1.5, 1.5–6, and > 6 km) represent the boundary layer, mid-
dle troposphere, and upper troposphere. GEOS sea salt par-
ticle mass and size have been computed at RH of 45 % to
match the measurement condition of PALMS. The particle
sizes here are limited to be less than 3 µm in dry diameter
due to the size cut of the PALMS inlet. Particles in this range
are most important in light extinction and cloud formation,
with many more sea salt particles in fine mode than in coarse
mode on a per unit of mass basis.

Figure 6 reveals that the size distribution is more flat in
PALMS than in GEOS. In other words, with the same sea salt
mass, the fraction of sea salt in the finest mode in PALMS
is much larger (i.e., about 5–7 times higher) than in GEOS.
To quantify the potential impact of sea salt size distribution
on AOD calculation, we calculate the sea salt mass extinc-
tion efficiency (MEE) integrated over the three bins using
the two size distributions of PALMS and GEOS at RH 45 %
and 550 nm in the same three vertical layers and in the whole
atmosphere (Table 2). The size-segregated MEEs used in the
calculation are 1.6, 5.6, and 1.2 m2 g−1 for bins 1–3, respec-
tively. The effective MEE from GEOS for the size range is
1.7 m2 g−1, which is about 24 % lower than 2.2 m2 g−1 cal-
culated with the PALMS size distribution. Thus, the underes-
timation of GEOS AOD shown in Fig. 5c may partially stem

www.atmos-chem-phys.net/19/10773/2019/ Atmos. Chem. Phys., 19, 10773–10785, 2019
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Figure 5. Total AOD measured by the MAN cruise, which occurred
during July 2016 to June 2017 (a), and simulated by GEOS but sam-
pled with MAN measurements (b). Panel (c) shows the total AOD
scattering plot between MAN and GEOS and the purple color is for
the data over the Southern Ocean shown inside the boxes in (b).

from the model underestimate of the small sea salt particles,
especially for those with a diameter less than 1 µm (Fig. 6).
The underestimation of AOD by GEOS is more significant
in the boundary layer shown in Table 2, which implies that
the sea salt size distribution from emission may need to be
revisited.

Apparently, sea salt size distribution is a potential culprit
for the dichotomy in GEOS simulation since GEOS parti-
tions more sea salt onto larger particles that are less opti-

Table 2. Sea salt mass extinction efficient (MEE) for PALMS and
GEOS and the ratio of MEEs between GEOS and PALMS in three
vertical layers and in the whole atmosphere at RH 45 %.

PALMS GEOS R(GEOS/
(m2 kg−1) (m2 kg−1) PALMS) %

0–1.5 km 2636.87 1618.09 61.4
1.5–6 km 2089.97 1671.61 80.0
> 6 km 1891.07 1786.24 94.5

All 2203.67 1679.36 76.2

cally active compared with the significant fine-mode sea salt
observed in PALMS measurements. Such large underestima-
tion of fine sea salt particles by the model may have signif-
icant implications not only on the AOD calculation but also
on studies of radiative effects and cloud formation because
particle number concentration is a key quantity for these pro-
cesses. The conclusion that GEOS sea salt size distribution
favors the coarse-mode sea salt particles is consistent with a
recent study of Neumann et al. (2016), which found that the
sea salt emission of Gong (2003) yielded overestimations in
the PM10 measured at coastal stations and underestimations
at inland stations over northwestern Europe.

Sea salt particle size distribution changes horizontally and
vertically, but the change is much smaller than the difference
between those of model and measurement. This implies a
possibility of using a global size distribution without sacri-
ficing much accuracy.

Another possible contribution to underestimation of the
AOD due to sea salt in the model is if there is a general
underestimate in the humidification of sea salt particles in
the model, with a corresponding underestimate on optical
efficiency per unit of dry mass. Figure 7 compares atmo-
spheric RHs between ATom measurements and GEOS simu-
lations along flight tracks summarized over the same regions
as in Fig. 3. With only a few exceptions, the model RH is
higher than the ATom measurements, including in the MBL,
where humidity is typically high. Thus, atmospheric water
vapor simulation is not responsible for the low AOD calcu-
lation. In fact, using measured RH along with the model’s
sea salt size distribution and vertical distribution would give
even lower AOD. There should be other factors contributing
to a lower GEOS AOD calculation as well, such as sea salt
hygroscopic growth rate, sea salt optical properties, and other
aerosol species over ocean. Further investigations looking for
these factors are needed to better understand the GEOS sea
salt simulation.
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Figure 6. Percentage distribution of sea salt mass over the first three bins, normalized to the total sea salt with a particle wet diameter
up to ∼ 5 µm at RH 45 %. The normalized SS mass-weighting distribution is sorted over three vertical layers and for ATom1 (a–c) and
ATom2 (d–f), respectively.

Figure 7. Atmospheric RH vertical profiles from GEOS simulation and ATom measurement along ATom1 and ATom2 flight tracks in
five latitudinal bands over the Pacific and Atlantic oceans.
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5 Conclusions

A systematic and comprehensive global sea salt study was
conducted by integrating NASA GEOS model simulations
with ATom in situ measurements from the PALMS and
SAGA instruments, as well as AOD measurements from the
AERONET MAN and the satellite MODIS over the oceans.
This work takes advantage of PALMS sea salt vertical pro-
file measurement, together with SAGA filter measurements
in the MBL, covering global remote regions over the Pa-
cific, Atlantic, and Southern oceans from near the surface to
∼ 12 km altitude in both summer and winter. Important at-
mospheric sea salt fields, e.g., mass mixing ratio, vertical dis-
tribution, size distribution, and aerosol AOD, are examined.
The meteorological field of RH and the sea salt simulation
processes of emission, dry deposition, sedimentation, and
large-scale and convective wet depositions were explored to
explain the sea salt fields and to reveal a potential direction
for model improvement.

Generally, the agreement between ATom measurements
and the model is remarkable, both in terms of absolute load-
ing and especially in the shape of the vertical distribution
under a wide range of different tropospheric environments.
The correlation coefficients are generally higher than 0.8 be-
tween GEOS-PALMS and GEOS-SAGA for both ATom1
and ATom2 periods. GEOS results capture the strong sea
salt vertical gradient shown in the measurements, except over
SH high latitudes, where the PALMS’s gradient is deeper. In
the MBL, the current GEOS sea salt simulation is compa-
rable (ATom1) or slightly higher (ATom2) than SAGA data,
which in turn is higher than PALMS data.

An underestimation of GEOS aerosol AOD over sea-salt-
dominated oceans is found from the comparison of AODs
between GEOS and MAN, as well as GEOS and MODIS.
This is contradictory to the finding that GEOS sea salt mass
abundance is comparable to or slightly higher than measure-
ments. This conundrum may be partially attributed to the dif-
ference in sea salt mass size distributions between GEOS and
PALMS. The GEOS sea salt mass size distribution favors the
coarse mode, while PALMS has a larger fraction of more
optically active submicron sea salt. The atmospheric water
vapor, however, can be ruled out as the cause of model un-
derestimation of AOD, since the GEOS RH is comparable to
or higher than ATom measurements almost everywhere along
the flight tracks, especially in the MBL.

Atmospheric sea salt vertical distribution is impacted by
various processes including emission, hygroscopic growth,
dry deposition, sedimentation, wet deposition, convection,
and large-scale advection. Among these processes, wet de-
position, owing to both shallow marine cloud structure and
rapid hygroscopic growth of sea salt particles, is most impor-
tant in shaping the vertical profile for the size range studied
in this work and results in a sharp gradient in the low atmo-
sphere where RH is typically very high. Vertical convection
is also important for explaining the sea salt vertical profiles.

More work is needed in the future to investigate sea salt
hygroscopic growth rate, optical properties, sea water salin-
ity, sea ice, and marine organic aerosol to understand the
dilemma in GEOS simulation. Consideration of variations in
salinity of surface seawater is missing in the GEOS aerosol
model. Although salinity may not be an important factor
in sea salt emission on the global scale, owing to its rela-
tively uniformity across the world oceans, it may be impor-
tant regionally, as discussed by Grythe et al. (2014). Salin-
ity also impacts sea spray aerosol (SSA) size. The dry SSA
size distribution shifts towards smaller sizes with lower salin-
ities found in the EMEP intensive campaigns (Barthel et al.,
2014). Sea ice, whose contribution is also neglected in the
GEOS aerosol model, could be an important source of sea
salt aerosol over polar regions and has significant implica-
tions for polar climate and atmospheric chemistry reported
by recent publications (Dall’Osto et al., 2017; May et al.,
2016; Rhodes et al., 2017). More importantly, primary ma-
rine organic aerosols (Randles et al., 2004) that also come
from sea spray bubble-bursting as sea salts, but are more sub-
micron particles (i.e., diameter less than 0.5 µm, should be
investigated to disentangle the sea spray aerosols.

Data availability. Most of the ATom observational data,
including flight tracks, meteorological fields, aerosol
fields, and cloud fields are publicly accessible at
https://www.dropbox.com/s/8uwauow5x6qfsio/ATom_public_
allmerge.2019-08-02.tar?dl=0 (last access: August 2019).
Other observational data are also freely available, MODIS
AOD at https://modis-atmosphere.gsfc.nasa.gov/data/dataprod/
(Levy et al., 2013), and AERONET MAN AOD at https:
//aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html
(Smirnov et al., 2017). The GEOS GOCART model results can be
provided by contacting with the corresponding author.
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